
Volume 2, Issue 5, May – 2017 International Journal of Innovative Science and Research Technology

 ISSN No: - 2456 - 2165

IJISRT17MY144 www.ijisrt.com 510

An Efficient Degraded Primary Scheduling Algorithm

For Virtual Mapreduce Clusters

Mr.S.S.Aravinth /AP / CSE / Knowledge Institute of Technology, Salem

M.Mangaiyarkarasi / II-M.E / CSE / Knowledge Institute of Technology, Salem

A.kesavini / I-M.E / CSE / Knowledge Institute of Technology, Salem

Abstract:- The witnessed an increasing adoption of erasure

coding in modern clustered storage systems to reduce the

storage overhead of traditional 3-way replication.

However, it remains an open issue of how to customize the

data analytics paradigm for erasure-coded storage,

especially when the storage system operates in failure

mode. The propose degraded first scheduling, a new

MapReduce scheduling scheme that improves MapReduce

performance in erasure-coded clustered storage systems in

failure mode. Its main idea is to launch degraded tasks

earlier so as to leverage the unused network resources. The

proposes degraded-first scheduling algorithm, whose main

idea is to schedule some degraded tasks at earlier stages of

a MapReduce job and allow them to download data first

using the unused network resources. The experiment

conduct mathematical analysis and discrete event

simulation to show the performance gain of degraded-first

scheduling over Hadoop’s default locality-first scheduling.

Keywords: Degraded First Scheduling Algorithm,

Mathematical Analysis And Discrete, Erasure-Coded Storage.

I. INTRODUCTION

A. Cloud Computing

Cloud computing has been envisioned as the next

generation information technology structural design for

enterprises, suitable to its extensive list of extraordinary

advantages in the IT record on-demand self-service,

everywhere network access, locality independent reserve

pooling, rapid resource spring, usage-based pricing and

conversion of threat. As a troublemaking knowledge with

reflective implications, and the cloud computing is

transforming to the very nature of how businesses use

information technology. One essential feature of this prototype

variable is that data are being federal or outsourced to the

cloud. From users perception, together with both the

individuals and IT enterprises, storing the data slightly to the

cloud in a flexible on-demand manner brings pleasing

benefits, the relief of load for storage space organization,

worldwide data contact with location independence and the

avoidance of capital disbursement on hardware, software and

the personnel maintenances, etc.,

B. Cloud Management Challenges

Cloud computing presents a figure of organization challenges.

Companies are using public clouds do not have tenure of the

tools hosting the cloud setting and because of the environment

is not having within their individual networks, public cloud

customers don’t have full visibility or control. Users of the

public cloud services must also contain integrate with an

planning distinct by the cloud provider and using its exact

parameters for running with cloud mechanism. Arrangement

includes the cloud APIs for configuring IP addresses,

firewalls, subnets and data service functions for the storage.

Because power of these functions is based on the cloud

provider’s communications and services public cloud users

must combine among the cloud infrastructure organization.

Hybrid cloud which merge public and private cloud

services, occasionally with conventional transportation

essentials, present their possess set of administration

challenges. These include protection concerns if sensitive data

lands on public cloud servers, finances concerns around over

use of the storage or bandwidth and the large number of

mismanaged images. Managing the information flow in hybrid

cloud environment is also a significant dispute. The clouds

must share in sequence with applications hosted off-premises

by public cloud providers and this information may change

continually.

II. SYSTEM ANALYSIS

A. Existing System

The FIFO algorithm is a default scheduling algorithm

provided by Hadoop MRv1. It follows a strict job submission

order to schedule each map task of a job and meanwhile

attempts to schedule a map task to an idle node that is close to

the corresponding map-input block. However, the FIFO

algorithm only focuses on map-task scheduling, rather than

reduce-task scheduling. Hence, when FIFO is adopted in a

virtual MapReduce cluster, its low reduce-data locality might

cause a long job turnaround time. Besides, FIFO is designed to

achieve node locality and rack locality in conventional

http://www.ijisrt.com/

Volume 2, Issue 5, May – 2017 International Journal of Innovative Science and Research Technology

 ISSN No: - 2456 - 2165

IJISRT17MY144 www.ijisrt.com 511

MapReduce clusters, rather than achieving the VPS-locality

and Cen-locality in a virtual MapReduce cluster.

Consequently, the map-data locality of FIFO might be low in a

virtual MapReduce cluster.

MapReduce task scheduling presented the delay

scheduling algorithm to improve data locality by following the

FIFO algorithm but relaxing the strict FIFO job order. If the

scheduling heuristic cannot schedule a local map task, it

postpones the execution of the corresponding job and searches

for another local map task from pending jobs. A similar but

improved approach. However, similar to FIFO, this approach

did not provide reduce-task scheduling. The Balance-Reduce

(BAR) algorithm, which produces an initial task allocation for

all map tasks of a job and then takes network state and cluster

workload into consideration to interactively adjust the task

allocation to reduce job turnaround time. In order to simplify

BAR, the authors assumed that all local map tasks spend

identical execution time. But this assumption is not realistic

since the map-task execution time fluctuates even though

when the processed input size is the same. Besides, reduce-

task scheduling was not addressed by BAR.

MapReduce workload prediction mechanism to

classify MapReduce workloads into three categories based on

their CPU and I/O utilizations and then proposed a Triple-

Queue Scheduler to improve the usage of both CPU and disk

I/O resources under heterogeneous workloads. An optimal

map-task scheduling algorithm, which converts a task

assignment problem into a Linear Sum Assignment Problem

so as to find the optimal assignment. Nevertheless, applying

this algorithm to real-world MapReduce.

Clusters needs to carefully determine an appropriate

time point to conduct the algorithm since slaves might become

idle at different time points. Introduced a co-scheduler called

LiPS, which utilizes linear programming to simultaneously co-

schedule map-input data and map tasks to nodes such that

dollar cost can be minimized.

B. Drawbacks

• Less average implementation time of jobs when the

number of tasks is less than the cluster size.

• Tasks progress at a constant rate throughout time.

• Each task Tracker has a fixed number of map slots

and reduce slots, configured by the administrator in

advance.

• It organizes jobs into pools and shares resources

fairly across all pools based on max-min fairness.

• Each pool consists of two parts: map-phase pool and

reduce-phase pool. Within each map/reduce-phase

pool, the fair sharing is worn to map/reduce slots

between the management jobs at all phase. Pools can

also be weights to distribute the cluster non

proportionally in the pattern file.

• There is no cost to launching a speculative task on a

node that would otherwise have an idle slot.

• A task's progress score is representative of fraction of

its total work that it has done. particularly, in reduce

task, copy and diminish phases each take about 1/3 of

the total time.

III. PROPOSED SYSTEM

In the presence of node failures, it re-schedules tasks

to run on other nodes that hold the replicas. However, the

scenario becomes different for erasure-coded storage, where

MapReduce tasks must issue degraded reads to download data

from other surviving nodes. Such degraded tasks are typically

scheduled to launch after all local tasks are completed, and

when they launch, they compete for network resources to

download data from surviving nodes. This can significantly

increase the overall runtime of a MapReduce job.

Traditional MapReduce scheduling emphasizes

locality, and implements locality-first scheduling by first

scheduling local tasks that run on the nodes holding the input

data for the tasks. MapReduce is designed with replication-

based storage in mind. In the presence of node failures, it re-

schedules tasks to run on other nodes that hold the replicas.

However, the scenario becomes different for erasure-coded

storage, where MapReduce tasks must issue degraded reads to

download data from other surviving nodes. Such degraded

tasks are typically scheduled to launch after all local tasks are

completed, and when they launch, they compete for network

resources to download data from surviving nodes. This can

significantly increase the overall runtime of a MapReduce job.

Thus, a key motivation of this work is to customize

MapReduce scheduling for erasure coded storage in failure

mode.

The degraded-first scheduling, whose main idea is to

move part of degraded tasks to the earlier stage of the map

phase. The advantages are two-fold. First, the degraded tasks

can take advantage of the unused network resources while the

local tasks are running. Second, it avoids the network resource

competition among degraded tasks at the end of the map

phase. The first present the basic version of degraded-first

scheduling. The conduct mathematical analysis to show the

improvement of degraded-first scheduling over the default

locality-first scheduling in Hadoop. Finally, present the

enhanced version of degraded-first scheduling that takes into

account the topological configuration of the cluster.

IV. MODULES DESCRIPTION

A. Map Reduce Model

Hadoop cluster composed of multiple nodes (or

servers) that are grouped into different racks. Typical clusters

connect all nodes via a hierarchy of switches. Without loss of

generality, we consider a simplified two level case where

http://www.ijisrt.com/

Volume 2, Issue 5, May – 2017 International Journal of Innovative Science and Research Technology

 ISSN No: - 2456 - 2165

IJISRT17MY144 www.ijisrt.com 512

nodes within each rack are connected via a top-of-rack switch,

and all the racks are connected via a core switch. Hadoop runs

on a distributed file system HDFS for reliable storage. HDFS

divides a file into fixed-size blocks, which form the basic units

for read and write operations. Since node failures are common,

HDFS uses replication to maintain data availability, such that

each block is replicated into multiple (by default, three) copies

and distributed across different nodes.

B. Erasure Coding

To reduce the redundancy overhead due to

replication, erasure coding can be used. An erasure code is

defined by parameters (n, k), such that k original blocks

(termed native blocks) are encoded to form n−k parity blocks,

and any k out of the n blocks can recover the original k native

blocks. We call the collection of the n blocks a stripe.

Examples of erasure codes include Reed-Solomon codes and

Cauchy Reed-Solomon codes. Hadoop’s authors propose a

middleware layer called HDFS-RAID, which operates on

HDFS and transforms block replicas into erasure-coded

blocks. HDFS-RAID divides a stream of native blocks into

groups of k blocks, and encodes each group independently

into a stripe according to the parameters (n, k).

C. Degraded First Scheduling

The design goal is to evenly spread the launch of

degraded tasks among the whole map phase. This design goal

follows two intuitions.

 Finish running all degraded tasks before all local

tasks. If some degraded tasks are not yet finished

after all local tasks are finished, they will be launched

together and compete for network resources for

degraded reads.

 Keep degraded tasks separate. If two or more

degraded tasks run almost at the same time, they may

compete for network resources for degraded reads.

The key challenge here is how to determine the right

timing for launching degraded tasks, so that they are evenly

spread among the whole map phase. One possible solution is

to predict the overall running time of the whole map phase and

launch degraded tasks evenly within the predicted time

interval. However, this approach is difficult to realize for two

reasons. First, different MapReduce jobs may have highly

varying processing time of a map task. Thus, it is difficult to

accurately predict how long the whole map phase would be.

Second, even if we can make accurate predictions, it is

possible that no free map slots are available when a degraded

task is ready to launch. Thus, the launch of some degraded

tasks may be delayed, defeating the original purpose of evenly

spreading the degraded tasks.

D. Locality Preservation &Rack Awareness

 The default locality-first scheduling achieves high

locality by first launching local tasks whenever they are

available. On the other hand, Algorithm 2 may break the

locality. Specifically, if we first assign degraded tasks to a

node, then the node may not have enough map slots to process

its local tasks. The master may instead assign some of the

local tasks of the node to other nodes of different racks, and

these tasks become remote tasks. Having additional remote

tasks is clearly undesirable as they compete for network

resources as degraded tasks do. We provide a function

ASSIGNTOSLAVE to determine whether to launch a

degraded task to a specific slave. The point out that our

implementation also works for heterogeneous settings, where

some slaves may have better processing power than others in

the same cluster. If we estimate the processing time for the

local map tasks based on not only the number of local map

tasks, but also the computing power of the slave node, then we

allow the more powerful slaves to process a degraded task

while processing more local map tasks.

V. CONCLUSION

The proposed system explores the feasibility of

running data analytics in erasure-coded clustered storage

systems. It present degraded-first scheduling, a new

MapReduce scheduling scheme designed for improving

MapReduce performance in erasure-coded clustered storage

systems that run in failure mode. It shows that the default

locality-first scheduling launches degraded tasks at the end,

thereby making them compete for network resources.

Degraded-first scheduling launches degraded tasks earlier to

take advantage of the unused network resources. It also

proposes heuristics that leverage topological information of

the storage system to improve the robustness of degraded-first

scheduling. It conducts simple mathematical analysis and

discrete event simulation to show the performance gains of

degraded-first scheduling.

VI. FUTURE ENHANCEMENT

Minimal Interference Maximal Productivity (MIMP)

system, which enhances both the hypervisor’s scheduler and

the Hadoop job scheduler to better manage their performance.

Our primary contributions include:

 A new priority level built into Xen’s Credit

Scheduler that prevents batch processing VMs from

hurting interactive VM performance.

 Task affinity models that match each Hadoop task to

the dedicated or shared VM that will provide it the

most benefit.

http://www.ijisrt.com/

Volume 2, Issue 5, May – 2017 International Journal of Innovative Science and Research Technology

 ISSN No: - 2456 - 2165

IJISRT17MY144 www.ijisrt.com 513

 A deadline and progress aware Hadoop job scheduler

that allocates resources to jobs in order to meet

performance goals and maximize the efficiency of a

hybrid cluster.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data

processing on large clusters,” Commun. ACM, vol. 51, no. 1,

pp. 107–113, 2008.

[2] S. Chen and S. Schlosser, “Map-Reduce meets wider

varieties of applications,” Intel Res., Santa Clara, CA, USA,

Tech. Rep. IRPTR-08-05, 2008.

[3] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast:

Combining mapreduce and virtualization on distributed

resources for bioinformatics applications,” in Proc. IEEE 4th

Int. Conf. eScience, Dec. 2008, pp. 222–229.

[4] Z. Guo, G. Fox, and M. Zhou, “Investigation of data

locality in mapreduce,” in Proc. 12th IEEE/ACM Int. Symp.

Cluster, Cloud Grid Comput., May 2012, pp. 419–426.

[5] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S.

Shenker, and I. Stoica, “Delay scheduling: A simple technique

for achieving locality and fairness in cluster scheduling,” in

Proc. 5th Eur. Conf. Comput. Syst., Apr. 2010, pp. 265–278.

http://www.ijisrt.com/

