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Abstract—In this paper, the propagation characteristic plays an 

extremely very important role in optical fiber communication 

system. We have given the information of various fibers which 

are available in communication system. Further, after using the 

two different methods (Exact solution and TMM). We have 

computed the propagation characteristic of Bragg fiber. 
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I. INTRODUCTION 

 

  Optic fibers communication is a communication that uses light 

pulses to transfer information from one point to another through 

an optical fiber. The information transmitted is essentially digital 

information generated by telephone systems. The optical fibers 

are dielectric cylindrical waveguide made from low-loss 

materials, usually silicon dioxide. The core of the waveguide has 

a refractive index a little higher than that of the outer medium 

(cladding),  that light pulses is guided along the axis of the fiber 

by total internal reflection [1]. The optical communication 

systems is optical communication systems a very high degree of 

complexity. The normally includes multiple signal channels, 

different topologies, nonlinear devices, and non-Gaussian noise 

sources, is highly complex and labor-intensive. Advanced 

software tools make the design and analysis of these systems 

quick and efficient [2]. The growing demand for commercial 

software for optical   communication systems has led to the 

availability of a number of different software solutions. More 

popular of these the optic system software as we noted in [3, 4]. 

 

 
 

Figure1.1: Optical fiber 

The Bragg fiber grating (FBG) [5] and extensive period grating 

[6] two of the most       significant fiber filters and fiber sensor 

have been well advanced due to their advantages together with 

compression and fiber compatibility and numbers of 

applications. The photonic crystal fibers (PCFs) [7] which also  

Consist of Bragg fibers [8, 9] have attracted increasing 

importance over the past time because of their unique 

property.  

Attention on the performance of photonic crystal fibers as 

useful components or devices as an alternate of a 

transmission medium.  Photonic crystal fibers applications 

in fiber filters, fiber sensors, fiber lasers, and dispersion 

advantage have been well considered [10, 11]. Bragg fibers 

have in recent times received much attention for their 

motivating dispersion and modal properties and for 

advances in manufacture techniques [12]. Bragg fiber 

containing of a core bounded by alternating layers of small 

and great refractive index was first projected in [13]. Light 

is narrowed in the core by one dimensional photonic band 

gap. Bragg fiber is a beautiful knowledge, but it is relatively 

difficult to fabricate a Bragg fiber with square technique. It 

was more than 20 years later that first actual Bragg fiber is 

fabricated in MIT [14]. Which was composed of alternating 

layers of PES? A silica core Bragg fiber is fabricated by 

sputtering Si and SiO2 on the other hand on silica fiber [15], 

but the fiber length in only 20 cm, because the Si layers in 

cladding contains the drawing of fiber. An air-silica Bragg 

fiber design was recommended which was a cylindrically 

symmetric fiber with a high-index core (silica) enclosed by 

alternating layers of silica and air, dispersion properties of 

this air-silica Bragg fiber was discussed. It was impossible 

to arrange for structural support to this air-silica fiber, which 

made this design unrealizable. A Bragg fiber can also be 

calculated to a single guided mode without azimuthal 

dependence (TE or TM). In difference with the fundamental 

mode in conventional fiber which is always all the more 

degenerate, these guided Bragg fiber modes are really single 

mode. Therefore, many undesirable polarization dependent 

effects can be completely reduced in Bragg fiber [16]. 

 

 
 

Figure 1.2: Bragg fibe
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II. EXACT SOLUTION FOR STEP INDEX FIBERS 

We will achieve the modal fields and the corresponding 

propagation numbers for step index fiber for which the refractive 

index variation is a fiber it is possible to achieve rigorous 

solutions of the vector equations. The most practical fibers used 

in communication are weakly guiding relative refractive index 

difference (𝑛1 − 𝑛2)/𝑛1 ≪ 1 and in such a case the radial part 

of the transverse element of the electric field satisfies the 

following 

𝑉(1 − 𝑏)1 2⁄ 𝐽𝑙−1(𝑉(1−𝑏)1 2⁄ )

𝐽𝑙(𝑉(1−𝑏)1 2⁄ )
= 𝑉𝑏

1
2⁄

𝐾𝑙−1(𝑉(𝑏)1 2⁄ )

𝐾𝑙(𝑉(𝑏)1 2⁄ )
; 𝑙 =

                                                                                                                      

(1) 

𝑉(1 − 𝑏)1 2⁄ 𝐽1(𝑉(1−𝑏)1 2⁄ )

𝐽0(𝑉(1−𝑏)1 2⁄ )
= 𝑉𝑏

1
2⁄

𝐾1(𝑉(𝑏)1 2⁄ )

𝐾0(𝑉(𝑏)1 2⁄ )
;      𝑙 = 0                    (2) 

 

III. TRANSFER MATRIX METHO 

 

We will present a matrix method near the compute the mode 

features as well as the power flux of radially stratified fibers. 

The simple idea is to replace the boundary conditions by a 

matrix equation. Thus, each cladding interface is characterized 

by a matrix. The intro diction of this 4 X 4 matrix greatly 

simplifies the analysis. 

 

 
Fig.1.3: Bragg fiber 

 

We study a fiber by the index profile given by  

 

                                   𝑛𝑔0<r<𝑟1 

n(r)   =𝑛𝑣, 𝑟𝑣< r<𝑟𝑣+1          (3) 

 v= 1, 2, 3... ∞ 

 

 

In individual, we will study a fiber with a low index core then 

the alternating low and high index cladding. The geometry of 

this structure is drawn in Fig. 1.3. The index profile is then given 

by 

 

               𝑛𝑔, 0 ≤ 𝑟 < 𝑟₁ 

        𝑛₂ , 𝑟₁ ≤ 𝑟 < 𝑟₂(4) 

                                      n(r) =     𝑛₁,    𝑟₂ ≤ 𝑟 < 𝑟₃ 

n₂,    𝑟₃ ≤ 𝑟 < 𝑟₄ 

𝑛₁,   𝑟₄ ≤ 𝑟 < 𝑟₅ 

 

We income the z axis as the course of transmission, thus that 

every field factor has the form 

𝜑(𝑟, 𝜃, 𝑧, 𝑡) =  𝜑(𝑟, 𝜃)𝑒𝑖(𝛽𝑧−𝜔𝑡)(5) 

 

Where 𝜑 can be𝐸𝑧,𝐸𝑟 , 𝐸𝜃 , 𝐻𝑟 , 𝐻𝜃 ,𝜔 Is the angular frequency and 

𝛽 is the Spread constant. 

 

From waveguide the transverse field components can be expert 

in terms of𝐸𝑧 and 𝐻𝑟   

   

 

𝐸𝑧= 
𝑖𝛽

𝜔2𝜇𝜖−𝛽2(
𝜕

𝜕𝑟
𝐸𝑧 +

𝜔𝜇

𝛽

𝜕

𝑟𝜕𝜃
𝐻𝘻)(6) 

 

𝐸𝜃 =
𝑖𝛽

𝜔2𝜇𝜖−𝛽2 (
𝜕

𝑟𝜕𝜃
𝐸𝘻 −

𝜔𝜇

𝛽

𝜕

𝜕𝑟
𝐻𝘻)(7)𝐻𝑟= 

𝑖𝛽

𝜔2𝜇𝜖−𝛽2 (
𝜕

𝜕𝑟
𝐻𝘻 −

𝜔𝜖

𝛽

𝜕

𝑟𝜕𝜃
𝐸𝑧)(8) 

 

𝐻𝜃 =
𝑖𝛽

𝜔2𝜇𝜖−𝛽2 (
𝜕

𝑟𝜕𝜃
𝐻𝑧 +

𝜔𝜖

𝛽

𝜕

𝜕𝑟
𝐸𝑧)(9) 

 

  

𝐸𝑧 (r,𝜃) 𝑎𝑛𝑑 𝐻𝑧(𝑟, 𝜃) 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

 

∇𝑡
2 + (𝜔2𝜇𝜀 − 𝛽2)] {

𝐸𝑧

𝐻𝑧
} = 0(10) 

 

Where ∇𝑡
2 = ∇2 −

𝜕2

𝜕𝑧2 is the right angles operative. 

 

The common solution can be written 

 

𝐸𝑧 = [A 𝐽𝑙(kr) + B 𝑌𝑙(kr)] cos(𝑙𝜃 + ∅)(11) 

 

Hz = [C 𝐽𝑙(kr) + D 𝑌𝑙(kr)] cos(𝑙𝜃 +  𝜑) (12) 

 

Where A, B, C, D,∅ 𝑎𝑛𝑑 𝜑 are numbers, l is an integer, and  

 

K= (𝜔2𝜇𝜖 − 𝛽2)1/2(13) 

 

We at present study the boundary conditions at a common clad- 

ding interface at r = p. The result of the wave equation is taken 

as 
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𝐸𝑧 = [ 𝐴1 𝐽𝑙(𝑘1r) + 𝐵1𝑌𝑙(𝑘1r)] cos( 𝑙𝜃 + ∅1),    r< 𝑝 

 

𝐸𝑧= [ 𝐴2 𝐽𝑙(𝑘2r) + 𝐵 2𝑌𝑙(𝑘2r)] cos(𝑙𝜃 + ∅2),     r> 𝑝                (14) 

 

Or 

 

𝐻𝑧= [𝐶1𝐽𝑙(𝑘1r) + 𝐷1𝑌𝑙(𝑘1r)] cos(𝑙𝜃 + 𝜑1),      r< 𝑝 

 

𝐻𝑧= [ 𝐶2𝐽𝑙(𝑘2r) + 𝐷2𝑌𝑙(𝑘2𝑟)] cos( 𝑙𝜃 + 𝜑2),     r> 𝑝               (15) 

 

 

Where 

𝑘𝑖 = [( 𝜔/𝑐)2𝜖𝑖𝜇𝑖 -𝛽
2)1/2                 i= 1, 2.            (16) 

 

The state line conditions at r = p are that 𝐸𝑧 ,𝐻𝑧 ,𝐸𝑧 , 𝐸𝜃 are 

constant at the interface. Thus a 4×4 matrix can be start which 

relates𝐴1, 𝐵1,𝐶1, 𝐷1 to𝐴2, 𝐵2, 𝐶2, 𝐷2 

 

 

(

𝐴2

𝐵2

𝐶2

𝐷2

) = M (

𝐴1

𝐵1

𝐶1

𝐷1

)     (17) 

 

1.1 Derivation of M 

 

In relations of fields (14) and (15) the stability of 𝐸𝑧 gives  

 

[A 𝐽𝑙 ( 𝑘1 p) + 𝐵1𝑌𝑙(𝑘1𝑝)] cos( 𝑙𝜃 + ∅1 ) = [ 𝐴2𝐽𝑙 ( 𝑘2 p) + 

𝐵2𝑌𝑙(𝑘2p)]cos( 𝑙𝜃 + ∅2)       (18) 

 

This equation has to be content for all 𝜃 which denotes 

 

∅1 = ∅2(19) 

 

 They also from the continuity of 𝐻𝑧 

 

𝜑1 = 𝜑2(20) 

 

Thus permanence of 𝐸𝑧 𝑎𝑛𝑑 𝐻𝑧  𝑔𝑖𝑣𝑒𝑠 

 

𝐴1𝐽𝑙(𝑘1𝑝) + 𝐵1𝑌𝑙(𝑘1𝑝) =  𝐴2𝐽𝑙(𝑘2𝑝) + 𝐵2𝑌𝑙(𝑘2𝑝)(21) 

 

 

𝐶1𝐽𝑙(𝑘1𝑝) + 𝐷1𝑌𝑙(𝑘1𝑝) =  𝐶2𝐽𝑙(𝑘2𝑝) + 𝐷2𝑌𝑙(𝑘2𝑝)(22) 

 

In relations of the field (14), (15) and (7), the stability of 𝐸𝜃  

gives 

 
1 

𝑘1
2(

−𝑙

𝑝
[𝐴1𝐽𝑙  (𝑘1p) +𝐵1𝑌𝑙(𝑘1p)]sin( 𝑙𝜃 +  𝜑)-

𝜔𝜇1

𝛽
𝑘1[𝐶1𝐽′𝑙(𝑘1𝑝) +

 𝐷1𝑌′𝑙(𝑘1𝑝)[cos( 𝑙𝜃 + 𝜑) 

= 
1

𝑘2
2 (

−𝑙

𝑝
[ 𝐴2𝐽𝑙 ( 𝑘2𝑝) + 𝐵2𝑌𝑙 ( 𝑘2𝑝)] sin( 𝑙𝜃 +  ∅) -

𝜔𝜇2

𝛽
𝑘2[𝐶2𝐽′𝑙(𝑘2𝑝) + 𝐷2𝑌′𝑙(𝑘2p)]cos( 𝑙𝜃 + 𝜑)(23) 

 

 

Where up to date numbers the products with respect to their own 

disagreement. This equation has to be satisfied for all𝜃. From 

(21) and (22) 

 

(
1

𝑘1
2) [𝐴1𝐽𝑙(𝑘1𝑝) + 𝐵1𝑌𝑙(𝑘1𝑝)] ≠ (

1

𝑘2
2)[𝐴2𝐽𝑙(𝑘2𝑝) + 𝐵2𝑌𝑙(𝑘2𝑝)]                                    

(24) 

(
𝜇1

𝑘1
)[𝐶1𝐽′𝑙(𝑘1𝑝) + 𝐷1𝑌′𝑙(𝑘1𝑝)] ≠ (

𝜇2

𝑘2
)[𝐶2𝐽′𝑙(𝑘2𝑝) + 𝐷2𝑌′𝑙p)]                                 

(25) 

In case𝑘1 ≠ 𝑘2. Thus we complete from (23)-(25) that 

 

sin( 𝑙𝜃 +  ∅) = ± cos( 𝑙𝜃 + 𝜑)(26) 

 

Or 

 

∅ = 𝜑 ±
𝜋

2
(27) 

Continuity of 𝐻𝜃and Eq. (9)  

 
1 

𝑘1
2(

−𝑙

𝑝
[𝐶1𝐽𝑙  (𝑘1p) +𝐷1𝑌𝑙(𝑘1p)]sin( 𝑙𝜃 +  𝜑)-

𝜔𝜖1

𝛽
𝑘1 [𝐴1𝐽′𝑙(𝑘1𝑝) +

 𝐵1𝑌′𝑙(𝑘1𝑝)[cos( 𝑙𝜃 + ∅)] 

= 
1

𝑘2
2 (

−𝑙

𝑝
[ 𝐶2𝐽𝑙 ( 𝑘2𝑝) + 𝐷2𝑌𝑙 ( 𝑘2𝑝)] sin( 𝑙𝜃 +  𝜑) -

𝜔𝜖2

𝛽
𝑘2[𝐴2𝐽′𝑙(𝑘2𝑝) + 𝐵2𝑌′𝑙(𝑘2p)]cos( 𝑙𝜃 + ∅)(28) 

 

From (26) or (27) we categorize the waves into two types: 

 

1. 𝐸𝑧 = [𝐴 𝐽𝑙(kr) + 𝐵𝑌𝑙(kr)] cos 𝑙𝜃 

 

𝐻𝑧 = [C 𝐽𝑙(kr) + D 𝑌𝑙(kr)] sin 𝑙𝜃(29) 

 

2. 𝐸𝑧= [A 𝐽𝑙(kr) + B 𝑌𝑙(kr)] sin 𝑙𝜃(30) 

 

    𝐻𝑧  = [C 𝐽𝑙(kr) + D 𝑌𝑙(kr)] cos 𝑙𝜃 

 

The state line conditions for these two classifications   

 

𝐴1𝐽𝑙  (𝑘1p) +𝐵1𝑌𝑙(𝑘1p) + 0 + 0 = (1→ 2),          (31) 

 
𝜔𝜖1

𝑘1𝛽
𝐴1𝐽′𝑙(𝑘1𝑝) +

𝜔𝜖1

𝑘1𝛽
𝐵1𝑌′𝑙(𝑘1𝑝) +

𝑙 

𝑘1
2𝑝 

𝐶1𝐽𝑙  (𝑘1p) +
𝑙 

𝑘1
2𝑝 

𝐷1𝑌𝑙(𝑘1p) 

= (1 → 2) ,                                                                                      

(32) 

 

 0 + 0 + 𝐶1𝐽𝑙  (𝑘1p) +𝐷1𝑌𝑙(𝑘1𝑝) = (1→ 2),          (33) 

 
𝑙 

𝑘1
2𝑝 

𝐴1𝐽𝑙  (𝑘1 p) +
𝑙 

𝑘1
2𝑝 

𝐵1𝑌𝑙(𝑘1p ) +
𝜔𝜇1

𝑘1𝛽
𝐶1𝐽′𝑙(𝑘1𝑝) +

𝜔𝜇1

𝑘1𝛽
𝐷1𝑌′𝑙(𝑘1𝑝) = (1→ 2),           (34) 

 

 

 There are of the same kind equations except that the coefficient 
𝑙 

𝑘1
2𝑝 

is replaced by 
𝑙 

𝑘1
2𝑝 

.Equations (31)-(34) can be written as a 

matrix equation.  
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M (1, p) = (

𝐴1

𝐵1

𝐶1

𝐷1

)  = M (2, P) (

𝐴2

𝐵2

𝐶2

𝐷2

)                     

(35)

[
 
 
 
 
 
𝐽𝑙(𝑘𝑖𝑝) 𝑌𝑙(𝑘𝑖𝑝)                     0                   0                           

𝜔𝜖𝑖

𝛽𝑘𝑖
𝐽′

𝑙
(𝑘𝑖𝑝)

𝜔𝜖𝑖

𝛽𝑘𝑖
𝑌′

𝑙(𝑘𝑖𝑝)
𝑙

𝑘𝑖
2𝑝

𝐽𝑙(𝑘𝑖𝑝) 𝑙

𝑘𝑖
2𝑝

𝑌𝑙(𝑘𝑖𝑝)

        0                     0                        𝐽𝑙(𝑘𝑖𝑝)𝑌𝑙(𝑘𝑖𝑝)
𝑙

𝑘𝑖
2𝑝

𝐽𝑙(𝑘𝑖𝑝)
𝑙

𝑘𝑖
2𝑝

𝑌𝑙(𝑘𝑖𝑝)
𝜔𝜇𝑖

𝛽𝑘𝑖
𝐽′

𝑙(𝑘𝑖𝑝) 𝜔𝜇𝑖

𝛽𝑘𝑖
𝑌′

𝑙(𝑘𝑖𝑝) ]
 
 
 
 
 

 

 

(36)   

 

 

Where i = 1, 2. We sign that when l = 0, the matrix is reducible 

we can have clean TE or pure TM waves when I = 0. 

 

A matrix in Eq. (17) can be written as using (35),  

 

M = 𝑀−1(2, p) M (1, p)                                                           

(37) 

 

If we define x =𝑘1𝑝, 𝑦 =  𝑘2𝑝, write M 

 

M=
𝜋𝑦

2
(

𝑚11𝑚12𝑚13𝑚14

𝑚21𝑚22𝑚23𝑚24

𝑚31         𝑚32𝑚33𝑚34

𝑚41𝑚42𝑚43𝑚44

) (38) 

 

 

Using (36) and next some matrix use, the matrix elements 

𝑚𝑖𝑗in (38) are found as 

 

𝑚11= 𝐽𝑙(𝑥)𝑌′𝑙(𝑦) − (
𝑘2𝜖1

𝑘1𝜖2
) 𝐽′𝑙(𝑥)𝑌𝑙(𝑦) 

 

𝑚12 = 𝑌𝑙(𝑥)𝑌′𝑙(y) – ( 𝑘2𝜖1/𝑘2𝜖2)𝑌′𝑙(𝑥)𝑌𝑙(𝑦) 

 

𝑚13= (𝛽𝑙/𝜔𝜖2)(1/𝑦 − 1/𝑥) 𝐽𝑙(𝑥)𝑌𝑙(𝑦) 

 

𝑚14= (𝛽𝑙/𝜔𝜖2)(1/𝑦 − 1/𝑥) 𝑌𝑙(𝑥)𝑌𝑙(𝑦) 

 

𝑚21= (
𝑘2𝜖1

𝑘1𝜖2
) 𝐽𝑙 ′(𝑥)𝐽𝑙(𝑦) -   𝐽𝑙(𝑥)𝐽′𝑙(𝑦) 

 

𝑚22= (
𝑘2𝜖1

𝑘1𝜖2
)𝑌′𝑙(𝑥)𝐽𝑙(𝑦) - 𝑌𝑙(𝑥)𝐽′𝑙(𝑦) 

 

𝑚23 =(𝛽𝑙/𝜔𝜖2)(1/𝑥 − 1/𝑦) 𝐽𝑙(𝑥)𝐽𝑙(𝑦) 

 

𝑚24= (𝛽𝑙/𝜔𝜖2)(1/𝑥 − 1/𝑦) 𝑌𝑙(𝑥)𝐽𝑙(𝑦) 

 

𝑚31=( 𝛽𝑙/𝜔𝜇2)(1/𝑦 − 1/𝑥) 𝐽𝑙(𝑥)𝑌𝑙(𝑦) 

 

𝑚32=( 𝛽𝑙/𝜔𝜇2)(1/𝑦 − 1/𝑥) 𝑌𝑙(𝑥)𝑌𝑙(𝑦) 

 

𝑚33= 𝐽𝑙(𝑥)𝑌′𝑙(𝑦) - (
𝑘2𝜇1

𝑘1𝜇2
) 𝐽′

𝑙(𝑥)𝑌𝑙(𝑦) 

 

𝑚34= 𝑌𝑙(𝑥)𝑌′𝑙(𝑦)- (
𝑘2𝜇1

𝑘1𝜇2
) 𝑌′

𝑙(𝑥)𝑌𝑙(𝑦) 

 

𝑚41= (𝛽𝑙/𝜔𝜇2)(1/𝑥 − 1/𝑦) 𝐽𝑙(𝑥)𝐽𝑙(𝑦) 

 

𝑚42=(𝛽𝑙/𝜔𝜇2)(1/𝑥 − 1/𝑦) 𝑌𝑙(𝑥)𝐽𝑙(𝑦)       (39) 

 

𝑚43= (
𝑘2𝜇1

𝑘1𝜇2
) 𝐽′

𝑙
(𝑥)𝐽𝑙(𝑦)-   𝐽𝑙(𝑥)𝐽′𝑙(𝑦) 

 

𝑚44= (
𝑘2𝜇1

𝑘1𝜇2
) 𝑌′

𝑙(𝑥)𝐽𝑙(𝑦)-   𝑌𝑙(𝑥)𝐽′𝑙(𝑦) 

 

All over again we find that the transfer matrix M is block 

diagonal zed when l = 0. In this example the matrix equation 

(17) can be written as two single equations. 

 

(
𝐴2

𝐵2
) =  𝑀𝑇𝑀 (

𝐴1

𝐵1
)(40) 

 

(
𝐶2

𝐷2
) =  𝑀𝑇𝑀 (

𝐶1

𝐷1
)(41) 

 

 

The matrix method described directly above can be 

employed to gain the mode dispersion relations for several 

conventional fibers. 

 

IV.  SIMULATION RESULTS 

 

In this section we use the above method to analyze the 

propagation characteristics for a step index fiber. The Bessel 

equation has all the information that we can obtain from our 

modal analysis and it gives the result of this investigation. In this 

paper we have assume a step index fiber and consider a higher 

value of V (Let V=6.5 when n2 =1.45, Δ =0.0064, a =3 µm, and 

lambda = approx. 0.4757 µm) and plotted the LHS and RHS of 

equation (x) in fig4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 (for l=0, 1, 2, 3, 

4).We find that there are two modes corresponding to l=0 (also 

called LP 0X), two modes corresponding to l=1, and one mode 

each corresponding to l=2, 3 and l=4.   

 

Table-1.1 Cutoff frequency of various linear polarized in a step 

index fiber 

 
l LPxx B 

0 
LP01 0.8977 

LP02 0.4752 

1 
LP10 0.7422 

LP11 0.1792 

2 LP20 0.5411 

3 LP30 0.3003 

4 LP40 0.0270 

5 LP5x NA 
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The corresponding values of b are given in table-1.1. Further 

using the above method we have plotted in fig 4.6 the variation 

of the normalized propagation constant b with normalized 

frequency V for a step index fiber corresponding to some low 

order modes. From table-1.1 the smallest value of b is very close 

to cutoff frequency. 

 

Figure 1.4:Variation of the LHS (blue color) and RHS (Green 

Color) in equation (1) and (2).This curve is plotted in case of l=0 

and V=6.5. Also, the points of intersection represent the discrete 

modes of the waveguide. 

 

Figure 1.5:Variation of the LHS (blue color) and RHS (Green 

Color) in equation(1) and (2)This curve is plotted in case of l=1 

and V=6.5. Also, the points of intersection represent the discrete 

modes of the waveguide. 

 

Figure 1.6:Variation of the LHS (blue color) and RHS (Green 

Color) in equation (1) and (2).This curve is plotted in case of l=2 

and V=6.5. Also, the points of intersection represent the discrete 

modes of the waveguide. 

 

Figure 1.7:Variation of the LHS (blue color) and RHS (Green 

Color) in equation(1)and (2)This curve is plotted in case of l=3 

and V=6.5. Also, the points of intersection represent the discrete 

modes of the waveguide. 

 

Figure 1.8:Variation of the LHS (blue color) and RHS (Green 

Color) inequation (1) and (2).This curve is plotted in case of l=4 

and V=6.5. Also, the points of intersection represent the discrete 

modes of the waveguide. 
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Figure 1.9: Variation of the LHS (blue color) and RHS (Green 

Color) in equation (1) and (2).This curve is plotted in case of l=5 

and V=6.5. Also, the points of intersection represent the discrete 

modes of the waveguide. 

Figure 1.10:Variation of the normalized propagation constant b 

with normalized frequency for a   step index fiber corresponding 

to some low order modes. The cutoff frequencies of L𝑃2𝑚 And 

L𝑃0,𝑚+1 

V. CONCLUSION 

In this paper, I have used the Transfer matrix method and 

computed the propagation characteristic of Bragg fiber. 
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