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Abstract:- The Principle of Stationary Action is 

extremely useful and plays a central role in deriving 

physics equations. One of the demanding aspects of this 

topic, difficult to explain, is how it connects with 

electrodynamic equations. This paper presents a simple 

derivation of classical electrodynamic equations based on 

Stationary action principle in which the Lagrangian 

formalism of a nonrelativistic mechanical system is 

extended to obtain the relativistic Lagrangian equation 

of a free particle in an external field. Lorentz invariance 

and appropriate action integrals for the moving particles 

in static fields, moving fields, and matter-field 

interaction are constructed to obtain the equations of 

motion of charged particles. Inhomogeneous Maxwell’s 

equations of the electromagnetic field are obtained using 

electromagnetic field tensor with six independent 

components of electric field (E) and magnetic field (B) in 

matrix form via the electromagnetic Lagrangian density. 

It is also considered that the homogeneous part and the 

Bianchi identity are derived by introducing a dual field 

tensor. The continuity equation of motion is presented by 

introducing electromagnetic 4-divergence. 

 

Keywords:- Electrodynamics, Maxwell’s Equations, Bianchi 

Identity, Lorentz Force And Least Action Principle. 

 

I. INTRODUCTION 
 

Classical electrodynamics, usually taught at the 

graduate level, is a key branch of physics theory that 
explains the electromagnetic forces between the electric 

charges and currents. Most importantly, the classical 

prediction from a planetry model that atom would be 

unstable. Hence, it is encouraged to understand the 

electrodynamic phenomenon and its fundamental equations 

from a unique point of view. A great tool for the starting 

point is the principle of least action or uniquely the principle 

of stationary action. This principle is extremely useful and 

the central part of all physics equations. A clear picture of 

this principle has been given in classical mechanics class. To 

shortly dive into it, to formulate the classical electrodynamic 

equations from the point of view of the stationary action. 
The formulation needs to be based on the principle that 

considers the entire motion of the system of particles from a 

configuration at time 𝑡1 to another configuration at time 𝑡2. 
This principle is called the least action principle which 

states that for a nonrelativistic mechanical system, the action 

integral. 

 

𝑆 = ∫ 𝐿[𝑞𝑖(𝑡), �̇�𝑖(𝑡), 𝑡]𝑑𝑡
𝑡2

𝑡1
, 𝑖 = 1,2…𝑛                   (1) is an 

extremum [1]. The Lagrangian L in (1) is a function of the 

generalized coordinates 𝑞𝑖(𝑡) and velocities �̇�𝑖(𝑡). By 

considering the infinitesimal variations of 𝑞𝑖(𝑡) and �̇�𝑖(𝑡) 
 

𝛿𝑆 = 𝛿∫ 𝐿[𝑞𝑖(𝑡), �̇�𝑖(𝑡), 𝑡]𝑑𝑡
𝑡2

𝑡1

= 0                   (2) 

 

The corresponding Euler-Lagrange equation of motion 

becomes [1] 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) =

𝜕𝐿

𝜕𝑞𝑖
                                      (3) 

 

One of the frustrated aspects of this topic is how it 
gives rise to electrodynamic equations. So, this paper 

employs a simple and approachable method to show how the 

least action principle is applicable to classical 

electrodynamics. This principle is applied in a simple way to 

derive the iconic equations of the classical electrodynamics 

and to create a path way for the derivation of others. This is 

done by extending the Lagrangian formalism of a 

nonrelativistic mechanical system to obtain the relativistic 

Lagrangian equation of a free particle in an external field. 

Consequently, the construction of a unique Lorentz 

invariance and appropriate action integrals for the moving 

particles in static fields, moving fields, and matter-field 
interaction to obtain the equations of motion of charged 

particles. To verify the Lorentz force law, the action integral 

of free relativistic particles in the static background fields 

and the interaction of the field are considered under the 

constructed Lorentz invariance condition. By writing 

Lorentz force in 4 vector form, it is required to introduce 

electromagnetic field tensor with six independent 

components of electric field E and magnetic field B in 

matrix form. This is used to generate the inhomogeneous 

Maxwell’s equations of the electromagnetic field (not static) 

through the electromagnetic Lagrangian density. To 
complete the demonstration of the electrodynamics 4-vector 

covariance, a dual field tensor is intoduced to obtain the 

homogeneous part of the Maxwell’s equations and the 

Bianchi identity. By introducing the 4-divergence, the 

conservation of source charge density is obtained which 

leads to the continuity equation of motion. 
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II. RELATIVISTIC LAGRANGIAN 

FORMULATION 
 

The mechanical Lagrangian formalism can be 

extended to obtain relativistic Lagrangian equation of 

motion for a free particle in external fields. The only Lorentz 

invariance function for such a free relativistic particle is [2-

4, 8] 

 

 𝑑𝑆2 = 𝑑𝑥𝜇𝑑𝑥
𝜇                                       (4) 

 

Which does not depend on the origin of time and 

space. The action integral 𝑆 is constructed in the form  

 

𝑆 = ∫ (𝑑𝑥𝜇𝑑𝑥
𝜇)

1
2                                   (5)

2

1

 

 

Where 𝑑𝑥𝜇𝑑𝑥
𝜇 = 𝐶2𝑑𝑡2 − 𝑑𝑥2 and 𝑉 =

𝑑𝑥

𝑑𝑡
 is the 

velocity of the particle, the action integral becomes 

 

𝑆 = 𝐶𝛽∫ 𝑑𝑡 (1 −
𝑉2

𝐶2
)

1
2𝜏2

𝜏1

                             (6) 

 

where 𝑑𝑡 = 𝛾𝑑𝜏, τ is the proper time which is invariant 

and 𝛽 is the velocity of particles relative to the speed of light 

𝐶. The condition that the action S be invariant requires the 

𝛽𝐿 also be invariant. Comparing (6) with (1) gives the 

Lagrangian L for a free particle to be 

 

𝐿 = 𝐶𝛽 (1 −
𝑣2

𝑐2
)

1
2

                                   (7) 

 

From the Taylor series expansion with the condition 

that  
𝑉

𝐶
≪ 1 (nonrelativistic limit) 

 

(1 −
𝑉2

𝐶2
)

1
2

≈ 1 −
𝑣2

2𝑐2
                               (8) 

 

To obtain 𝛽, (8) is substituted into (7) and 𝐿 =
1

2
𝑚𝑣2 

for nonrelativistic system of particles, the constant 𝐶𝛽 in the 

first term is ignored since its derivative is zero. Then, 𝛽 in 

the second term is obtained to be –𝑚𝑐 which is substituted 

back into (7) to give 

 

𝐿𝑓 = −𝑚𝑐
2 (1 −

𝑣2

𝑐2
)

1
2

                                  (9) 

 

Equation (9) is termed the Lagrangian equation for a 

free particle denoted by 𝐿𝑓 which depends not on the 

position of the particle but on the velocity and mass of the 

particle. 

 

 

 

 

 

III. LORENTZ FORCE 

 
In electrostatic, electric field, E is known to be written 

in terms of electrostatic scalar potential Φ and vector 

potential A according to the equation 𝐄 =
𝜕𝑨

𝜕𝑡
−𝛁Φ. The 

magnetic field is written in terms of vector potential as in 

𝑩 = 𝜵𝒙 𝑨. The potentials (Φ and 𝑨) have no physical 

meaning; they are introduced mainly for mathematical 

simplification. Lorentz force is derived by considering the 
case of the charge particles moving in static background 

fields E and B. To derive the equation of motion of such 

particles, the Lagrangian equation is written in two ways: 

the Lagrangian of the particles in motion 𝐿𝑓 and that of the 

interacting field 𝐿𝑖𝑛𝑡 . The condition that warrant the action S 

to be invariant requires that 𝛽𝐿𝑖𝑛𝑡  is also Lorentz invariance 

which is linear in the field, linear in the charge of the 

particles and linear in the coordinate. For this reason, 𝛽𝐿𝑖𝑛𝑡  
is described as the product of the 4-vector potential 𝐴𝜇 for 

𝐴𝜇 → (
Φ 

𝑐
, 𝑨). The possible invariant action integral for the 

interacting field is [3] 

 

𝑆𝑖𝑛𝑡 = 𝑞∫ 𝐴𝜇
𝑡2

𝑡1

𝑑𝑥𝜇 = 𝑞∫ [
Φ 

𝑐
. cdt − 𝐀d𝐱]

𝑡2

𝑡1

 

= 𝑞∫ [Φ− 𝐀V]𝑑𝑡
𝑡2

𝑡1

                                       (10) 

 

The Lagrangian of the interacting field is 

 

𝐿𝑖𝑛𝑡 = 𝑞[Φ −𝐀V]                                   (11) 
 

The total Lagrangian 𝐿 = 𝐿𝑓 + 𝐿𝑖𝑛𝑡  

 

𝐿 = −𝑚𝑐2 (1 −
𝑣2

𝑐2
)

1
2

 +
e

c
𝐀𝐯 − 𝑒Φ               (12) 

 

By applying the Euler-Lagrange equation from (3) 

 
d

dt
(
∂L

∂𝐯
) =

∂L

∂𝐫
 

 

The canonical momentum of the particle is 

 

𝐏 =
∂L

∂𝐯
=
∂

∂𝐯
[−𝑚𝑐2 (1 −

𝑣2

𝑐2
)

1
2

 +
e

c
𝐀𝐯 − 𝑒Φ] 

= γm𝐯 +
e

c
𝐀                                                 (13) 

 

where P is the conjugate momentum and the γm𝐯 is 

regarded as the ordinary kinetic momentum and  γ =
1

(1−
𝑣2

𝑐2
)

1
2

. Taking 
∂L

∂𝐫
 in (12) as the gradient of (

e

c
𝐀𝐯− 𝑒Φ), the  
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Euler-Lagrange equation of motion then becomes 

 
d

dt
(γm𝐯+

e

c
𝐀) =

e

c
𝛁(𝐀𝐯)− 𝑒𝛁Φ 

(γ
d(m𝐯)

dt
+
e

c

d𝐀

dt
) =

e

c
(𝐯. 𝛁)𝐀 +

e

c
𝐯x(𝛁x𝐀) − 𝑒𝛁Φ 

 

Where  
d𝐀

dt
=
∂𝐀

∂t
+ (𝐯.𝛁)𝐀  ,  𝐄 =

𝜕𝑨

𝜕𝑡
−𝛁Φ , 𝐁 = 𝛁x𝐀 

The Lorentz force law becomes 

 

𝐹 =
d𝐏

dt
= e𝐄 +

e

c
(𝐯 𝐱 𝐁)                           (14) 

 

The least action principle is established for a free 

charged particle in a static field to derive the Lorentz force 

law and the other part of the formalism is the one in which 

the least action principle is stated for which the actual path is 

the longest path, namely the Geodesic equation [2]. 

 

IV. COVARIANCE OF ELECTRODYNAMICS 

 

To make a clear covariant description of the relativistic 

Lagrangian, Lorentz force in (14) is written in 4-vector form 

by introducing electromagnetic field tensor. The form of the 

Lagrangian for a charged particle in an electromagnetic field 

suggest that the covariant form of the action integral is [2] 

 

δS = −δ∫ [mc(𝑑𝑥𝛼𝑑𝑥
𝛼)

1
2 +

𝑒

𝑐
𝐴𝛼𝑑𝑥

𝛼] = 0               (15) 

δS = −∫ [mcδ(𝑑𝑥𝛼𝑑𝑥
𝛼)

1
2 +

𝑒

𝑐
(δ𝐴𝛼)𝑑𝑥

𝛼 +
𝑒

𝑐
𝐴𝛼𝑑(δ𝑥

𝛼)]

= 0 
 

Applying chain-rule to the first term of the integrand, 

taking (𝑑𝑥𝛼𝑑𝑥
𝛼)

1
2 = 𝑑𝑠 = 𝑐𝑑𝜏, and 𝑈𝛼 = 

𝑑𝑥𝛼

𝑑𝑠
. Then, 

 

δ(𝑑𝑥𝛼𝑑𝑥
𝛼)

1
2 = 

𝑑𝑥𝛼δ(𝑑𝑥
𝛼)

(𝑑𝑥𝛼𝑑𝑥
𝛼)

1
2

=
𝑑𝑥𝛼δ(𝑑𝑥

𝛼)

𝑑𝑠
=
𝑑𝑥𝛼δ(𝑑𝑥

𝛼)

𝑐𝑑𝜏

= 𝑈𝛼𝑑(δ𝑥𝛼) 
 

The action integral gives 

 

δS = −∫ [mc𝑈𝛼𝑑(δ𝑥𝛼) +
𝑒

𝑐
(δ𝐴𝛼)𝑑𝑥

𝛼 +
𝑒

𝑐
𝐴𝛼𝑑(δ𝑥

𝛼)] =

0                                           (16)  

 
Introducing integration by part with some 

manipulations, the integrand becomes  

 

∫mc
𝑑𝑈𝛼

ds
−
𝑒

𝑐
[
𝜕𝐴𝛽

𝑑𝑥𝛼
−
𝜕𝐴𝛼
𝑑𝑥𝛽

]𝑑𝑥𝛼ds = 0                (17) 

 

The term in the square bracket is regarded as the 

electromagnetic field tensor denoted by 𝐹𝛼𝛽 = 𝜕𝛼𝐴𝛽 −
𝜕𝛽𝐴𝛼. Then, the integral leads to 

 

mc
𝑑𝑈𝛼

ds
=
𝑒

𝑐
(𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼)                             (18) 

 

This equation is known to be the equation of motion of 

the charged particles moving in an electromagnetic field 

described by the electromagnetic field tensor 𝐹𝛼𝛽. It is a 

second-rank, anntisymmetric field-strength with six 

independent components of E and B in matrix form. 

 

𝐹𝛼𝛽 =

(

 

0 −𝐸𝑥 −𝐸𝑦 −𝐸𝑧
𝐸𝑥 0 −𝐵𝑧 𝐵𝑦
𝐸𝑦
𝐸𝑧

𝐵𝑧
−𝐵𝑦

0
𝐵𝑥

−𝐵𝑥
0 )

                     (19) 

 

Lowering the indices 𝛼𝛽 gives 𝐹𝛼𝛽 and its elements 

are obtained by putting 𝑬 → −𝑬  in 𝐹𝛼𝛽 according to the 

signature metric (+, −, −,−) using in this study. 

 

𝐹𝛼𝛽 = 𝑔𝛼𝛾𝐹
𝛾𝛿𝑔𝛿𝛽 = (−𝑬,𝑩) 

𝐹𝛼𝛽 =

(

 

0 𝐸𝑥 𝐸𝑦 𝐸𝑧
−𝐸𝑥 0 −𝐵𝑧 𝐵𝑦
−𝐸𝑦
−𝐸𝑧

𝐵𝑧
−𝐵𝑦

0
𝐵𝑥

−𝐵𝑥
0 )

                      (20) 

 

To complete the demonstration of electrodynamics 
equations in covariant form, Maxwell’s equations is a must 

to derive and be written explicitly in covariance form. To 

start with, let’s consider the situation for which fields are not 

static. The action integral for such field is scalar and is given 

as 

 

SF =
1

𝑐
∫𝑑𝑥4ℒ(𝐴𝛼 , 𝜕𝛽𝐴𝛼)                             (21) 

 
In the case of the electromagnetic field theory, the 

Lorentz action integral in (21) is preserved only if the 

Lagrangian density ℒ is scalar [2]. Hence, the only Lorentz 

invariant for the free-field Lagrangian is of the quadratic 

form of some multiple of 𝐹𝛼𝛽𝐹
𝛼𝛽. The matter-field 

interaction part is described as a multiple current density 4-

vector. The electromagnetic field action integral is now the 

summation of the action integral for free particles in static 

background fields (Sf), action integral for the free field when 

particles are fixed or known (SF), and the action integral for 

the matter-field interaction (Sint). 
 

𝑆 = 𝑆𝑓 + 𝑆𝐹 + 𝑆𝑖𝑛𝑡                                     (22) 

𝑆 = −∑𝑚𝑐 ∫𝑑𝑠 −
1

16𝜋𝑐
∫𝐹𝛼𝛽𝐹𝛼𝛽 𝑑𝑥

4 −
1

𝑐2
∫𝐴𝛼𝐽

𝛼 𝑑𝑥4  

 

The first term, which is the free field action integral, 

has been used to derive the Lorentz force. Considering the 

last two terms; matter action integral and matter-field action 

integral with 𝑑𝑥4 = 𝑐𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧, the electromagnetic 
Lagrangian density is given as [2, 4, 7] 

 

ℒ =
1

16𝜋
𝐹𝛼𝛽𝐹𝛼𝛽 −

1

𝑐
𝐴𝛼𝐽

𝛼                           (23) 

 

ℒ = −
1

16𝜋
(𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼)(𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼) −

1

𝑐
𝐴𝛼𝐽

𝛼 
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ℒ = −
1

16𝜋
(𝜕𝛼𝐴𝛽𝜕𝛼𝐴𝛽 − 𝜕

𝛼𝐴𝛽𝜕𝛽𝐴𝛼 − 𝜕
𝛽𝐴𝛼𝜕𝛼𝐴𝛽

+ 𝜕𝛽𝐴𝛼𝜕𝛽𝐴𝛼) −
1

𝑐
𝐴𝛼𝐽

𝛼 

 
The two middle terms are the same as the two outer 

terms, so the electromagnetic Lagrangian density becomes  

 

ℒ = −
1

8𝜋
(𝜕𝛼𝐴𝛽𝜕𝛼𝐴𝛽 − 𝜕

𝛼𝐴𝛽𝜕𝛽𝐴𝛼) −
1

𝑐
𝐴𝛼𝐽

𝛼          (24) 

 

Substituting (24) into the following Euler Lagrange 

equation of motion 

 

𝜕𝛼 (
𝜕ℒ

𝜕(𝜕𝛼𝐴𝛽)
) =

𝜕ℒ

𝜕𝐴𝛽
                                (25) 

 

The equation of motion for electromagnetic field 

becomes 

 

−
1

4𝜋
𝜕𝛼(𝜕

𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼) = −𝐽𝛽                       (26) 

 

The quantity in the bracket is the electromagnetic field 

tensor 𝐹𝛼𝛽 so that the equation becomes  

 

𝜕𝛼𝐹
𝛼𝛽 =

4𝜋

𝑐
𝐽𝛽                                     (27) 

 

where 𝐽𝛽 = (𝐽0, 𝐽𝑖) = (𝑐𝜌, 𝑱) for (𝑖 = 1,2,3). The 

above recipes are enough to generate the Maxwell’s 

equation and to verify their consistency. 

 

A. Case 1: Inhomogeneous Maxwell’s equations: Consider 

the indices arrangement of (𝛼 = 1,2,3) for (𝛽 = 0), so 

 

𝜕1𝐹
10 + 𝜕2𝐹

20 + 𝜕3𝐹
30 =

4𝜋

𝑐
𝐽0 

𝜕𝐸𝑥
𝜕𝑥

+
𝜕𝐸𝑦
𝜕𝑦

+
𝜕𝐸𝑧
𝜕𝑧

= 4𝜋𝜌 

∇.𝑬 = 4𝜋𝜌                                      (28) 
 

Furthermore, indices are choosing accordingly as 
(𝛼 = 0,2,3) for (𝛽 = 1), (𝛼 = 0,1,3) for (𝛽 = 2), and 
(𝛼 = 0,1,2) for (𝛽 = 3). 
  

Then, for (𝛼 = 0,2,3) and (𝛽 = 1) 
 

𝜕0𝐹
01+ 𝜕2𝐹

21 + 𝜕3𝐹
31 = 4𝜋𝐽1 

−𝜕𝐸𝑥
𝜕𝑡

+
𝜕𝐵𝑧
𝜕𝑦

−
𝜕𝐵𝑦
𝜕𝑧

= 4𝜋𝐽𝑥                (29)𝑎 

 

Also, for (𝛼 = 0,1,3) and (𝛽 = 2) 
𝜕0𝐹

02 + 𝜕1𝐹
12 + 𝜕3𝐹

32 = 4𝜋𝐽2 
−𝜕𝐸𝑦
𝜕𝑡

−
𝜕𝐵𝑧
𝜕𝑥

+
𝜕𝐵𝑥
𝜕𝑧

= 4𝜋𝐽𝑦                 (29)𝑏 

 

 

 

 

Also, for (𝛼 = 0,1,2) and (𝛽 = 3) 
𝜕0𝐹

03 + 𝜕1𝐹
13 + 𝜕2𝐹

23 = 4𝜋𝐽3 
−𝜕𝐸𝑧
𝜕𝑡

+
𝜕𝐵𝑦
𝜕𝑥

−
𝜕𝐵𝑥
𝜕𝑦

= 4𝜋𝐽𝑧                (29)𝑐 

 

Addition of the (29)a, (29)b, and (29)c gives the 

Ampere –Maxwell’s equation as 

 

∇𝑥𝐵 −
𝜕𝐸

𝜕𝑡
= 4𝜋𝐽                                     (30) 

 

B. Caese 2: homogeneous Maxwell’s equations: the source 

𝑱 = 0 in (27) gives 

𝜕𝛼𝐹
𝛼𝛽 = 0                                           (31) 

 

In electromagnetic field theory, this will be best 

described by defining dual tensor 𝔉𝛼𝛽  with the help of a 

pseudotensor [3]. This is achieved by introducing the total 

anntisymmetric four-rank tensor ∈𝛼𝛽𝛾𝛿 , also known as Levi-

Civita symbol in four dimensions. For any even permutation 

∈𝛼𝛽𝛾𝛿= +1 (𝛼 = 0, 𝛽 = 1, 𝛾 =  2, 𝛿 = 3), for any odd 

permutation ∈𝛼𝛽𝛾𝛿= −1 for any odd permutation and 

∈𝛼𝛽𝛾𝛿= 0 if any two indices are equal. Contracting 𝐹𝛼𝛽 

leads to 

 

𝔉𝛼𝛽 =
1

2
∈𝛼𝛽𝛾𝛿 𝐹𝛼𝛽                                  (32) 

 

One can obtain the components of the dual tensor by 

permutation of indices or simply by putting 𝑬 → 𝑩 and 𝑩 →
−𝑬 in 𝐹𝛼𝛽. Therefore, the dual field tensor is defined by 

 

𝔉𝛼𝛽 =

(

 
 

0 −𝐵𝑥 −𝐵𝑦 −𝐵𝑧

𝐵𝑥 0 𝐸𝑧 1.−𝐸𝑦
𝐵𝑦
𝐵𝑧

−𝐸𝑧
𝐸𝑦

0
−𝐸𝑥

−𝐵𝑥
0 )

 
 
                 (33) 

 

The covariant form of the homogeneous Maxwell’s 

equation is given by 

 

𝜕𝛼𝔉
𝛼𝛽 = 0                                         (34) 

For (𝛼 = 1,2,3) and (𝛽 = 0) 
𝜕1𝔉

10 + 𝜕2𝔉
20 + 𝜕3𝔉

30 = 0 

𝜕1𝐵𝑥 + 𝜕2𝐵𝑦 + 𝜕3𝐵𝑧 = 0 

𝛁.𝑩 = 0                                     (35) 
 

Similar approach used in deriving Ampere’s law will 
be used to derive the second homogeneous Maxwell 

equation (Faraday’s). Since it is known that varying 

magnetic field produces the electric field and vise versa, the 

same indices can be adopted as in faraday’s law of 

electromagnetic. Firstly, let’s consider (𝛼 = 0,2,3) and 

(𝛽 = 1) 
 

𝜕0𝔉
01 + 𝜕2𝔉

21 + 𝜕3𝔉
31 = 0 

−𝜕0𝐵𝑥 − 𝜕2𝐸𝑧 + 𝜕3𝐸𝑦 = 0 

 
 

Also, for (𝛼 = 0,1,3) and (𝛽 = 2) 
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𝜕0𝔉
02 + 𝜕1𝔉

12 + 𝜕3𝔉
32 = 0 

−𝜕0𝐵𝑦 + 𝜕1𝐸𝑧 + 𝜕3𝐸𝑥 = 0 

 

 

 

Also, for (𝛼 = 0,1,2) and (𝛽 = 3) 
𝜕0𝔉

03 + 𝜕1𝔉
13 + 𝜕2𝔉

23 = 0 

−𝜕0𝐵𝑧 − 𝜕1𝐸𝑦 + 𝜕2𝐸𝑥 = 0 

 

Addition of the three equations gives the ampere law 

of electromagnetic 
 

∇ x 𝐵 +
𝜕𝐸

𝜕𝑡
= 0                                 (36) 

 

Mostly, homogeneous Maxwell’s equations are best 

described in terms of 𝐹𝛼𝛽 as the four-dimensional equations 

 

𝜕𝛼𝐹𝛽𝛾 + 𝜕𝛽𝐹𝛾𝛼 + 𝜕𝛾𝐹𝛼𝛽 = 0 

𝜕𝐹𝛽𝛾

𝜕𝑥𝛼
+
𝜕𝐹𝛾𝛼
𝜕𝑥𝛽

+
𝜕𝐹𝛼𝛽

𝜕𝑥𝛾
= 0                        (37) 

 

This is the four-dimensional equation in terms of 

electromagnetic field tensor called Bianchi identity. It is a 
constraint that any given fields must satisfy before they can 

be called fields. The conservation of the source current 

density can be obtained by taking the 4-divergence of both 

sides of (27) 

𝜕𝛽𝜕𝛼𝐹
𝛼𝛽 =

4𝜋

𝑐
𝜕𝛽𝐽

𝛽 

𝜕𝐹𝛼𝛽

𝜕𝑥𝛽𝜕𝑥𝛼
=
4𝜋

𝑐
𝜕𝛽𝐽

𝛽                            (38) 

 

The contraction on the left-hand side vanishes since 

the differential operator is symmetric and the 𝐹𝛼𝛽 is 

anntisymmetric. Hence, 

 

4𝜋

𝑐
𝜕𝛽𝐽

𝛽 =
𝜕𝑱𝛽

𝜕𝑥𝛽
= 0                           (39) 

 

This gives the continuity equation 

 

𝜕𝑱0

𝜕𝑥0
+
𝜕𝑱𝑖

𝜕𝑥𝑖
= 0         (𝑖 = 1,2,3) 

𝜕𝜌

𝜕𝑡
+ 𝛁. 𝑱 = 0                                               (40) 

 

V. CONCLUSION 

 

Starting from the principle of stationary action, all the 

basic and iconic equations of classical electrodynamics were 

derived. This was achieved from the construction of a 

unique Lorentz invariance and appropriate action integrals 

for the moving particles in static fields, moving fields, and 

matter-field interaction. These tools were used to derive the 

most important of classical electrodynamics equations; 
Lorentz force equation, Maxwell’s equations (homogeneous 

and inhomogeneous), Bianchi identity equation and 

continuity equation (charge conservation). The four 

Maxwell’s equations were confirmed to be consistent. Using 

the generated equations of motion of charged particles 
including the representation of E and B in terms of scalar 

and vector potentials, other equations of electrodynamics are 

easy to obtain. In conclusion, as far as physics is concern, 

least action principle occupies the central part. 
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