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Abstract: Open channel flow parameter estimation is an 

inverse problem, which involves the prediction of a 

function within a domain, given an error criterion with 

respect to a set of observed data. Various numerical 

methods have been developed to estimate open channel 

flow parameters. For this study, Genetic Algorithm 

optimization technique is selected. Because of its inherent 

characteristics, Genetic Algorithm optimization technique 

avoids the subjectivity, long computation time and ill-

posedness often associated with conventional optimization 

techniques. 

An accurate estimation of roughness coefficients is of vital 

importance in any open channel flow study. In flood 

routing in natural rivers, most channels have compound 

sections and the roughness values in main channel and 

flood plains are usually different. In order to have more 

accurate results, the roughness of main channel and flood 

plains should be considered separately. It is possible to 

identify the values of roughness using optimization 

methods. However, studies on the inverse problem of 

estimating roughness values in compound channels are still 

limited. 

 

The present study involves estimation of open channel flow 

parameters having different bed materials invoking data 

of Gradual Varied Flow (GVF). Use of GVF data 

facilitates estimation of flow parameters. The necessary 

data base was generated by conducting laboratory 

experiments in Hydraulics Lab of civil Engineering at IIT 

Roorkee. In the present study, the efficacy of the Genetic 

Algorithm (GA) optimization technique is assessed in 

estimation of open channel flow parameters from the 

collected experimental data. Computer codes are 

developed to obtain optimal flow parameters Optimization 

Technique. Applicability, Adequacy & robustness of the 

developed code are tested using sets of theoretical data 

generated by experimental work. Estimation of Manning’s 

Roughness coefficient from the collected experimental 

work data by using Manning’s equation & GVF equation 

were made.  

The model is designed to arrive at such values of the 

decision variables that permit minimized mismatch 

between the observed & the computed GVF profiles. A 

simulation model was developed to compute GVF depths 

at preselected discrete sections for given downstream head 

and discharge rate. This model is linked to an optimizer to 

estimate optimal value of decision variables. The proposed 

model is employed to a set of laboratory data for three bed 

materials (i.e, d50=20mm, d50=6mm and lined concrete). 

Application of proposed model reveals that optimal value 

of fitting parameter ranges from 1.42 to 1.48 as the 

material gets finer. This value differs from the currently 

documented value i.e. 1.5. The optimal estimates of 

Manning’s n of three different bed conditions of 

experimental channel appear to be higher than the 

corresponding reported /Strickler’s’ estimates.  

Key Words: - Estimation of open channel roughness, GVF profiles, parameter estimation, optimization methods, Manning’s 

roughness coefficient. 

 

I. INTRODUCTION 

1.1 GENERAL 

Nowadays, models are decision-making tools but their 

reliability depends considerably on the choice of these 

parameters. In practice, their values are obtained through 

tedious trial-and-error procedures mainly involving visual 
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comparisons. There is clearly scope for improvement by 

applying automatic optimization methods for the introduction 

of objectivity and efficiency into the procedure. In general, 

parameters in mathematical models applied in the field of 

hydraulic engineering can be categorized into physical 

parameters and empirical parameters. Physical parameters 

describe physical properties and features of materials, e.g., the 

density of fluid. They usually are constants and probably have 

a set of independent state equations connected with some 

physical variables. Empirical parameters are based on 

mathematical models without definite and complete physical 

concept. Due to complexities of physical processes, the exact 

values of empirical parameters, such as Manning’s n in 

shallow water equations, are often uncertain. These kinds of 

empirical parameters are widely used in process modeling. As 

an empirical parameter, Manning’s n actually includes the 

components of surface friction resistance, form resistance, 

wave resistance, and resistance due to flow unsteadiness. 

Many empirical formulations for estimating the n value in 

practical problems have been suggested in the past (Urquhart 

1975). 

 

Roughness and flow estimation from given flow profiles for 

rivers having multiple estuaries is an important problem. The 

estuaries may be interconnected and form closed-loop channel 

networks. 

The resulting distributed parameter system may hinder the 

roughness and flow estimation because of the gradually varied 

flow effects. This paper documents the development of 

optimization models for parameter estimation in closed-loop 

channel networks. The parameter estimation procedure 

determines a set of unknown parameter values by minimizing 

the difference between the model-predicted water surface 

profile and observed values. The approach is known as inverse 

solution of the open-channel flow problem, and it stands as an 

independent area of research in many fields of engineering 

applications. For example, in the groundwater literature, Willis 

and Yeh (1987) reported a large number of inverse problem 

studies, and in open-channel hydraulics, Yeh and Becker 

(1973) and Khatibi et al. (1997) reported the solution of 

inverse problems for transient flow in a single channel. The 

present study considers steady-state flow in closed-loop 

channel networks. 

 

Two approaches can be used for solving inverse problems. 

The first is an iterative solution in which a numerical model is 

used to compute the water surface profiles for a given set of 

input parameter values and the computed water surface profile 

is then compared with the known water surface profiles for 

minimum error. Such a procedure can be computationally 

demanding. The present study uses the second approach, 

which combines the numerical procedure of the first approach 

in an optimization model that minimizes the error between the 

computed and observed watersurface elevations, subject to 

satisfaction of the governing equations for flow in closed-loop 

channel networks. 

 

Genetic programming (GP – an extension of genetic 

algorithms to the domain of computer programs Koza JR 

(2010), a technique generated from the seminal work of 

numerous researchers in the 1970s and 1980s, generates 

possible solutions that fit Manning (1890) and Albert Strickler 

(1923).  

 

Research involving the GMS equation traditionally focuses on 

the determination of the roughness coefficient, (n), under 

different flow regimes (e.g. Ayvaz (2013) and Ding, Jia (2004) 

and/or for different riverbed materials (e.g. Candela, Noto 

(2005), as even the presence of biological soil crusts can affect 

the surface roughness, runoff and erodibility of the channel 

Rodriguez, Canton (2012). 

 

 

1.2 CHANNEL ROUGHNESS 

Channel roughness can be defined as the resistance offered to 

flow mainly by the bed friction and bed forms. In this study, 

channel roughness coefficients were identified as parameters 

by using an automatic optimization method. Channel 

Roughness and flow estimation from the given flow profile for 

open channel is an important problem. Ebissa G. K. et al. 

(2017) identified Channel Roughness as parameter by using 

optimization method. It is usually parameterized by Manning’s 

n that is imbided in the following flow equation generally 

termed as Manning’s equation. 

𝑄 = (
𝐴

𝑛
) 𝑅2/3𝑆𝑜1/2                                                        (1) 

Where, n= Manning’s n; A=cross section area of the channel; 

R=Hydraulic radius; So=channel bed slope and Q=discharge in 

the channel. Manning’s n is commonly estimated by applying 

the strickler’s equation that relates n (corresponding to bed 

material) to the size of course fraction d90 or d50 of the bed 

material as follow.  

                          𝑛 =
(𝑑50)1/6

21.1
                                                    (2) 

Where, d50 is the size of particles in meters which are 50 

percent finer. For mixtures of bed material, the above equation 

is modified as: 

                          𝑛 =
(𝑑90)1/6

26
                                              (3)                    
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Where, d90 is the size of particle in meters and present the 

particle size in which 90 of the particle is finer than d90 (K. 

Subramanya, 2012). 

However, the actual n of a channel may be larger than the 

strickler’s estimate because of additional roughness due to bed 

forms…etc. The other approach is to monitor the normal depth 

corresponding to several discharge rates in the channel and to 

compute n by regressing the Manning equation. This approach 

provides a composite value of n accounting for all sources of 

roughness and may work well provided several observations 

corresponding several discharge rates are available. We can 

estimate composite roughness (nc) by using the following 

equation. 

𝑛𝑐 =
(∑ 𝑛𝑖

∝𝑃𝑖
𝑁
𝑖=1 )1/∝

(∑ 𝑃𝑖
𝑁
𝑖=1 )1/∝

                                             (4) 

Where, nc is composite roughness coefficient; N is total 

number of segment of wetted perimeter; ni is roughness 

coefficient of ith segment; pi is wetted perimeter of ith segment 

and ∝ is fitting parameter. 

However, the underlying assumption of the flow being 

uniform may not hold. Further, in a typical natural channel 

with variable roughness along its wetted perimeter, Manning’s 

n may vary with flow depth. The approach of using the 

uniform flow data does not account for this variability of n. 

For the present study, d50= 6mm particle size and d50 = 20mm 

particle size are used. 

1.3 BRIEF REVIEW OF LITERATURE 

Parameter identification techniques have been widely used in 

the field of hydrology, meteorology, and oceanography. The 

issue of parameter identification based on the optimal control 

theories in oceanography can be traced from the early work of 

Bennett and McIntosh (1982) and Prevost and Salmon (1986). 

Panchang and O’Brien (1989) carried out early an adjoint 

parameter identification for bottom drag coefficient in a tidal 

channel. Das and Lardner (1991) estimated the bottom friction 

and water depth in a two-dimensional tidal flow. Yeh and Sun 

(1990) presented an adjoint sensitivity analysis for a 

groundwater system and identified the parameters in a leaky 

aquifer system. Wasantha Lal (1995) used singular value 

decomposition to calibrate the Manning’s roughness in one-

dimensional (1D) Saint Venant equations. Khatibi et al. (1997) 

identified the friction parameter in 1D open channel 

considering the selection of performance function and effect of 

uncertainty in observed data. Atanov et al. (1999) Used the 

adjoint equation method to identify a profile of Manning’s n in 

an idealized trapezoidal open channel. Ishii (2000) identified a 

constant Manning’s n in an open channel flow with a movable 

bed. Ramesh et al. (2000) solved the inverse problem of 

identifying the roughness coefficient in a channel network 

using the sequential quadratic programming algorithm. Sulzer 

et al. (2002) estimated flood discharges using the Levenberg–

Marquardt minimization algorithm. For the parameter 

identification issues about adjoint methodology in 

meteorology and oceanography, one may refer to Ghil and 

Malanotte-Rizzoli (1991) and Zou et al. (1992). 

 

The identifications of parameters in some cases are hard to 

achieve due to ill-posedness in the inverse problems. Chavent 

(1974) noted instability and nonuniqueness of identified 

parameters in the distributed system. Due to the instability, 

some minimization procedures will lead to serious errors in 

the identified parameters and make the identification process 

unstable. In the case of nonuniqueness, the identified 

parameters will differ according to the initial estimations of 

the parameters, and not converge to their optimal (or ‘‘true’’) 

values. Yeh (1986) and Navon (1998) have pointed out that 

the problem of uniqueness in parameter identification is 

intimately related to identification, which addresses the 

question of whether it is at all possible to obtain a unique 

solution of the inverse problem for unknown parameters. 

Although there are a lot of identification procedures available 

for estimating parameters in mathematical models, none of 

them can automatically guarantee stability and uniqueness in 

the parameter identifications in diverse engineering problems. 

It is therefore vital to confirm the performance of these 

procedures to find stable ones that can warrant obtaining the 

optimal solutions. For the present study, channel roughness is 

identified by using optimization technique. 

 

Optimization techniques were successfully used by Becker 

and Yeh (1972, 1972a), Fread and Smith (1978) and 

Wormleaton and Karmegam (1984) to identify parameters for 

regular prismatic channels having simple cross-sections. These 

researchers used the same optimization algorithm (the so-

called "Influence Coefficient" Algorithm) which, 

mathematically, is closely related to both quasi linearization 

and the gradient method. Khatibi et al. (1997) used a nonlinear 

least square technique with three types of objective function 

and identified open channel friction parameters by a modified 

Gauss-Newton method. Atanov et al. (1999) used Lagrangian 

multipliers and a least square errors criterion to estimate 

roughness coefficients. More recently, Ding et al. (2004) used 

the quasi-Newton method to identify Manning’s roughness 

coefficients in shallow water flows. Nevertheless, the above 

studies considered only the case of in-bank flow. Therefore, 

there is a need to extend the method to out-bank flow, where 

flood plain roughness will obviously have to be considered. 

 

One of the very few studies which dealt with the identification 

of compound channel flow parameters is the one by Nguyen 

and Fenton (2005). In this study, roughness coefficients in the 
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main channel and flood plains were identified as two different 

parameters using an automatic optimization method. The 

model was applied to Duong River in Vietnam, where 

roughness coefficients of the main channel and the flood plain 

were presented as different constant values as well as 

polynomial functions of stage. 

 

1.4 OBJECTIVES 

The present study involves estimation of Manning roughness n 

of a channel having different channel bed materials invoking 

data of gradual varied flow (GVF). Use of GVF data facilitates 

estimation of depth dependent Manning’s roughness n. the 

necessary data base was generated by conducting laboratory 

experiments. The overlying objective is fulfilled through the 

accomplishment of sub objectives listed below. 

 

i) To identify open channel flow parameters by 

using Genetic Algorithm optimization 

Technique 

ii) To generate and monitor gradually varied 

flow profiles corresponding to different bed 

materials, discharge and ponded depths. 

iii) Invoking the observed data of the GVF 

profiles and the linked simulation 

optimization approach to estimates 

Manning’s n corresponding to different 

channel bed materials in the experimental 

channel, and hence to calibrate the following 

composite roughness equation. 

 

                                

𝑛𝑐 =
(∑ 𝑛𝑖

∝𝑃𝑖
𝑁
𝑖=1 )

1/∝

(∑ 𝑃𝑖
𝑁
𝑖=1 )

1/∝                                              (5)  

Where, nc is composite roughness coefficient; N is total 

number of segment of wetted perimeter; ni is roughness 

coefficient of ith segment; pi is wetted perimeter of ith segment 

and ∝ is fitting parameter. 

1.6 METHODOLOGY 

This study was carried out to identify open channel flow 

parameters by using Genetic Algorithm optimization 

technique. Manning’s roughness coefficient and other 

parameters are estimated for different bed materials used ( d50 

=6mm and 20mm grain size and Lined concrete bed 

materials). Also, GVF flow profile is identified. Crank-

Nicolson method is used to solve the governing differential 

equation.  

Parameter optimization technique is used to find the optimal 

value of coefficient roughness for three different bed 

materials. Estimation of roughness coefficient is based on 

Manning’s equation for estimation of manning roughness 

coefficient and corresponding manning roughness parameters. 

This estimation invokes the data of observed GVF profiles and 

such accounts for different bed materials with the flow depth. 

Experimental works is done to several sets of data monitored 

in Hydraulics Laboratory of Civil Engineering Department 

II. LITERATURE REVIEW 

2.1 GENERAL 

Resistance to flow depends up on shape, size and density of 

object placed as an obstacle to offer resistance (Christodoulou, 

2014). Effective roughness during overland flow having 

shallow depth depends on the fraction of flow depth over 

roughness element height. Also, an inverse relationship is 

supposed to exit between Manning’s n /friction factor f and 

Froude number (Barros and Colello, 2001). Cylindrical 

roughness in open channel has been studied and shows that 

resistance to flow depends up on depth of flow and stem 

characteristics (Stone et al., 2002). It has been found that 

spacing as well as size of stripped bed roughness highly 

influences the flow over a rectangular channel as a free fall 

(Guo et al., 2008). Gravel bed roughness is conventionally 

given by grain size. A new approach was adopted to measure 

the resistance of flow due to gravel bed by a new parameter 

based a characteristics of elevation field (Qin and Leung Ng, 

2012).  

2.1 ESTIMATION OF MANNING’S n 

Genetic programming (GP – an extension of genetic 

algorithms to the domain of computer programs Koza JR 

(2010), a technique generated from the seminal work of 

numerous researchers in the 1970s and 1980s, generates 

possible solutions that fit the data given an evaluation metric. 

The adaptation of these solutions to the data is akin to the 

biological adaptation of an individual member of a population 

to an environment. 

 

On the other hand, open-channel hydraulics’ (OCH) applied 

research often links empirical formulas to observational data 

(e.g. Weisbach (1845), St. Venant (1851), Neville (1860), 

Darcy and Bazin (1865)). For example, the Manning formula, 

also known as the Gauckler-Manning-Strickler formula (here 

after GMS), is an empirical formula for open-channel flow, or 

free surface flow driven by gravity. The formula is attributed 

to the engineers Philippe Gauckler (1967), Robert Manning 

(1890) and Albert Strickler (1923). The formula (1) relates the 

cross-sectional average velocity (V = Q/A), the hydraulic 
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radius (R), and the slope of the water surface (S), with a 

friction coefficient n, characteristic of the channel’s surface. 

 

V = (
1

n
) R2/3S

1
2

                                                      (6) 

Where, V is the cross-sectional average velocity in m/s, n is a 

non-dimensional roughness coefficient, R is the hydraulic 

radius (m), and S is the slope of the water surface (m/m). The 

relationship can be used to calculate the discharge (Q) if we 

substitute V in (1) by Q/A, obtaining: 

 

𝑄 = (
𝐴

𝑛
) 𝑅2/3𝑆

1
2

                                                 (7) 

 

Research involving the GMS equation traditionally focuses on 

the determination of the roughness coefficient, (n), under 

different flow regimes (e.g. Ayvaz (2013) and Ding, Jia (2004) 

and/or for different riverbed materials (e.g. Candela, Noto 

(2005), as even the presence of biological soil crusts can affect 

the surface roughness, runoff and erodibility of the channel 

Rodriguez, Canton (2012). 

 

Manning’s equation is conveniently used to compute 

discharge rates or velocity of flow in open channel problems. 

Except the value of roughness coefficient all other parameter 

in the equation can be easily measured. The uncertainty in the 

estimation of appropriate value of n is the most difficult task 

faced while application of the equation. Experiments for 

computation of Manning’s n where conducted on twenty-one 

steep slope streams in Colorado which suggested following 

relationships of manning’s n i.e. value of n decreases with 

increase in depth of flow, n decreases with decrease in 

gradient and streams are found to be in supercritical condition 

which corrected the prior conception of subcritical condition 

(Jarret, 1984). A numerical method was proposed in order to 

evaluate Manning’s n of shallow water flows (Ding et al., 

2004) and an equation is developed to predict Manning’s n for 

high gradient streams (Jarret, 1984). It has been found that 

Manning’s equation is effectively applicable in furrow 

irrigation problems and Manning’s n varies for low discharge 

rates but attain a constant value at high discharge rates 

(Esfandiari and Maheshwari, 1998). Nonetheless, computation 

of Manning’s roughness coefficient for border irrigation was 

also described (Li and Zhang, 2001). The behavior of 

Manning’s n was studied for erodible and non-erodible soils 

and it has been found that n value is a function of gradient for 

erodible soils only (Hessel, 2003). Variation of Manning’s n 

with space and time for cropped furrow as well as bare furrow 

was studied (Maillapalli et al., 2008). A potentially applicable 

model was developed for estimation of channel roughness 

which uses embeds finite difference approximation of 

governing equation to an optimizer having inputs as depth of 

flow and rates varying with time and space (Ramesh et 

al.,2000). Apart from experimental data and numerical 

models, n is also estimated by using software based simulation 

models. HEC- RAS model is used for roughness coefficient 

for Hilla River (Hameed and Ali, 2012).  

2.2 COMPOSITE ROUGHNESS 

Multi roughness channels are not uncommon in field 

application of open channel flow hydraulics. Due to different 

roughness of wetted perimeter the overall roughness of the 

channel is given by composite roughness. Composite 

roughness comprises of individual roughness effect of channel 

cross section. Seventeen different equations based on several 

assumptions along with six different techniques to sub divide 

the channel cross section were given by numerous 

investigators (Yen, 2002). The credibility of these equations 

would be assessed by employing experimental data. An 

effective methodology has been proposed to evaluate optimal 

design of cross sectional area of a channel having composite 

roughness using Manning’s roughness equation (Das, 2000). 

III.   EXPERIMENTAL WORKS 

3.1 INTRODUCTION 

In this chapter, water surface flow profiles corresponding to 

specific discharges, bed material and ponded depth have been 

obtained through experimentation. This chapter includes a 

detailed description of experimental setup, adopted procedures 

and the observations with range of data obtained for different 

flow conditions. The experiments for the investigation were 

carried out in Hydraulics Laboratory of Civil Engineering 

Department. IIT-Roorkee, India  

 3.2 DETAILS OF EXPERIMENTAL SETUP 

3.2.1 Flume 

A rectangular tilting flume of length 30m, width 0.205m and 

height 0.50m was used (fig 3.1). The bed of the flume was 

made up of lined concrete and the other two sides were made 

up of glass and GI sheet. Discharge was released through an 

inlet pipe of 0.010m diameter into the flume. The entrance of 

the channel was provided with flow suppressors in order to 

make the flow stable. In order to maintain desired depth of 

water at the downstream of the channel, a tail gate was fitted 

at the end of the channel. Water discharging from the tail gate, 

passed to the sump which was circulated again through a 15hp 

centrifugal pump for further experimentation.  

3.2.2 Experimental Procedures 

The experiments were conducting by adopting the following 

steps as mentioned below:- 
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3.2.2.1 Slope Measurement 

All the sets of experiment were performed on a particular 

slope of the channel. The slope was measured by using two 

steel containers connected with a long rubber tube. Both the 

containers were placed on the channel bed separated by the 

rubber tube along the length of the channel. One of the 

containers placed at higher elevation was filled with water and 

simultaneously care was taken to remove air bubble from the 

connecting tube. They are left undisturbed for sufficient 

amount of time around 24 hours. Then the water levels were 

measured. The slope of the channel was computed by using 

the following formula. 

 𝑆𝑜 =
𝐻1−𝐻2

𝐿
                                          (8)  

Where, H2 and H1 is the depth of water in second and first 

container respectively after equilibrium is established and L is 

the distance between the containers.  

 

3.2.2.2 Sieve Analysis 

Sieve analysis was performed to determine the particle size of 

the material used to create artificial bed roughness. Results of 

sieve analysis were plotted to investigate the particle size of 

the bed material used in the present study.  

Experiments were conducted on two different bed materials. 

First on one rough bed condition having gravel as a bed 

particle size d50 =20mm, d50=6mm and then on the smooth 

condition having lined concrete as bed material.  

 

Fig 1 Gradation curve for d50=20mm 

 

Fig 2 Gradation curve for d50=6mm 

3.2.2.3 Calibration of orifice meter 

Orifice meter was provided in the inlet pipe for the 

measurement of discharge. Orifice plate was made up of GI 

sheet having diameter of 0.06m and the diameter of inlet pipe 

was 0.10m. Ultrasonic flow meter was used for the calibration 

of coefficient of discharge of orifice meter. Different 

discharges were noted corresponding to varying head. This 

result was plotted and the best fitted line was used (Fig. 3.6). 

 

Fig. 3 Calibration curve 

Cd was calibrated as 0.66. after calibration of Cd of orifice 

meter, the discharge in the channel was computed by using the 

following equation. 

 

𝑄 = 𝐶𝑑𝑎𝑜√2𝑔ℎ                                   (9)                                                       

Where, ao is area of orifice plate; g= acceleration due to 

gravity and h= height of water column. 

 

3.2.2.4 Measurement of water surface profiles 

i. Water was released into the rectangular flume by 

opening the valve of inlet pipe. 
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ii. The desired depth of flow was maintained at the 

downstream end by operating sluice gate 

provided at the end of the channel. The depth of 

water was measured using pointer gauge. 

iii. After a while when the flow become steady in 

the channel and the desired depth was 

maintained at the downstream end, the water 

surface profile was being measured. 

iv. Starting from the maintained depth at the 

downstream end (0.00m), the water surface 

profile is measured towards upstream at ten (21) 

discrete locations that are 0.00m, 0.20m, 0.70m, 

1.20m, 1.70m, 2.20m, 2.70m, 3.70m, 4.70m, 

5.70m, 6.70m, 7.70m, 8.70m, 9.70m, 10.70m, 

12.70m, 14.70m, 16.70m, 18.70m, 20.70m and 

22.70m.  

v. The above mentioned steps were repeated for 

thee different downstream depths, Discharges 

rates and bed roughness as mentioned in Table 

 

Table 1 Data used for experimental measurement of water surface profiles 

Discharge rates 

(m3/s) 

8.601x10-3 9.233x10-3 9.314x10-3 

Downstream depths 

(m) 

0.25 0.30 0.35 

Bed materials 

(d50 in mm) 

d5=20 d50=6 Lined concrete 

 

IV.  RESULTS AND DISCUSSION 

4.1 MODEL FORMULATION 

The present study involves generation of the GVF data that are 

subsequently employed for estimation of Manning’s n 

corresponding to different segment of wetted perimeter (Fig 

4.2) in the experimental channel. The estimation also involves 

calibration of the following composite roughness nc equation. 

𝑛𝑐 =
(∑ 𝑛𝑖

∝𝑃𝑖
𝑁
𝑖=1 )

1/∝

(∑ 𝑃𝑖
𝑁
𝑖=1 )

1/∝                                    (10)     

Where, nc is composite roughness coefficient; N is total number of segment of wetted perimeter; ni is roughness coefficient of ith 

segment; pi is wetted perimeter of ith segment and ∝ is fitting parameter. 

 

Fig. 4 Multi-roughness channel 
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The monitored GVF data comprises the depths measured at 

finite number of discrete locations corresponding to several 

downstream heads and discharge rates (Fig. 4.3). The data 

base is thus enumerated as follow: 

[{(�̂�𝑖𝑘𝑙 , 𝑖 = 1, … . 𝑀1), 𝑘 = 1, … … 𝑀2}, 𝑙 = 1, … . 𝑀3]; 

(𝑄𝑘 , 𝑘 = 1, … … 𝑀2); (𝐻𝑙 , 𝑙 = 1, … … 𝑀3) 

Where M1 is the number of discrete sections at which the GVF 

depths are measured; M2 is number of discharge rates for 

which the GVF depths are measured and M3 is number of 

downstream heads maintained at the tail gate during the 

measurement of GVF depths. 

Fig. 5 Measured GVF data 

Invoking this data base, the problem of roughness estimation 

is posed as the following optimization problem. 

Decision Variables: 

(𝑛𝑖, 𝑖 = 1,……N) and ∝ 

 

Objective function: 

The objective function is designed to arrive at such values of 

decision variables that permit minimized mismatch between 

the observed and the computed GVF profiles. The mismatch is 

qualified in terms of the following data observed during the 

experiments. 

𝑀𝑖𝑛 𝑍 = ∑ ∑ ∑ 𝑤𝑖

𝑀1

𝑖

𝑀2

𝑘

𝑀3

𝑙

[𝑦(𝑥𝑖 , 𝑄𝑘 , 𝐻𝑙) − 𝑦⏞
𝑖𝑘𝑙

]2  (11) 

Where, 𝑤𝑖 =
(𝑥𝑖+1−𝑥𝑖−1)

2
, 𝑦(𝑥𝑖 , 𝑄𝑘 , 𝐻𝑙  𝑎𝑛𝑑 𝑦⏞

𝑖𝑘𝑙
    are simulated 

and experimentally measured depth at 𝑖𝑡ℎ discrete section, 𝑘𝑡ℎ 

discharge rate and 𝑙𝑡ℎ downstream head maintained at the tail 

gate respectively.  

Constraint: 

𝑛𝑚𝑎𝑥𝑖 ≥ 𝑛𝑚𝑖𝑛𝑖 , 𝑖 = 1, … . . 𝑁                  (12) 

2 ≥∝≥ 1                                                        (13) 

Where, 𝑛𝑚𝑎𝑥𝑖 = upper limit of 𝑛𝑖 and 𝑛𝑚𝑖𝑛𝑖 = lower limit of 

𝑛𝑖. 

4.1.1 Optimization 

The following problem was solved three times corresponding 

to different bed conditions i.e. d50=20mm, d50=6mm and lined 

concrete as bed materials. 

Decision Variables: 

(𝑛𝑖, 𝑖 = 1, … … . .3); and ∝ 

Objective Function: 

𝑀𝑖𝑛 𝑍 = ∑ ∑ ∑ 𝑤𝑖

𝑀

𝑖

3

𝑘

3

𝑙

[𝑦(𝑥𝑖 , 𝑄𝑘 , 𝐻𝑙) − 𝑦⏞
𝑖𝑘𝑙

]2 (14) 

Where, 𝑦(𝑥𝑖 , 𝑄𝑘 , 𝐻𝑙) and 𝑦⏞
𝑖𝑘𝑙

 are simulated and 

experimentally measured depth at 𝑖𝑡ℎ discrete section, 𝑘𝑡ℎ 
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discharge rate and 𝑙𝑡ℎ downstream head respectively; 𝑀 is a 

subset of the locations where the observed depth is larger than 

1.01 x normal depth; 𝑤𝑖  is the weight assigned to the 

mismatch at 𝑖𝑡ℎ location. In the present study the weights are 

assigned to index the length discretized by the discrete 

sections. Thus (𝑤𝑖) is defined as follows: 

𝑤𝑖 =
(𝑥𝑖+1 − 𝑥𝑖−1)

2
                                           (15) 

Constraint: 

i) Following six constraints were assigned to impose upper 

and lower limits of the segment roughness coefficients ( 

𝑛𝑚𝑎𝑥𝑖  𝑎𝑛𝑑 𝑛𝑚𝑖𝑛𝑖 , 𝑖 = 1, … . .3). 

𝑛𝑚𝑎𝑥𝑖 ≥ 𝑛𝑚𝑖𝑛𝑖 , 𝑖 = 1, … . .3                    (16) 

The adopted values of the limits are given in Table 2 

 

Table 2 Upper and lower limits of roughness coefficients 

 𝑛1 𝑛2 𝑛3 

𝑛𝑚𝑎𝑥𝑖  0.1 0.1 0.1 

𝑛𝑚𝑖𝑛𝑖 0.001 0.001 0.001 

 

ii) Following three constraints were assigned to ensure 

realistic relative roughness of the three roughness coefficients. 

𝑛1 ≥ 𝑛2 ≥ 𝑛3                                             (17) 

iii) Following constraints was assigned to impose upper and 

limits of fitting parameters (∝).  

2 ≥ ∝ ≥ 1                                                   (18) 

Since the reported value of ∝ 1.5, a range of 1 to 2 was 

prescribed. 

 

Linked simulation optimization approach is used to estimate 

the optimal values of the parameters for three bed conditions 

i.e d50=20mm, d50=6mm and lined concrete as bed materials 

and their corresponding GVF profiles were simulated. 

4.1.2 Optimal values  

Optimal values of decision variables and their corresponding 

minimized objective function value for different bed materials 

are mentioned in Table 3. 

 

Table 3 Optimal values of decision variables and objective function. 

Bed materials 𝑛1 𝑛2 𝑛2 ∝ 𝑀𝑖𝑛 𝑍 (𝑚2) 

d50=20mm 0.034 0.016 0.018 1.42 1.16x10-4 

d50=6mm 0.030 0.016 0.018 1.46 1.62x10-4 

Lined concrete 0.027 0.015 0.017 1.48 1.09x10-4 
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 4.1.3 Optimal reproduction of GVF profiles 

Computed GVF profiles corresponding to the optimal 

parameter values and the variation of composite roughness are 

in the following figures. The profile is plotted for three 

different bed materials corresponding to discharge rates and 

water depth. 

 

 

Fig. 6 Observed reproduction of GVF profiles ( Q=8.601x10-3 m3/s and d50=20mm) 

 

 

Fig. 7 Optimal reproduction of GVF profiles ( Q=8.601x10-3 m3/s and d50=20mm) 

 

Fig. 8  Observed reproduction of GVF profiles ( Q=9.233x10-3 m3/s and d50=6mm ) 
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Fig. 9  Optimal reproduction of GVF profiles ( Q=9.233x10-3 m3/s and d50=6mm) 

 

4.2. Discussion of Results 

4.2.1 Estimated parameters 

The bed roughness (𝑛1) varies from 0.026 to 0.033 as bed 

material /condition changes from lined concrete to gravel 

(d50=20mm). The corresponding reported/ Strickler’s estimates 

are given in Table 4 by using equation 2. It may be seen that 

optimal roughness estimates are higher than Strickler’s 

estimates. 

 

Table 4 Reported/Strickler’s estimated optimal estimates for bed materials 

Bed material/condition Reported/Strickler’s Estimation Optimal estimates 

d50=20mm 0.0247 0.034 

d50=6mm 0.0202 0.030 

Lined concrete 0.013-0.015 0.027 

The roughness coefficient of glass and GI sheet sides as optimized for various runs are presented in Table 5. 

Table 5 Reported/Strickler’s estimates and optimal estimates for sides 

side  d50 d50=20mm d50=6mm Lined concrete Tabulated values 

Glass 0.016 0.016 0.015 0.010 

GI sheet 0.018 0.018 0.017 0.012 

The estimated roughness coefficients satisfy the known 

inequality (𝑛2 < 𝑛3) and are higher than the tabulated values. 

This establishes the credibility of the proposed model. 

The optimal value of ∝ (fitting parameter) ranges from 1.42 to 

1.48, which differs from the reported value i.e. 1.5. The 

optimal value of ∝ increases as the bed materials get finer. 
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4.2.2 Reproduction of observed profile 

Computed GVF profiles corresponding to the optimal 

parameter values match quite well with corresponding 

observed profiles. 

4.2.3 Variability of composite roughness 

It can be observed that composite roughness reduces with 

increase in flow depth. Apparently because of increase in 

weightage of side resistance, the value of composite roughness 

increase. 

V.    CONCLUSION  

This study was carried out to identify open channel flow 

parameters. Manning’s roughness coefficient and other 

parameters are estimated for different bed materials used ( d50 

=20mm grain size , 6mm grain size particles and Lined 

concrete bed materials). Also, based on the estimated value of 

Manning roughness coefficient and flow depths, GVF flow 

profile is identified. 

 An optimization method is applied to identify the parameters 

based on  Manning formula  for estimation of manning 

roughness coefficient and corresponding manning roughness 

parameters. This estimation invokes the data of observed GVF 

profiles and such accounts for different bed materials with the 

flow depth. 

Experimental works is done to several sets of data monitored 

in Hydraulics Laboratory of Civil Engineering Department. 

The application led to the following conclusions; 

i) The GVF profile computed on the basis of 

estimated parameters match quite closely with 

the corresponding observed profiles. 

ii) Strickler’s formula under estimate the roughness 

due to the bed material. 

iii) The following commonly used formula is 

calibrated for Manning coefficient estimation 

 

𝑛𝑐 =
(∑ 𝑛𝑖

∝𝑃𝑖
𝑁
𝑖=1 )1/∝

(∑ 𝑃𝑖
𝑁
𝑖=1 )1/∝

 

iv) The currently documented value of ∝ is 1.5. 

However, the present work reveals that it varies 

from 1.43 to 1.47. The value of ∝ generally 

decreases as the bed material gets coarser. 
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