An Overview of Various Approaches for Static and Dynamic Surveillance Systems

Chitra Singh Shekhawat
Deptt. Of Software Engineering
Government Engineering College
Bikaner
chitra.shekhawat92@gmail.com

Hardayal S. Shekhawat
Deptt. Of Info. Technology(IT)
Government Engineering College
Bikaner
shekhawat.hardayal@gmail.com

Maninder Singh Nehra Deptt. Of Computer Science Government Engineering College Bikaner maninder4unehra@yahoo.com

Abstract— Video surveillance has lengthy been in use to display protection-sensitive regions which include banks, branch stores, highways, crowded public locations, and borders. The develop in computing electricity, availability of great ability garage gadgets and excessive speed network infrastructure paved the way for less expensive, multi-sensor video surveillance systems. Traditionally, the video outputs are processed on-line by using human operators and are stored to tapes for later use handiest after a forensic event. The growth in the variety of cameras in conventional surveillance structures overloaded each the human operators and the garage devices with excessive volumes of facts and made it infeasible to make certain proper tracking of sensitive areas for lengthy instances. To filter redundant statistics generated using an array of cameras, and boom the reaction time to forensic occasions, helping the human operators with the identity of important events in the video using the use of "clever" video surveillance systems has come to be an essential requirement. The making of video surveillance structures "smart" requires fast, dependable and strong algorithms for moving item detection, type, monitoring and pastime analysis.

Keywords— video surveillance, object tracking, mean square error

I. INTRODUCTION

Video surveillance systems have lengthy been in use to monitor security sensitive areas. The history of video surveillance includes three generations of structures which might be called 1GSS, 2GSS, and 3GSS [1].

The first technology monitoring systems (1GSS, 1960-1980) were based totally on analog subsystems for picture acquisition, transmission, and processing. They extended human eye in spatial feel with the aid of transmitting the outputs of several cameras monitoring a set of websites to the displays in a first control room[2]. They had the important drawbacks like requiring excessive bandwidth, hard archiving and retrieval of activities due to the large variety of video tape necessities and challenging online event detection which only trusted human operators with limited attention span..

The making of video surveillance structures "smart" requires fast, reliable and robust algorithms for shifting object detection, type, monitoring and interest evaluation. Starting from the 2GSS, many studies has been dedicated to the development of these clever algorithms[3].

Moving item detection is the primary step for also analysis of the video. It handles segmentation of moving gadgets from desk-bound heritage gadgets. It now not handiest creates a focal point of attention for better stage processing but additionally decreases computation time appreciably. Commonly used strategies for item detection are historical past subtraction, statistical fashions, temporal differencing and optical waft. Due to dynamic environmental conditions which include illumination changes, shadows and waving tree branches inside the wind item segmentation is a difficult and substantial problem that needs to be handled well for a robust visual surveillance device[4].

Video surveillance is essentially the most energetic study matter in machine vision for people and vehicles. Right here the intention is to enhance an intelligent visual surveillance method through re-inserting the age ancient classical method of monitoring via human operators. The inducement in doing is to design a video surveillance approach for movement detection and object monitoring.

II. LITERATURE SURVEY

The use of item detection, tracking and class algorithms are not limited to video surveillance best. Other software domains also benefit from the advances within the studies on these algorithms. Some examples are the digital truth, video compression, human machine interface, augmented truth, video enhancing and multimedia databases. Table 1 gives a tabular representation of various contributions made in this research direction.

Table 1. List of Contributions in Surveillance Systems

Author	Year	Contribution
Brice,Fenema,	1970	Worked on constrained
Pavlidis Rosenfeld		optimization problem of
and Kak		controlling the smoothness
		of boundaries in an image
		representing each object
		significantly[1].
Otsu	1979	Proposed a histogram
		based technique to
		maximize the class
		variance among different

		classes, each representing a	Liu		proposed background
		single object[2].			subtraction to notice
	1007				relocating areas in an
Mumford Shah	1985,	worked on localized image			imagegraph via taking the
	1989	segmentation problem and			change between present
		concluded to region			and reference background
		growing based image			imagegraph in a pixel-by
		segmentation approach, which is the most standard	Collins		means of-pixel[5]. Developed a hybrid process
		one yet. Threshold	Collins		that combines three-frame
		selection in image			differencing with an
		segmentation is a			adaptive background
		problematic task. It			subtraction mannequin for
		provides vital information			their VSAM (Video
		about image and play			Surveillance and
		important role in			Monitoring) assignment[6].
		segmentation of image.	Desa & Salih		Proposed a blend of
		Several different methods			background subtraction and
		for choosing a threshold			frame change that elevated
		exist; users can manually			the previous outcome of
		choose a threshold value,			background subtraction and
		or a thresholding algorithm			body change[6].
		can compute a value	Sugandi		Pproposed a new system
		automatically, which is			for object detection using
		known as automatic			body change on low
		threshold [4]. One of such	7 II G		decision image[7].
		simpler methods used is to	Julio Cezar		Proposed a background
		select either the mean or median value, depending			model, and comprise a
		on the condition whether			novel procedure for
		the object pixels are			shadow detection in grey scale video sequences[8].
		brighter than the	Satoh		Proposed a brand new
		background.	Saton		manner for object
Rudolph E.		Kalman filter operates on			monitoring employing
Kalman,"		input data to perform a			block matching algorithm
ĺ		statistically			established on PISC
		optimal solution of the			image[5].
		used system, its output gets	Sugandi		Proposed monitoring
		filtered of any noisy			technique of moving folks
		component rendered either			making use of digital
		due to input noise or output			camera peripheral
		noise. In today's era this			increment sign correlation
		technique is used in			image[9].
		multitude of navigation	Beymer &	1999	Proposed in stereo digital
		systems such as missile etc. It is being too used in the	konolige		camera situated object
		systems of VR (Virtual			tracking, use kalman filter
		Reality) and AR			for predicting the objects
		(Augmented Reality) [3] to			position and speed in x-2
		track the human motions in	Lin	2001	dimension[3].
		a virtual space.	Liu	2001	Proposed background subtraction to detect
Lipton		Proposed frame change that			moving regions in an
1		use of the pixel-sensible			image by taking the change
		variations between two			between current and
		frame portraits to extract			reference background
		the moving areas[4].			image by a pixel-via-pixel.
Stauffer &		proposed a Gaussian blend			It's extremely sensitive to
Grimson		model situated on			change in dynamic scenes
		background mannequin to			derived from lighting
		realize the thing[2].			fixtures and extraneous
	-		L		

	1	
		routine and many
		others[10].
Stauffer &	1997	Proposed a Gaussian blend
Grimson,		mannequin centered on
,		background mannequin to
		realize the item[10].
Lipton	1998	Proposed frame difference
1		that use of the pixel-clever
		variations between two
		body images to extract the
		moving areas. This process
		may be very adaptive to
		dynamic environments, but
		normally does a terrible job
		of extracting all of the
		central pixels, e.g., there
		could also be holes left
		inside of relocating entities.
		So as to overcome
	1	disadvantage of two-frames
		differencing, in some cases
		three-frames differencing is
		used[9].
Collins	2000	Developed a hybrid
		procedure that mixes three-
		frame differencing with an
		adaptive background
		subtraction model for his or
		her VSAM (Video
		Surveillance and
		Monitoring) challenge. The
		hybrid algorithm
		successfully segments
		moving regions in video
		without the defects of
		temporal differencing and
		background
		subtraction[12].
Desa & Salih	2004	Proposed a combo of
		background subtraction and
	1	frame difference that
	1	accelerated the earlier
	1	results of background
	1	subtraction and body
Wren et al	1997	difference[13].
wren et al	1997	Explored using small blob
		facets to track a single
		human in an indoor environment. In their work,
	1	
	1	a human physique is
		regarded as a mixture of
	1	some blobs respectively
	1	representing various body
		ingredients comparable to head, torso and the 4 limbs.
	1	The pixels belonging to the
	1	human physique are
		assigned to the different
	1	physique phase's blobs[8].
	1	physique phase s blobs[6].

		Via monitoring every small
		blob, the moving human is
		_
M.W.	2000	successfully tracked.
McKenna	2000	Proposed an adaptive
		background subtraction
		system where colour and
		gradient understanding are
		combined to manage with
		shadows and unreliable
		colour cues in motion
		segmentation. Monitoring
		is then performed at three
		stages of abstraction: areas,
		individuals, and agencies.
		Every neighborhood has a
		bounding box and regions
		can merge and break up. A
		human is composed of a
		number of areas grouped
		together below the values
		of geometric structure
		constraints on the human
		physique, and a human
		workforce consists of a
		number of men and women
		grouped together[6].
Cheng & Chen	2006	Proposed a colour and a
		spatial function of the
		article to identify the track
		object. The spatial function
		is extracted from the
		bounding box of the article.
		In the meantime, the color
		points extracted is imply
		and regular value of every
		object[7].
Czyz	2007	Proposed the colour
- ,		distribution of the item as
		commentary model. The
		similarity of the objects
		measurement utilizing
		Bhattacharya distance. The
		low Bhattacharya distance
		-
		corresponds to the high
Cucon 1:	2007	similarity[9].
Sugandi	2007	Object monitoring
		employing block matching
		algorithm centered on PISC
	1	image[2].
Satoh	2001	Proposed object
		identification employing
		color and spatial
		information of the tracked
		object[7].
Cheng & Chen	2006	Proposed implementation
=		of an current algorithm for
		tracking the article by
		using utilizing Block
		matching process is done.
		An computerized video
	1	I III compaterized video

	ı	
		surveillance is used by
		personal firms,
		governments and public
		corporations to fight in
		opposition to terrorism and
		crime, public protection in
		airports, bus stand, railway
		station, town facilities and
		*
		hospitals. It has also to find
		applications in site visitors
		surveillance for effective
		management of transport
		networks and street
		safeguard. Video
		surveillance system
		comprise mission akin to
		movement detection,
		tracking, and endeavor
		attention. Out of the project
		acknowledged above,
		detection of moving object
		is the first predominant
		step and positive
		segmentation of moving
		foreground object from the
		background ensures object
		classification, personal
		identification, tracking, and
		undertaking analysis,
		making this later step more
		efficient[13].
Hu		Labeled motion detection
		into three main lessons of
		procedure as body
		differencing, background
		subtraction and Gaussian
		mixture[12].
Nowak	2003	Showed how the
NOWAK	2003	
		parameters of a mixture of
		Gaussians for which each
		and every node of a sensor
		community had distinctive
		mixing coefficients could
		be estimated utilising a
		allotted version of the
		famous expectation-
		maximization (EM)
		algorithm[10].
EM. Kowalczyk	2004	Proposed a related gossip-
and Vlas-sis		founded allotted algorithm
Kowalczyk and		called Newscast EM for
Vlassis		
v 188818		estimating the parameters
		of a Gaussian mixture.
		Random pairs of nodes
		repeatedly alternate their
		parameter estimates and
		combine them by way of
		weighted averaging[7].

Stauffer and		Proposed ,advise a
Grimson		probabilistic process using
Grinison		a combination of Gaussian
		for picking out the
		1 0
		background and foreground
		objects. The entire
		approach of monitoring the
		moving object is illustrated
		in [6]. The block matching
		approach is well described
		in [7], which got utilized
		generally.
Satoh	2001	Considers the brightness
		change in all of the pixels
		of the blocks relative to the
		considered pixel. Literature
		suggests the block in PISC
		image with block
		dimension is 55 pixels.
		Thus, one block contains
		25 pixels. The blocks of the
		PISC image in the prior
		frame are outlined. In a
		similar fashion, the blocks
		· ·
		of the PISC image in the
		current body are defined.
		To check the matching
		criteria of the blocks in two
		successive frames, analysis
		is finished using correlation
		value that expresses. This
		equation calculates the
		correlation price between
		block within the previous
		body and the current one
		for all pixels within the
		block. The excessive
		correlation value suggests
		that the blocks are matched
		every other[9].
L	1) L- 1.

III. CONCLUSION

In this research article, we have focused our investigation over the utility of various approach for video surveillance. For this sake a tabular listing is mentioned in this work. Major fields of research in surveillance system include segmentation approach for various condition, parametric and non parametric approach for object tracking, feature matching based surveillance model and spatial processing of pixel information to improve the frame suspectibility for object detection. Over all we can say that this art may play a vital role for basic understanding of various research subdimensions in this field.

REFERENCES

[1] J. N. Mann, W. Barry, "Surveillance: Inventing and Using Wearable Computing Devices", *Surveillance & Society*, vol. 1, no. 3, 2003.

- [2] N. Sulman, T. Sanocki, D. Goldgof, R. Kasturi, "How effective is human video surveillance performance", 19th International Conference on Pattern Recognition, pp. 1-3, 2008.
- [3] Ko. Teddy, Weiyao Lin, "A Survey on Behavior Analysis in Video Surveillance Applications", Video Surveillance, [online] Available: http://www.intechopen.com/books/videosurveillance/a-survey-onbehavior-analysis-in-video-surveillance-applications.(2011), ISBN 978-953-307-436-8.
- [4] T. Zhang, S. Liu, C. Xu, H. Lu, "Mining Semantic Context information for intelligent video Surveillance of traffic Scene", *IEEE transaction* on *Industrial informatics*, vol. 9, no. 1, pp. 149-160, 2013.
- [5] M Paul, M. E. Shah, S. Chakraborty, "Human detection in surveillance videos and its applications — a review", EURASIP Journal on Advances in Signal Processing, pp. 176, 2013.
- [6] N. Dalal, B. Triggs, "Histograms of oriented gradients for human detection", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886-893, 2005.
- [7] L. Lee, W. Grimson, "Gait Analysis for Recognition and Classification", *Proceedings of the 1st International Conference Automatic Face and Gesture Recognition*, pp. 155-162, 2002.
- [8] F. Oberti, G. Ferrari, C. S. Regazzoni, Video-Based Surveillance Systems, Boston:Kluwer Academic Publishers, 2002.
- [9] F.F Chamasemani, L.L. Affendey, "Systematic Review and Classification on Video Surveillance Systems", I.J. Information Technology and Computer Science, vol. 07, pp. 87-102, 2013.
- [10] I. Haritaoglu, D. Harwood, L. S. Davis, "W: Real-time surveillance of people and their activities", *IEEE Transactions Pattern Analysis Machine Intelligence*, vol. 22, no. 8, pp. 809-830, 2000.
- [11] T. N. Tan, G. D. Sullivan, K. D. Baker, "Model-based localization and recognition of road vehicles", *Int. J. Comput. Vis.*, vol. 29, no. 1, pp. 22-25, 1998.
- [12] C. R. Wren, A. Azarbayejani, T. Darrell, A. P. Pentland, "Pfinder:real-time tracking of the human body", *IEEE Transactions Pattern Analysis Machine Intelligence*, vol. 19, no. 7, pp. 780-785, 1997.
- [13] T. Olson, F. Brill, "Moving object detection and event recognition algorithms for smart cameras", Proceedings DARPA Image Understanding Workshop, pp. 159-175, 1997.