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Abstract:- This work focuses on the comparison of the 

strain energy density functions for rubber-like materials 

based on exponential form. The Treloar experimental 

data had been used in the present paper. The optimal 

method for nonlinear parameter identification is 

developed. Indeed, a comparison between the Treloar 

data and the analytical solution is approached in order 

to identify a good hyperelastic parameters of the models. 

By processing simple tension, pure shear and equibiaxial 

tension curves showed the good agreement between the 

model and experimental data.  
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I. INTRODUCTION 

 

Nowadays, the mechanical of rubber-like materials has 

a very active field of research due to their use in the many 

areas of applications. Since the fortieth century, some 

experimental and theoretical models have already been 

proposed by Mooney [1], Kuhn and Grün [2], Treloar [3, 4, 

5] and James [6]. Long before, the multitude of 

phenomenological constitutive hyperelastic models has been 
proposed in attempts to describe the deformation modes of 

elastomeric polymers. Ones of them based on strain-

invariants, Rivlin [7], Pucci and Saccomandi [8], Isihara  

[9], James [6], Yeoh [10], Lion [11], Haupt and Sedlan [12], 

Boyce-Arruda [13], Beda [14], Nunes [15], and Carroll [16] 

and the others on principal stretches Valanis [17], Peng [18] 

and recently Ogden [19], [20]. Even so, few of the following 

models have the accuracy, the efficiency, the ability and the 

capacity to reproduce all the deformation modes like simple, 

equal-biaxial tension and pure shear tests. Among these 

hyperelastic models, many have been proposed with an 

exponential dependence on the strain invariants form. In this 
context, it is worth mentioning above Hart-Smith that 

associated the exponential and the logarithmic form [21], 

Fung [22], Alexender [23], Gornet-Marckmann [24] and 

Beda [25] generalized the Hart-Smith model. In the 

litterature, many authors compared some hyperelastic 

models, M. García [26] presented a review of the 

application of the hyperelastic models to the analysis of 

fabrics using finite element method in 2006, Marckmann 

[27] compared twenty hyperelastic using genetic algorithm, 

Chagnon [28] compared the Hart-Smith with Arruda-Boyce. 
The good phenomenological hyperelastic model must be 

able to fit the Treloar experimental data [4]. 

 

The outline of this work compares the strain energy 

density functions based on the Hart-Smith first part and the 

general model combining the models has been proposed. In 

addition to that, this article presents a strategy of 

hyperelastic identification parameters that provide the 

optimal parameters based on Treloar experimental data. 

 

II. KINEMATIC STRESS TENSORS IN 

MATERIAL FORM 
 

According to the continuum mechanics theories, there 

exists the strain energy density function W , which is the 

property of rubber-like materials. The first Piola-Kirchhoff 

stress tensor P  which is used in the study of the large 

deformation analysis can be expressed as the derivative of 

the variable W  and the right Cauchy-Green tensor C  [22, 

29]. The general constitutive equation is given by the 
following: 
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Then, considering that the right Cauchy-Green tensor 

C  is symmetric, the first relationship can be expressed as: 
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Then, we can write: 
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and 
T

C F F , F  is the deformation gradient matrix. 

 

Based on isotropic and incompressible hyperelastic 

materials law, the strain energy function admits the three 

principal invariants of C  denoted 1I , 2I  and 3I  these are 

written as : 
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Generally, a constitutive relation of Cauchy-Green for 

hyperelastic properties is defined by: 
 

 f C        (6) 

 

Therefore, in the large deformation domain, the 

constitutive relationship between the Cauchy stress tensor 

and the strain energy density function is giving by the 

following relation: 
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     (7) 

 

Taking into account the condition of the 

incompressibility and the isotropic of rubber-like materials, 

the relation (7) can be rewritten as: 
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                 (8) 

 

Where p is the hydrostatic pressure. 

 

III. NONLINEAR DEFORMATION BEHAVIOR 

 

The relationship that describes the behavior of the 

elastomeric polymer is given by the relation (8).  

 
 For Simple tension: 

According to uniaxial tension and based on 

incompressible and isotropic conditions, 1   and 

1

2 3    . The two invariants for this test are: 

22
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Considering equations (5), and (6), the stress tensor 

relation in the terms of invariants tensor can be expressed 

by: 
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 For Equibiaxial tension: 

Considering equibiaxial tension test: 
1 2

     and 

2

3
 


 . Thus, the two strain invariants tension are: 
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According to the stress tensor function based on 

relations (5) and (7) becomes: 
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 Pure shear 

This deformation test, 1  , 2 1   and 
2

3  

. Thus, the two invariants deformation are the same. 
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        (13) 

 

The stress tensor could be also expressed as: 
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IV. THE DIFFERENCE HYPERELASTIC MODELS 

 
a) RIVLIN R. S. hyperelastic model 

The strain energy density  1 2
,W I I  which 

characterizes the mechanical response of an isotropic, 

incompressible and hyperelastic like-rubber materials 

expressed in the terms of the invariants tensor or 

immediately in the terms of principal stretches like 

 1 2 3
, ,W    . At the first, Rivlin expressed the strain 

energy function like an infinite convergent power series 

based on invariants of Green deformation tensor. That 

material must be homogenous, isotropic and incompressible. 
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Many hyperelastic models had been built from the first term 

of the classical work of Rivlin [7] given by the following 

relation :  

 

   1 2

, 0

3 3
m n

Riv mn

m n

W C I I




     (15) 

 
b) HART-SMITH model  

Hart-Smith modified the Gent-Thomas model by 

substituting the first part by an exponential function power 

of the first invariant 1I . Thus, based on the two first 

invariants 1I  and 2I , He proposed the following 

hyperelastic relationship for the strain energy:  
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     (16) 

 

c) VERONDA-WESTMANN model  

In 1970, Veronda-Westmann [30] proposed a 

biological model to study in uniaxial tests the skin of cats. 

This derives from the Fung model. Veronda prolonged just 

the Fung strain energy density by adding the second term. 

The whole hyperelastic model expressed by the following 

expression: 

    1 1 2 2
exp 3 1 3

V W
W C I C I


         (17) 

 

d) YEOH-modified model  

The Yeoh modified model [31] derives from the Yeoh 

1990 [10] hyperelastic model that extended by adding the 

exponential form.  
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e) LAMBERT-DIANI model  

In 1999, Lambert-Diani and Rey [32], after using a 

multistage procedure, get a generic hyperelastic model 

given by the following strain energy:  
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f) L. GORNET-MARCKMANN model 

Gornet and Marckmann [24] developed a new 

constitutive hyperelastic model on static stiffness modeling 

of rubber-like materials for multiaxial. Their strain energy 

based also on Hart-Smith model by replacing the second 

term in 
2

I : 
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g) T. BEDA model  

The model of Beda [33] generalizes the Hart-Smith 

strain energy [21] who takes a unique value of the 

hyperelastic parameter 2  . Beda considers that   is a 

variable. The form of the hyperelastic model is given by the 

following relationship: 

 

   2
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3
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V. METHOD OF IDENTIFICATION OF THE 

OPTIMAL AND ACCURATE HYPERELASTIC 

PARAMETERS 

 

The approach-in-stage method will be used for 
identifying all model parameters in the present paper. The 

technique consists to identify step by step the generating 

function [34, 35, 36, 37, 25, 38, 33]. The method supposes 

to approximate the function  y x  that corresponds to the 

function  A x , that corresponds to    y x A x . This 

strategy consists to plot  y x  versus  x  and ought to 

be linear, with slope equal to A. In other cases, Beda showed 

that, the curve of  y x  versus   x


  should be convex 

and rising if 1  , concave if 0 1  convex and 

falling if 0   [35]. In this paper, all the hyperelastic 

parameters of the material in this work will be determined 

by the approach-in-stage method.  

 

Base on deformation modes, the Hart-Simth model, 
the Gornet-Marckmann model and the Beda model, the 

stress tensor can be respectively rewritten for: 

 

 Simple tension mode:  

 

 The Hart-Smith model 
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 The Gornet-Marckmann model 
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 The Beda model 
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 Equibiaxial tension mode: 

 

 The Hart-Smith model 
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 The Gornet-Marckmann model 
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 The Beda model 
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 Pure shear mode 

 

 The Hart-Smith model 
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 The Gornet-Marckmann model 
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 The Beda model 
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VI. EVALUATION OF THE HYPERELASTIC 

PARAMETERS THE MODELS 

 

According to the relations (23) and (24), the reduced 

stress can be respectively written like: 
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Through both relationships, the hyperelastic 

parameters estimated by using the approach-in-stage method 

[37]. In the first stage, the evaluation of 
2

C  consists to plot 

2  versus  
1

2
I



 and the linear segment permits to 

estimate the slope 2C , displayed in figure 1. The relation 

(32) can be rewritten like: 
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This equation equivalent to: 
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The previous equation allows us to evaluate 
1

C ,   

and   according to the Beda model by taking the logarithm 

form [33], the results are displayed in figures 2 and 5. The 

figure 1 shows the identification of the parameter 
2

C  at the 

first partial solution. Both other hyperelastic parameters 
1

C  

and   of the Gornet-Marckmann model are deeply 

evaluated by the method [38].  
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The comportment of 
1

W I  is widely explained in 

the large deformation domain [4 21, 32, 33]. Some else 

considered as a power function or as an infinite series [29, 

25]. Let’s us consider 
1W I   as an exponential form, 

then one plots,  1
ln W I   versus  1

3I


  and varies 

 , the hyperelastic parameter until to get the linear 

segment, see in the figures 2 and 5. Taking account the 

previous explanation, the relation (34) can be expressed 

like: 

 

 1

1
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   (35) 

 

  and l  are the hyperelastic parameters. Considering 

the equation (35), one assumes that: 
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                   (36) 

 

The equation (36) is evaluated at the third stage to 

deduce the constant of the parameter 1C , see in the figures 

3 and 6.  
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model 
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Fig. 4 :- Comparison of the Gornet-Marckmann model with 

Treloar data according to uniaxial extension versus equation 

(23), equibiaxial extension versus equation (26) and pure 

shear test versus equation (29). 
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experience versus equations (24) and (28). 

 

VII. THE PHENOMENOLOGICAL MODEL 

PROPOSED 

 

Based on the model of Hart-Smith, model of the 

Gornet-Marcmann and Beda, there is a proposal for a 

powerful isotropic and incompressible hyperelastic model 

that generalizes these models. The model proposed is given 

by the following expression: 

 

  1 1 1 2 2

2

1
exp 3W C I dI C dI

I


     (37) 

 
This model has distinguished itself by its ability to 

describe the three common modes of deformation in the 

domain of the large strain. This strain energy has good 

accuracy to reproduce the Treloar experimental data in 

equibiaxial, uniaxial extension and pure shear test. The 

proposed model responses are depicted in figure 8 for the 

three modes of deformation.  

 

The Treloar experimental has permitted to identify the 

hyperelastic parameters of the constitutive models. Those 

are performed using the three experiences synchronously. 
The computational results of this present word are shown in 

figures 4, 7 and 8. The different values of these previous 

phenomenological constitutive hyperelastic parameters for 

rubber-like materials are given in the following table 1. 
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Fig. 8 :- Comparison of model proposed with Treloar data 

according to uniaxial extension, equibiaxial extension and 

pure shear.
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Models  C MPa       K MPa  

Gornet-Marckmann 0.145  
43.2.10

 / 1.36.10-3 

Beda 2014 0.140  
47.5.10

 
1.800  0.210  

Model proposed 0.137  
35.891.10

 
1.850  

358.10

 

Table 1:- the estimated value of the large strain parameters 

VIII. CONCLUSION 

 
In this present paper, many constitutive hyperelastic 

models: Gornet-Marckmann, Beda and proposal model were 

compared. These phenomenological models had a common 

link due to the exponential form in the term of 1I  identic to 

the Hart-Smith model. The Hart-Smith hyperelastic model 

offers an advantage that will facilitate the numerical 

implementation in the finite element method. The practical 

method that called the approach-in-stages had been used for 

identifying all the different optimal and accurate 

hyperelastic parameters. At the end of this work, the simple 

isotropic and incompressible hyperelastic model that 

generalizes both constitutive equations for rubber-like 
materials models based has been proposed. 
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