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Abstract:- The present work focus on the study of the 

wall functions as a tool to capture the heat transfer rate 

in the near wall region. Various wall functions were 

tested such as: equilibrium wall function, enhanced wall 

function, scalable wall function and standard wall 

function. A vertical pipe case was tested and 

investigated thoroughly to ascertain the applicability of 

each wall function, the governing equations were solved 

with boundary conditions, finite volume method was 

used to solve the continuity equation, momentum 

equation and the energy equation. It was found that 

enhanced wall function showed a better behavior for 

capturing the heat performance in the vicinity of the 

wall. 

 

I. INTRODUCTION 

  

The treatment of wall boundaries requires particular 

attention in turbulence modelling. The reason is that in the 

vicinity of the wall the turbulent shear stress falls rapidly 
within the buffer layer as the wall is approached, thus, there 

is a thin viscous sublayer near the wall where only the 

viscous stress is important. It is the presence of this viscous 

sublayer which is responsible for the extremely sharp 

gradients of mean and turbulent flow variables near the 

wall. 

 

The resolution of the viscosity-dominated region can 

be achieved if a fine numerical grid is employed. This is the 

so-called ‘low-Reynolds-number’ approach. The fine grid 

is needed to capture accurately the gradients of the mean 
and turbulent quantities, and their variations, which can be 

substantial in the vicinity of the wall. As the bulk Reynolds 

number of the flow becomes higher the grid problem 

becomes more severe, because the size of the viscous 

sublayer becomes smaller. As a result, the grid must be 

strongly compressed towards the wall and the spacing in 

the turbulent region may need to be reduced near the edge 

of the buffer layer also, in order to match the sublayer grid. 

In the case of fluids with a Prandtl number greater than 

unity the thermal viscous sublayer is thinner than the 

hydrodynamic one, and consequently the low-Reynolds-

number calculation in this case is then more expensive as 
further grid compression should be made to ensure 

adequate resolution of the thermal sublayer. Although there 

is a rapid growth in computer technology and 

improvements in numerical methods, there remains a great 

problem in resolving industrial 3D flows, where the 

accurate low-Reynolds-number resolution of the near-wall 

sublayer with structured-grid schemes can be responsible 

for about 90% of all computing costs. 

 

As one might expect, some attempts have been made 

to eliminate, or at least substantially reduce, the above 

problem and make the computations much cheaper. Many 

of these attempts were made near the beginning of the 

CFD, when computers were slow and the cost of computing 
simple engineering problems was extremely severe. In the 

meanwhile, Wall Functions were introduced which provide 

an alternative to prescribing the viscous wall boundary 

conditions. They bridge the gap between the viscous sub 

layer and the fully turbulent region. However, most existing 

wall functions are based on the prescription of a velocity 

which varies as the logarithm of distance from the wall: a 

variation which is valid only under local-equilibrium flow 

conditions. 

  

Understandably, these wall functions achieve a low 

accuracy in non-equilibrium conditions.  It goes without 
saying that complex industrial applications include flows 

with separation and/or reattachment regions and often 

include flows where buoyant effects are significant. All the 

above-mentioned flows depart from a state of local 

equilibrium; it is therefore inappropriate to apply such basic 

wall functions to these types of flows. For example, in 

Craft et al[1] it is noted that these limitations were 

recognised from the earliest days of turbulent flow CFD. 

 

Spalding [2] developed an elaborate set of formulae 

that aimed to account for modifications to the usual log-law 
formulae caused by pressure gradients and mass transfer 

through the wall, as well as circumstances where the wall 

function only had to account for a portion of the sublayer. 

Patankar and Spalding[3] developed similar, if somewhat 

less general, wall functions again incorporating effects of 

mass transfer and pressure gradient. This work was soon 

followed by a parallel treatment by Wolfshtein[4] whose 

analysis was the first to incorporate the effects of high 

external levels of turbulence energy convected or diffused 

towards the wall. 

  

However the above schemes, developed in the late 
1960’s, were not widely used but instead were replaced in 

CFD software by the conventional logarithmic laws for 

velocity and temperature; the only improvement to the 

original logarithmic law of Prandtl being that the square 

root of the turbulence energy has been used instead of 

friction velocity,. Moreover, even for industrial type 
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applications it was recognised that relatively advanced wall 

functions did not give clearly superior results to a simple 
log-law formulation. There were evidently some important 

physical effects missing even from the elaborate forms and, 

in any event, none of the schemes included the effects of 

buoyancy. 

 

There continuous attempts at refining the wall 

function analysis was first by Chieng and Launder[5] who 

have developed a wall function which is simply based on 

the variation of turbulent kinetic energy and turbulent shear 

stress across the fully turbulent region of the near-wall cell, 

another attempt by Johnson & Launder[6] attempted to 

takes into consideration for changes of the viscous sublayer 
thickness in their proposed wall function. Amano[7] 

resolved the equation for the dissipation rate of the 

turbulent energy across the near-wall cell using cell-

averaged production and destruction terms. later, Amano[8] 

developed his approach by considering a three-zone wall 

function, he made different prescriptions for the turbulent 

kinetic energy and its dissipation rate across the viscous 

sublayer, buffer layer and fully turbulent region. 

  

Although the several improvements, the main 

weakness of the logarithmic velocity and temperature 
variations still unchanged. Collins and Ciofalo[9] made 

another modification to the approach to make it applicable  

when the near-wall node was placed in the buffer region, 

but their contribution still have the same limitation. Avelino 

et al [10] used asymptotic strategy  to find analytical 

solutions for the velocity profile, turbulent energy and 

dissipation rate in incompressible boundary layers, and so 

far still the asymptotic technique included the log-law. 

  

Many attempts by researchers tried to takes in account 

for pressure gradients, but none of them incorporated the 

development of a more wide-ranging wall function which 
might capture for the effects of buoyancy. One can, develop 

fairly simple wall function for buoyant flows by adopting 

improvements to the universal log-law as proposed by 

Petukhov and  Polyakov[11]. Such wall function could not 

to be very accurate but it can be better than the 

conventional wall functions.  

 

The Parabolic Sub-Layer approach (PSL) developed 

by Iacovides & Launder For buoyant flows with simple 

flow geometry may be used. The PSL treatment is similar 

to the low-Reynolds-number approach where a fine grid 
resolution is used in the near wall region. The main 

difference is that the static pressure distribution is assumed 

to be uniform across near-wall region; therefore, the 

pressure-correction algorithm is not solved in the near-wall 

cells. Instead, the wall normal velocity is calculated from 

continuity. This method gives substantial savings and has 

the same level accuracy as the full low-Reynolds-number 

formulation, but it is still having some instability for flows 

in complex geometries and consequently cannot be 

measured as general. 

  
 

 

In the mid-1990’s, some attempts were made to 

develop wall functions for calculating the heat transfer and 
fluid flow in natural convection for example, Yuan et 

al[12]. The researchers reported success for natural 

convection cases. However, the performance of their wall 

functions has not been tested in mixed convection flows 

and, unfortunately, their approach is not valid to isothermal 

flows. The worst part was, as in conventional wall 

functions, the prescription of the velocity and temperature 

profiles. 

 

The aim of this work is to investigate the heat transfer 

rate using various wall functions in the near wall region 

 

II. GOVERNING EQUATIONS 

 

The governing equations are the continuity equation, 

the momentum equation and the energy equation as below: 

The continuity equation:  

                             
𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑈𝑖)

𝜕𝑥𝑗
=0  

 

The momentum equation: 

     

𝜕(𝜌𝑈𝑖)

𝜕𝑡
+
𝜕(𝜌𝑈𝑖𝑈𝑗)

𝜕𝑥𝑗

= −
𝜕𝑝

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗
𝜕𝑥𝑖

)

− (𝜌𝑢𝑢𝑢𝑗)] + 𝐵𝑖 

 

 

The energy equation: 

𝜕(𝜌𝑇)

𝜕𝑡
+
𝜕(𝜌𝑈𝑗𝑇)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[

𝜇

𝑃𝑟
𝜕𝑇
𝜕𝑥𝑖

𝑢𝑗𝜃
[]] 

 

 
 Wall-Functions Approaches: 

Most commercial CFD software employs algebraic 

wall function formulations to take care of the effects of the 

thin layer close to the wall, in order to save computational 

time and effort. Otherwise, the near wall mesh has to be 

extremely fine to resolve this sublayer. In most wall-

function implementations the near wall cell storage 

arrangement is in general as shown in figure 1. 
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Fig 1:- Near Wall Cell Arrangement for Wall-Function 

   

 TEAM Wall-Function: 

The first assumption in the TEAM wall function is 

that there is a local equilibrium of turbulence energy within 

the thin layer close to the wall. The conventional 

logarithmic law is then applicable which is given by: 

 

𝑈+ =
1

𝑘
𝑙𝑛(𝐸𝑦+) 

 

 

It is obvious that this wall-function is simple and 
being used with k-ε model, to calculate the wall shear 

stress; near wall node P is assumed and the wall shear stress 

is calculated at this point using the velocity as follows: 

 

𝑈+ =
𝑈𝜏𝑈𝑃
𝑈𝜏
2
=
𝑐𝜇
1/4
𝑘𝑃
1/2
𝑈𝑃

𝜏𝑤𝑎𝑙𝑙/𝜌
=
1

𝑘
𝑙𝑛(

𝐸𝑈𝜏𝑦𝑃
𝜈

) 
 

 

Where 𝑘𝑃 is the kinetic energy at node P, the wall 

shear stress is then may be obtained by: 

 

𝜏𝑤𝑎𝑙𝑙 =
𝑘𝜌𝑐𝜇

1/4
𝑘𝑃
1/2
𝑈𝑃

𝑙𝑛(𝐸𝑦𝑃√𝜏𝑤𝑎𝑙𝑙/𝜌/𝜈)
 

 

  

when the wall shear stress is vanished (for example 

when the separation flow or reattachment point is the case), 

the turbulence viscosity becomes zero where in fact it has 

large value in the turbulent region, so the focus was on 

avoiding such a problem, the best choice was by replacing 

the wall shear stress by the turbulence energy according to 

Launder and Spalding [13], the new expression for the wall 

shear stress is then obtained by: 

 

𝜏𝑤𝑎𝑙𝑙 =
𝑘𝜌𝑐𝜇

1/4
𝑘𝑃
1/2
𝑈𝑃

𝑙𝑛(𝐸𝑐𝜇
1/4
𝑦𝑃
∗)

 
 

 

And hence the averaged production maybe expressed 

as: 

 

𝑃𝑘 =
1

𝑦𝑛
∫ −𝜌𝑢𝑣
𝑦𝑛

𝑜

∂𝑈

∂𝑦
∂𝑦 = 𝜏𝑤𝑎𝑙𝑙

𝑈𝑃
𝑦𝑃

 
 

 

 

The dissipation rate is simply obtained by assuming 

that the shear stress is equal to the turbulent shear stress, 
i.e.: 

 

−𝜌𝑢𝑣 = 𝜏𝑤𝑎𝑙𝑙 = 𝜇𝑡
∂𝑈

∂𝑦
= 𝜌𝑐𝜇

𝑘2

휀

∂𝑈

∂𝑦

= 𝜌𝑐𝜇
𝑘2

휀

𝑈𝑃
𝑦𝑃

 

 

 

Hence after using an expression for 𝑈𝑃 to get the 

dissipation rate that yields: 

 

휀 =
𝑐𝜇
3/4
𝑘𝑃
3/2
𝑈𝑃
+

𝑦𝑃
 

 

 

In order to obtain the dissipation rate at the near wall 

node P, the next formula may be used 

 

휀 =
𝑘
3/2

𝑙
=
𝑘𝑃
3/2

𝑐𝑙𝑦𝑃
 

 

 

 Standard Wall-Function: 

In general, the standard wall-function is similar to the 

TEAM wall-function. The main characteristic of this wall-

function are the log-law to obtain the wall shear stress and 

the use of average kinetic energy production and the 

average dissipation rate in solving the energy equation in 

the near wall cells, while in the viscous sublayer the 

turbulent shear stress is equal to zero and the kinetic energy 
is assumed as: 

 

    𝑘 ∝ 𝑦2  

 

Hence only the averaged production is changed 

whereas the shear stress is as the same in the Team wall-

function, so the production is given by: 

 

𝑃𝑘 =
1

𝑦𝑛
∫

𝜏𝑤𝑎𝑙𝑙
2

𝑘𝑐𝜇
1/4
𝜌𝑘𝑃

1/2
𝑦

𝑦𝑛

𝑦𝑣

∂𝑦

=
𝜏𝑤𝑎𝑙𝑙
2

𝑘𝑐𝜇
1/4
𝜌𝑘𝑃

1/2
𝑦𝑛
𝑙𝑛 (

𝑦𝑛
𝑦𝑣
) 

 

 

In the same manner the averaged dissipation rate may 

be obtained from the following expression: 

 

휀 =
1

𝑦𝑛
[∫

2𝜇𝑘𝑃
𝜌𝑦𝑣

2
𝑑𝑦 + ∫

𝑘𝑃
3/2

𝑐𝑙𝑦
𝑑𝑦

𝑦𝑛

𝑦𝑣

𝑦𝑣

0

]

=
1

𝑦𝑛
[
2𝑘𝑃

3/2

𝑦𝑣
∗
+
𝑘𝑃
3/2

𝑐𝑙
𝑙𝑛 (

𝑦𝑛
𝑦𝑣
)] 

 

 

 Chieng-Launder Wall Function: 

Unlike the standard wall function, in the Chieng-

Launder wall-function the shear stress and the kinetic 
energy are assumed to be varies  in the near wall cell as the 

distance from the wall increases, whereas within the 

viscous sub layer it is similar to the standard wall-function, 

The Chieng-Launder wall function has been shown to give 
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reasonable results  in the case of an abrupt pipe expansion 

or backward facing step, when separation occurs .the 
kinetic energy is given by the following expression: 

 

𝑘 = 𝑘𝑣 (
𝑦

𝑦𝑣
)  

 

Where 𝑘𝑣 is the kinetic energy at the edge of the 

viscous sub layer and is given by: 

 

𝑘𝑣 = 𝑘𝑁 −
𝑘𝑁 − 𝐾𝑝
𝑦𝑁 − 𝑦𝑃

(𝑦𝑁 − 𝑦𝑣) 
 

 

The wall shear stress is given based on the viscous 

kinetic energy and is obtained from:  

 

𝜏𝑤𝑎𝑙𝑙 =
𝑘𝜌𝑐𝜇

1/4
𝑘𝑣
1/2
𝑈𝑃

𝑙𝑛(𝐸∗𝑘𝑣
1/2
𝑦𝑝/𝜈)

 
 

 

Where 𝐸∗is a constant based on the viscous sub layer 

dimensional distance (𝑦𝑣
∗ = 20) 

 

Similarly, the energy production is expressed as: 
 

𝑃𝑘 =
1

𝑦𝑛
∫ 𝜏
𝑦𝑛

𝑦𝑣

(
∂𝑈

∂𝑦
)𝑑𝑦 

 

     =
𝜏𝑤𝑎𝑙𝑙
2

𝑘𝑐𝜇
1/4

𝜌𝑘𝑣
1/2

𝑦𝑛
𝑙𝑛 (

𝑦𝑛

𝑦𝑣
) +

𝜏𝑤𝑎𝑙𝑙−(𝜏𝑛−𝜏𝑤𝑎𝑙𝑙)

𝑘𝑐𝜇
1/4

𝜌𝑘𝑣
1/2

𝑦𝑛
2
(𝑦𝑛 −

𝑦𝑣) 

 

 

 

 

 

 

Also, the average dissipation rate is given by: 

 

휀 =
1

𝑦𝑛
[
2𝜇𝑘𝑣
𝜌𝑦𝑣

+∫
1

𝑐𝑙𝑦
(𝑘𝑛

𝑦𝑛

𝑦𝑣

−
𝑘𝑛 − 𝑘𝑃
𝑦𝑛 = 𝑦𝑃

(𝑦𝑛 − 𝑦))

3/2

𝑑𝑦] 

 

 

 

 Johnson-Launder Wall Function: 

The main improvement in this wall function, was to 

modify the dimensional distance of the viscous sublayer, 

the reason behind this, is to take in consideration all the 
effects the rapid increase or decrease to the wall shear 

stress, they have proposed the following modification to the 

dimensionless thickness as: 

 

𝑦𝑣
∗ =

𝑦𝑣0
∗

1 + 𝑐𝜆
 

 

 

 

Where 

 𝑦𝑣0
∗  is the dimensionless viscous sublayer=20 

  C=3.1 

𝜆 =
𝑘𝑣 − 𝑘𝑤𝑎𝑙𝑙

𝑘𝑣
 

 

 

 

The Johnson-Launder modification improved the 

predictions in the recirculating zone but resulted in an 
overestimation of the heat transfer in the downstream 

region, moreover it can be numerically unstable. 

 

 Thermal Wall-Function 

Wall-function based on the log law, in this approach 

the wall temperature can be obtained based on the boundary 

conditions from the expression: 

 

𝑇∗ =
1

𝑥∗
𝑙𝑛(𝐸′∗𝑦∗) 

 

 

 

Where 𝐸′∗ is function of molecular Prandtl number 

 

            𝑥∗ = 𝑥𝑐𝜇
1/4

= 0.25 

 

Equation (3.28) may be rearranged using the 

hydrodynamic log-law as: 

 

𝑇∗ = 𝑃𝑟𝑡 (𝑈
∗ +

𝑝

𝑐𝜇
1/4
) 

 

 

 

Where 𝑃𝑟𝑡  is the turbulent Prandtl number and the 

pee-function 𝑝 is given by: 

              
 

𝑝 = 9.24 [((
𝑃𝑟

𝑃𝑟𝑡
)0.75 − 1) [1

+ 0.28𝑒𝑥𝑝 (−0.007
𝑃𝑟

𝑃𝑟𝑡
)]] 

 

 

 

The wall temperature can be calculated from: 

 

𝑇𝑤𝑎𝑙𝑙 =
𝑞𝑤𝑎𝑙𝑙𝑇

∗

𝜌𝑐𝑝𝑘𝑝
1/2 + 𝑇𝑝 

 

 
 

Where 𝑇∗ is defined as: 

 

𝑇∗ =
𝜌𝑐𝑝𝑘𝑝

1/2
(𝑇𝑤𝑎𝑙𝑙 − 𝑇)

𝑞𝑤𝑎𝑙𝑙
 

 

 

 

 

It is important to mention that the previous equation 

has limited applicability. For example, in natural 

convection flows this formula doesn’t work perfectly 

because the logarithmic velocity and temperature profiles 
are not valid in such a case. Therefore, many attempts have 

been made to derive wall functions suitable for natural 

convection in order to find a better alternative to the 

conventional wall functions. Many researchers have based 

wall functions on dimensional analysis and similarity 

conditions for natural convective boundary layers. The 

disadvantages of such wall functions are that they still tend 

to be based on the log-law.  
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The developers tuned their wall functions to one 

specific type of flow. One of the dimensionless temperature 
proposed wall functions may be obtained from the 

following expression: 

 

𝑇∗∗ =
(𝜌𝑐𝑝)

3/4(𝑔𝛽)1/4(𝑇𝑤𝑎𝑙𝑙 − 𝑇)

𝑞3/4
𝑤𝑎𝑙𝑙

 
 

 

And the dimensionless distance and temperature are 

given by: 

 

𝑦∗∗ =
𝑦

𝛼
(
𝑔𝛽𝑞𝑤𝑎𝑙𝑙
𝜌𝑐𝑝

)

1/4

 
 

 

Where: 

𝑇∗∗ = 𝑦∗∗ For 𝑦∗∗ ≤ 1  

 

And: 

𝑇∗∗

= 1+ 1.36 𝑙𝑛 𝑦∗∗

− 0.135 𝑙𝑛(𝑦∗∗)2 

For 1 ≤ 𝑦∗∗ ≤
100 

 

𝑇∗∗ = 44 For 𝑦∗∗ > 100  

 

 Developing the Analytical Wall-Function (AWF) 

The wall shear stress and turbulent kinetic energy 

production and wall temperature in the conventional Wall-

Functions are all based on the log law for velocity and 
temperature profiles. Unfortunately, these may not give 

accurate solutions when the flow departs from a state of 

local equilibrium. In this dissertation the focus is on 

buoyancy-influenced flow, where substantial near-wall 

variations of transport properties take place and where the 

influence of the gravitational force plays a role in 

modifying the shear stress profile. Conventional wall 

functions do not take into consideration such effects of such 

a flow. As a result of the above weaknesses, previous work 

at Manchester (Gerasimov, Craft, Launder and 

Iacovides[14] ) developed a new wall function, named 
UMST-A abased on the analytical solution of the simplified 

Reynolds equations and which takes into account such 

effects as convection,  pressure gradients, the influence of 

buoyant forces and changes in the thickness of the viscous 

sublayer. The full derivation equations will be skipped due 

to the very long terms, but can be found in Gerasimov[15]. 

 

The simplified energy and momentum Reynolds 

equation near the wall for forced convection can be 

expressed as: 

 
∂(𝜌𝑈𝑈)

∂𝑥
+
∂(𝜌𝑈𝑉)

∂𝑦
= −

∂𝑝

∂𝑥
+
∂

∂𝑦
[(𝜇 + 𝜇𝑡)

∂𝑈

∂𝑦
] 

 

∂(𝜌𝑈𝑇)

∂𝑥
+
∂(𝜌𝑉𝑇)

∂𝑦
=
∂

∂𝑦
[(

𝜇

𝑃𝑟
𝜇𝑡

𝑃𝑟𝑡

()
∂𝑇

∂𝑦
) []] 

 

 

Where𝜇𝑡and𝑃𝑟𝑡 are the turbulent viscosity and 

turbulent Prandtl number respectively. 
 

 

The above mentioned expressions are only in fact the 

transport equations with some assumptions, these 
assumptions may be summarised as that the pressure 

gradient pressure parallel to the wall is assumed to be 

constant across the near wall cell, another assumption; the 

diffusion of momentum parallel to the wall is assumed to 

be neglected with respect to that normal to the wall. After 

some manipulation, in terms of dimensionless distance 

from the wall𝑦∗when the buoyancy term is exist as: 

 
∂

∂𝑦∗
[(𝜇 + 𝜇𝑡)

∂𝑈

∂𝑦∗
] = 𝐶 + 𝑏(𝑇 − 𝑇𝑟𝑒𝑓) 

 

∂

∂𝑦∗
[(

𝜇

𝑃𝑟
𝜇𝑡

𝑃𝑟𝑡

()
∂𝑇

∂𝑦∗
)[]

𝜇𝑣
2

𝜌𝑣
2𝑘𝑝

(𝜌𝑈
∂𝑇

∂𝑥

+ 𝜌𝑉
∂𝑇

∂𝑦
)
𝑡ℎ

] 

 

 

where: 

𝐶 =
𝜇𝑣
2

𝜌𝑣
2𝑘𝑝

[𝜌𝑈
∂𝑈

∂𝑥
+ 𝜌𝑉

∂𝑉

∂𝑥
+
∂𝑃

∂𝑥
] 

 

𝑏 = −
𝜇𝑣
2

𝜌𝑣
2𝑘𝑝

𝜌𝑟𝑒𝑓𝑔𝛽 
 

 

To solve this equation for the temperature, it is 

assumed that only the first term in non-conservative is 

considered, i.e, 

 

𝐶𝑡ℎ =
𝜇𝑣
2

𝜌𝑣
2𝑘𝑝

𝜌𝑈
∂𝑇

∂𝑥
 

 

 

By integrating separately over the viscous and 

turbulent regions of the near-wall cell by assuming 𝐶𝑡ℎ is 

constant across the sublayer with continuity of T 

and
𝜕𝑇

𝜕𝑦∗
|
𝑦=𝑦𝑣

, the result can be written as: 

 

𝑇 =

{
 
 
 
 

 
 
 
 𝑇𝑤𝑎𝑙𝑙 +

𝑃𝑟

𝜇𝑣[
𝐶𝑡𝑛𝑦

∗2

2
+𝐴𝑡ℎ𝑦

∗]

∗

𝑣

∗

𝑇𝑤𝑎𝑙𝑙 +
𝑃𝑟

𝜇𝑣𝛼𝑡𝑡ℎ(𝑦
∗−𝑦𝑣

∗)

+
𝑃𝑟

𝜇𝑣𝛼𝑡[𝐴𝑡ℎ+𝐶𝑡ℎ(𝑦𝑣
∗−

1

𝛼𝑡
)] 𝑙𝑛 𝑌𝑇

+
𝑃𝑟 𝑦𝑣

∗

𝜇𝑣
[
𝐶𝑡𝑛𝑦

∗

2
+𝐴𝑡ℎ] , 𝑦

∗ > 𝑦𝑣
∗{

          

 

 
where: 

𝛼𝑡 ≡
𝑃𝑟 𝛼

𝑃𝑟𝑡
 

𝑌𝑇 ≡ [1 + 𝛼𝑡(𝑦
∗ − 𝑦𝑣

∗)] 

𝐴𝑡ℎ ≡ −
𝑞𝑤𝑎𝑙𝑙𝜇𝑣

𝑐𝑝𝜌𝑣√𝑘𝑝
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The integration may be obtained separately by 

assuming C as constant across the viscous sublayer and the 
fully turbulent region where: 

 

𝜇𝑡 = 0𝐹𝑜𝑟𝑦
∗ < 𝑦𝑣

∗ 

𝜇𝑡 = 𝜇𝛼(𝑦
∗ − 𝑦𝑣

∗)𝐹𝑜𝑟𝑦∗ > 𝑦𝑣
∗ 

 

 

 

Hence: 

 
∂

∂𝑦∗
[𝜇
∂𝑈

∂𝑦∗
] = 𝐶1 

 

 

Where  

 

𝐶1 =
𝜇𝑣
2

𝜌𝑣
2𝑘𝑝

[𝜌𝑈𝑃
(𝑈𝑒 −𝑈𝑤)

Δ𝑥𝑒𝑤
+
∂𝑃

∂𝑥
] 

 

The result is that the wall shear stress can be obtained 

from: 
 

𝜏𝑤𝑎𝑙𝑙 = −
𝜌√𝑘𝑃
𝜇

𝐴1 
 

Where 

𝐴1 =
𝜇𝑣𝑈𝑛 −𝑁

[
𝑙𝑛 𝑌𝑛
𝛼 + 𝑦𝑣

∗]
 

 

 

𝑈𝑛is interpolated using nodal values 𝑈𝑃and 𝑈𝑁 

and  

𝑁 =
𝐶2
𝛼
[𝑦𝑛

∗ − (
1

𝛼
− 𝑦𝑣

∗) 𝑙𝑛 𝑌𝑛]

+
𝐶1 − 𝐶2
𝛼

𝑦𝑣
∗ 𝑙𝑛 𝑌𝑛

+ (
𝐶1
2
𝑦𝑣
∗ −

𝐶2
𝛼
)𝑦𝑣

∗ 

 

The cell averaged turbulent kinetic energy production 

is given by: 

 

𝑃𝑘 =
1

𝑦𝑛

𝜌𝑣√𝑘𝑝

𝜇𝑣
∫ 𝜇𝑣𝛼(𝑦

∗ − 𝑦𝑣
∗) (

∂𝑈2
∂𝑦∗

)
2

𝑑𝑦∗
𝑦𝑛
∗

𝑦𝑣
∗

 
 

where 

∂𝑈2
∂𝑦∗

=
1

𝜇𝑣𝑌
[𝐶𝑦∗ +𝐴2

+ 𝑏(𝑇𝑣 − 𝑇𝑟𝑒𝑓 + 𝛿𝑇𝑦𝑦𝑣
∗)𝑦∗

− 𝑏
𝛿𝑇𝑦𝑦𝑣

∗2

2
] 

 

and  

𝐴2 = 𝑏𝑦𝑣
∗ [
𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑣

2
−
𝑇𝑣 − 𝑇𝑛
𝑦𝑛
∗ − 𝑦𝑣

∗

𝑦𝑣
∗

2
] + 𝐴1 

 

The expression of the velocity within the viscous 

sublayer obtained from the integration of the momentum 

equation and give by: 

 

𝜇𝑣𝑈1 =
𝐶

2
𝑦∗

2
+ 𝐴1𝑦

∗ +
𝑏

2
(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑟𝑒𝑓)𝑦

∗2

−
𝑏

6𝑦𝑣
∗
(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑣)𝑦

∗3 

+𝑏𝑏𝜇𝑦
∗2(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑟𝑒𝑓) × (

𝑦∗

3
−
𝑦𝑣
∗

2
) −

𝑏𝑏𝜇𝑦
∗3

2𝑦𝑣
∗

 

× (𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑣) (
𝑦∗

4
−
𝑦𝑣
∗

3
) + 𝑏𝜇𝐶𝑦

∗2 (
𝑦∗

3
−
𝑦𝑣
∗

2
) 

+𝑏𝜇𝐴1𝑦
∗ (
𝑦∗

2
− 𝑦𝑣

∗) 

 

 
 

 

 

 

 

 

Whereas in the fully turbulent region (𝑦∗ > 𝑦𝑣
∗), the 

expression takes form: 

 

𝜇𝑣𝑈2 =
𝐶

𝛼
[𝑦∗ − (

1

𝛼
− 𝑦𝑣

∗) 𝑙𝑛 𝑌] +
𝐴2
𝛼
𝑙𝑛 𝑌

+ 𝑏
(𝑇𝑣 − 𝑇𝑟𝑒𝑓 + 𝛿𝑇𝑦𝑦𝑣

∗)

𝛼
 

× [𝑦∗ − (
1

𝛼
− 𝑦𝑣

∗) 𝑙𝑛 𝑌] 

−𝑏
𝛿𝑇𝑦
2𝛼

[
𝑦∗

2

2
− 𝑦∗ (

1

𝛼
− 𝑦𝑣

∗) + (
1

𝛼
− 𝑦𝑣

∗)
2

𝑙𝑛 𝑌]

+ 𝐵2 

 

 

 
 

 

 

 
The cell averaged buoyant source term in the 

momentum equation can be found from: 

 

𝐹𝑏 = 𝛽
′ [(
𝑇𝑤𝑎𝑙𝑙 + 𝑇𝑣

2
− 𝑇𝑟𝑒𝑓)𝑦𝑣

∗

+ (
𝑇𝑣 + 𝑇𝑛
2

− 𝑇𝑟𝑒𝑓) (𝑦𝑛
∗

− 𝑦𝑣
∗)] 

 

where 

𝛽′ =
𝜌𝑟𝑒𝑓𝑔𝛽𝜇𝑣

𝑦𝑛𝜌𝑣√𝑘𝑃
 

 

The cell averaged dissipation rate is given by 

integration over the wall control volume: 

 

휀 =
1

𝑦𝑛
[
2𝑘𝑝

3/2

𝑦𝑑
2 +

𝑘𝑝
3/2

2.55
𝑙𝑛 (

𝑦𝑛
𝑦𝑑
)] 

 

which is as shown in figure (2) 

 

 
Fig 2:- Dissipation Rate Distribution 
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It was established by Gerasimov[15] that the cell 

averaged dissipation rate needed to be modified by a 

scaling function 𝐹𝜀to cope with the variation in the viscous 

sublayer region, the modified average dissipation rate is 

expressed as: 

 

휀𝑛𝑒𝑤 = 𝐹𝜀휀𝑜𝑙𝑑  

 

The scaling function proposed by hem is given by: 

 

𝐹𝜀 =

{
 
 

 
 
1 + 1.5{1 − 𝑒𝑥𝑝[−6.9(𝜆 − 0.98)]}𝑓𝑜𝑟𝜆 ≥ 1.0

× {1 − 𝑒𝑥𝑝[−193(𝑚𝑎𝑥(𝛼, 0))2]},

1 − (1 − 𝐹𝜀0) [1 − 𝑒𝑥𝑝 (−
1 − 𝜆

𝜆
)]

× {1 − 𝑒𝑥𝑝[−11.1(𝑚𝑎𝑥(𝛾, 0))2]}𝑓𝑜𝑟𝜆 < 1.0

 

 

 

 

 

 

 

where  

𝐹𝜀0=0.75 

𝜆 =

𝜇𝑤√(
∂𝑈𝑖
∂𝑥𝑗

)
𝑤

(
∂𝑈𝑖
∂𝑥𝑗

)
𝑤

𝜇𝑣√(
∂𝑈𝑖
∂𝑥𝑗

)
𝑣

(
∂𝑈𝑖
∂𝑥𝑗

)
𝑣

 

 

 

 
 

𝛼 =
𝜆

1.02
− 1 

 

Sine Gerasimov[15] modelled the effect of 

accelerating or decelerating of buffer layer by introducing a 

factor by which he multiplied the cell averaged dissipation 

rate, and that after testing a number of alternatives he based 
this function on the ratio of the wall shear stress to the 

shear stress at the edge of the viscous sublayer. This scaling 

function was not total in separated or reattachment flows, 

subsequent work by Gulguzel found that in such cases it 

did not perform well, he tested a number of alternatives in 

separated flows, the form he proposed adopting is, the 

present work include applying this form to the type of 

flows that Gerasimov studied to see if it performs as well as 

the original version The reason behind introducing this new 

scaling function is that despite the good results obtained in 

free flow, the approach has failed in other types of flow 

such as separation or reattachment flows, the new scaling 
function is simply expressed as: 

 

𝐹𝜀 = {
1𝑖𝑓𝐶𝑜 ≤ 0
−28.333𝐶𝑜 + 1𝑖𝑓0 < 𝐶𝑜 ≤ 0.03
0.15𝑖𝑓𝐶𝑜 > 0.03

 

 

 

 

 

Where 𝐶𝑜 is the non dimensional of the convective 

term in the momentum equation, the non-dimensional form 

of the convective term is obtained using the Kolmogorov 
scales as: 

 

𝐶𝑜 =
𝐶(𝑐𝑙𝑦𝑃)

3/4

𝑘𝑃
1/8
𝜈7/4𝜌

 
 

where C is  

𝐶 =
𝜇𝑣
2

𝜌𝑣
2𝑘𝑝

[𝜌𝑈
∂𝑈

∂𝑥
+ 𝜌𝑉

∂𝑉

∂𝑥
+
∂𝑃

∂𝑥
− 𝑔(𝜌

− 𝜌𝑟𝑒𝑓𝑓] 

 

 

The scaling function form was arrived by determining 

the value of 𝐹𝜀 that is needed to give very close agreement 

with the low-Reynolds number predictions of the k-ε model 

for mixed and forced convection in a pipe. 

 

III. RESULTS AND DISCUSSION 

 

The governing equations were solved with boundary 
conditions with constant inlet velocity and zero outlet 

pressure gauge with an external constant heat flux. The 

results for different wall functions were presented and 

analysed. 

 

The variation of the near wall temperature at the 

vertical wall for four wall functions is presented in Figure 

3. The temperature decreased with the increase in the hight 

of the pipe. It was found that the enhanced wall function 

showed a higher temperature distribution. 

 

 
Fig 3:- Variation of Wall Temperature for Various Wall 

Functions 

 

The wall function techniques have also an effect on 

the turbulent kinetic energy, the variation of the Turbulent 

energy on the wall for several wall functions tested as 

shown in Figure 4. The turbulent kinetic energy dropped 

significantly at the inlet of the pipe. It can be clearly seen 

the equilibrium wall function showed the least performance 
in capturing the turbulent kinetic energy among different 

wall functions 
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Fig 4:- The Variation of the Turbulent Energy on the Wall for Several Wall Functions 

 
The temperature distribution on a vertical line in the 

core of the cylinder was also investigated and the results 

are depicted in Figure 5, It is evident that the standard wall 

function over-estimated the temperature in this location, 

this is attributed to the assumption of averaged kinetic 

production out of the viscous sublayer. 

 

 
Fig 5:- The Temperature Distribution on the Center Line of the Cylinder 
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To give a better understanding to turbulence 

dissipation using several wall functions, the turbulence 
dissipation rate on the wall employing different wall 

functions was examined and the results are illustrated in 

Figure 6. The turbulence showed a sharp growth at the 

entrance of the pipe and dropped significantly with the 

advance of the flow in the pipe, it is worth to mention that 
the enhanced wall function showed a better estimation of 

the turbulence eddy dissipation rate over the other two 

functions.  

 

 
Fig 6:- Turbulence Dissipation Rate on the Wall for Different Wall Functions 

 

The pressure coefficient on the wall was also 

investigated and the results are shown in Figure 7, the 

pressure coefficient reduced sharply at the entrance and 

decreased gradually away from the entrance, all wall 

functions showed similar prediction for pressure 

coefficient, however, enhanced wall function gave 5% 

higher than other wall functions 

 

 
Fig 7:- The Variation of Pressure Coefficient on the Wall 
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To examine the heat transfer performance in the near 

wall region, the applicability of all functions was tested and 
the results are presented in Figure 8. The graph shown 

displays the variation of Nu number which gives an 

indication to the heat transfer rate along the pipe wall. It 

can be clearly seen that the enhanced wall function showed 
the best prediction for Nu number over the other two wall 

functions. 

 

 
Fig 8:- Variation of Nu number at wall for different wall function. 

 

The turbulent energy variation on the wall of the pipe 

is investigated. The results are demonstrated in Figure 9. It 

was found that the equilibrium wall function prediction was 

the worst at both the entry region and at along the pipe.  

However, when the departed the entry region, the 

production behaviour remains unchanged for all wall 

functions. 

 
 

 
Fig 9:- Variation of Production along the Wall 
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The turbulent energy variation on the centre line of the 

pipe is investigated. The results are demonstrated in Figure 
10. It was found that the enhanced wall function prediction 

was the highest at the entry region.  However, when the 

flow departed the entry region, the production dropped 

significantly and it was almost the same prediction by all 
wall functions. 

 

 
Fig 10:- The Turbulent Energy Variation on the Center Line of the Pipe 

 

IV. CONCLUSION 

 

The heat transfer rate in the very near wall region was 

studied using various wall functions in a vertical pipe with 

constant heat flux, four wall functions were tested and the 
results were shown and discussed. The enhanced wall 

function showed a better prediction among all functions 

tested. The wall functions strategy is essential for the CFD 

computational cost to minimise the simulation cost. Despite 

the fairly well applicability of the enhanced wall function, 

further work is needed to improve its applicability for 

complex types of flows. 
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