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Oscillations Arising when Switching Off a 

Discontinuous Magnetic Field 
 

P. M. Romanets 

 

Abstract:- In the present paper, we theoretically study 

the effect of density of state variation on the phenomena 

in the discontinuous magnetic field. Special attention is 

paid to the transient processes when the magnetic field is 

switched on (off). The difference in the density of states 

for the free 2D electron gas and the electron gas on under 

the magnetic field can lead to the occurrence of the 

electrostatic potential. Considering the transient 

phenomena of magnetic field switching, we obtain 

oscillating behavior of the electrostatic potential. The 

analysis includes two limit cases when the oscillation 

frequency of the electrostatic potential is low relative to 

the cyclotron frequency and when they are of the same 

order.  

 
I. INTRODUCTION 

 

A new wave of interest in a highly-heterogeneous 

magnetic field took place about twenty years ago. A large 

number of interesting effects were investigated 

experimentally and theoretically. Magnetic antidots, 

quantum dynamics of electrons under the action of a 

discontinuous magnetic field in the presence of a background 
magnetic field, magnetic superlattice, diffusion in a 

discontinuous magnetic field, and many other interesting 

problems were investigated [Error! Reference source 

not found.-Error! Reference source not found.]. 
However, to the best of our knowledge, the effects associated 

with varying the density of states near the magnetic field step 

are not considered. Moreover, as will be shown below, some 

of the theoretical results obtained before should be corrected 

or refined, since they did not take into account the effects of 

the density of states variation. 

 

On the other hand, there is still a strong interest in 

researching processes on the rapid dynamics of the magnetic 
field, which have obvious prospects for practical application. 

Practically, these studies have two directions: the 

improvement of methods of ultrafast magnetization of 

ferromagnetic materials and the improvement of 

measurement methods. The rate of magnetization of a 

ferromagnet depends on the chosen method and on the 

structural features of the material itself. The rapid dynamics 

of the magnetic field can be achieved with the help of 

micromagnets [Error! Reference source not 

found.], but the best results were achieved in experiments 

on the use of a femtosecond laser [Error! Reference 

source not found.]. With the help of a femtosecond laser, 

it is possible not only to demagnetization but also to 

magnetizing ferromagnets. For this use a static magnetic field 

[Error! Reference source not found.], or circularly 

polarized light [Error! Reference source not 

found.]. In such experiments, the rate of reversal is limited 

mainly by the structural features of the ferromagnet. Some 

influence of temperature and geometry of the sample is also 

possible [Error! Reference source not found.]. The 

time scale of demagnetization for the ferromagnets from the 

transition metal group [Error! Reference source not 

found.-Error! Reference source not found., 

Error! Reference source not found.], groups of rare 

earth metals [Error! Reference source not found., 

Error! Reference source not found.] and 

ferromagnetic insulators differ significantly [Error! 

Reference source not found.]. For the transition metal 

group, the demagnetization time with the femtosecond pump 

is the smallest and is within the range of 50-250 fs, for rare 

earth metals, the order is 1ps, whereas for ferromagnetic 

insulators the time is measured by tens or hundreds of peak 

seconds. Among the most popular detecting methods is the 

magneto-optical Kerr effect (MOKE) and the x-ray 

Magneto-Circular Dichronism (XMCD). MOKE has a better 
time resolution, but all structural features of the 

magnetization of a ferromagnetic compound are averaged 

spatially [Error! Reference source not found., 

Error! Reference source not found.-Error! 

Reference source not found.]. XMCD, on the 

contrary, has a worse time resolution but can reflect the 

structural features of a ferromagnetic compound [Error! 

Reference source not found.]. Note that all 

measurement methods are optical. We hope that the 

following results will be useful for the development of 
non-optical measurement methods for processes involving 

the rapid dynamics of the magnetic field. 

 

II. THE FIELD CAUSED BY THE DENSITY OF 

STATES VARIATION 

 

In this section, we consider the field caused by the 

difference in the density of states for the free 

two-dimensional electron gas (2DEG) and the 2DEG under 

the magnetic field. Figure 1(a) shows the experimental 

scheme. Due to the Meissner effect, the magnetic field in a 

quantum well (QW) is sharply dependent on the coordinate 

 𝐵(𝑦, 𝑡) = 𝐵0(𝑡)𝜃(𝑦). Below, everywhere we assume that 

the dependence of the magnetic field on time has form 

𝐵0(𝑡) = 𝐵𝑚[1 − exp(−𝛾𝑡)]  and 𝐵0(𝑡) = 𝐵𝑚 exp(−𝛾𝑡) 
when switching on and off correspondingly.  
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Fig 1:- Frame (a) depicts the experimental schema. Frame (b) shows the plot in half-logarithmic scale with concentration of free 

electrons nf (y<0) and the localized on Landau levels electrons nL (y>0). The schema on the frame (c) explains how potential is 

calculated (see Appendix A); σL,f denotes the corresponding surface density of charges. 

 

For the cyclotron frequency 𝜔с(𝑡) = 𝜔с
𝑚[1 −

exp(−𝛾𝑡)] and 𝜔с(𝑡) = 𝜔с
𝑚 exp(−𝛾𝑡) respectively.  

 

𝑛𝑓(𝜇) =
𝑚𝑇

𝜋ђ2
ln[1 + exp(𝜇/𝑇)] 

 

𝑛𝐿(𝜇, 𝑡)|{𝜏𝑛(𝑡)→∞} =
1

𝜋𝑙𝑐
2
∑

1

1+exp [
ђ𝜔𝑐(𝑡)

𝑇
(𝑛+

1

2
)−

𝜇

𝑇
]

∞
n=0 ,   (1) 

 
here μ is the chemical potential, T is the temperature, 

and n
f
 and n

L
 are the concentrations of free electrons and 

electrons at the Landau levels, τ
n

 are the quatum life-times 

for n-th Landau level. On Figure 2(b) one can see the 

dependence of the concentrations on the chemical potential 

for temperatures T=0 and T=0.1 ω
c
ħ . Obviously, the 

concentration n
f
 equals n

L
 only when μ=Nħω

c
/2 (N is a 

positive integer), or when T≥ħω
c

. The difference in 

concentration will lead to the emergence of an electric field. 

The heterostructure as a whole should be electroneutral. In 

the assumption of a QW rectangular profile, the charge 

density for a heterostructure can be written as follows:  
 

𝜎(𝑦, 𝑧) ≅

{
  
 

  
 
𝑒∆𝑛 sin2(𝑧

𝜋

2
)

𝑑
,⋯  0 < 𝑧 < 𝑑, 𝑦 < 0;

−𝑒∆𝑛 sin2(𝑧
𝜋

2
)

𝑑
, ⋯0 < 𝑧 < 𝑑, 𝑦 ≥ 0;

−
𝑒∆𝑛

2𝐻
,⋯ 𝑑 ≤ 𝑧 ≤ 𝐻, 𝑦 < 0;

𝑒∆𝑛

2𝐻
,⋯ 𝑑 ≤ 𝑧 ≤ 𝐻, 𝑦 ≥ 0.

   (2) 

 

where Δn=n
f
−n

L
, e is the elementary charge, d is the 

QW width, H is the distance from the lower edge of the QW 

to the interface of the heterostructure (see Figure 2 (b)).  

 

Because of the non-uniform distribution of charge (2) in 

QW, an electric field is generated. The statical screening 

effects will be considered below. The dynamical screening 

will not be taken into account.The potential of this field can 

be represented as (see Appendix A): 

 

𝜙(𝑦, 𝑡) =
2𝜋𝑒∆𝑛(𝑡)

𝜖
[(
𝑑−𝐻

8
−

3𝑑

16𝜋2
)+∑ 𝑎𝑛 exp(−|𝜆𝑛𝑦|)

+∞
𝑛=1 ]𝑠𝑔𝑛(𝑦),  (3) 

 

 

where the coefficients defined with the equations:  

 

𝑎𝑛 = −𝑢𝑛
4sin (𝜆𝑛𝑑)

𝜆𝑛𝑑[4−(𝜆𝑛𝑑)
2]

     

  (4) 

 

and  

 

𝑢𝑛≠0 = (−1)
𝑛
{sin(

2𝜋𝐻

𝑑
)𝜆𝑛
2𝑑3−2𝜋(𝜆𝑛𝑑)

2𝐻+8𝜋2𝐻}

𝜋𝐻𝑑𝜆𝑛
2 [4𝜋2−(𝜆𝑛𝑑)

2]
; 

 

  

𝑢𝑛=0 =
4(𝐻𝜋)3−6𝜋3𝐻2𝑑+3sin(

2𝜋𝐻

𝑑
)− 6𝜋𝐻𝑑2

24𝜋3𝐻𝑑
.  

   (5) 
 

When the slow dynamics of magnetic filed takes place 

the statical screening is essential. It could be taken into 

account as follows:  

 

 ∆𝑛(𝜇, 𝑡) ≈ 𝑛𝐿(𝜇, 𝑡) − 𝑛𝑓(𝜇) +

∑ {
𝜕𝑛𝐿(𝜇,𝑡)

𝜕𝜇

[𝑒𝜙(𝑦,𝑡)]𝑘

𝑘!
|𝑦→∞ −

2
𝑘=1

(−1)𝑘
𝜕𝑛𝑓(𝜇)

𝜕𝜇

[𝑒𝜙(𝑦,𝑡)]𝑘

𝑘!
|𝑦→−∞}, (6) 

 
where we neglect attenuation of the static screening in 

the small region |y|λ
−1

1
. Taking into account formulas (1) and 

(Error! Reference source not found.)-(5) one could 

obtain polynomial equation relative to Δn(t). The series cut 

off is justified by a numerical estimation. In Fig. 2 (a) depicts 

the coordinate dependence of the electrostatic potential. The 

used approach supposes that potential is asymmetric. The 

different lines correspond to different chemical potentials. 

Note, that maximum value of the potential corresponds to 

𝜇 = 9.2ђ𝜔𝑐
𝑚  when 𝑇 = 0.1ђ𝜔𝑐

𝑚 , whereas in the low 

temperature limit T→0, the maximum value corresponds 

𝜇 = 9.5ђ𝜔𝑐
𝑚. The effect of temperature is clearly shown in 
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Fig. 2(b) and also could be understood from Fig. 1(b). The 

temporal oscillations of the potential appearing when the 

magnetic field is switching on/off are described in Fig 2(c). 

The electrostatic potential 𝜙(𝑦, 𝑡) is the function of time at 

the point y=H/2. The used in calculations temperature equals 

0.1ђ𝜔𝑐
𝑚. It is seen that there are arbitrarily high frequencies, 

but the amplitude decreases as the frequency increases. The 

frequencies could be estimated with the next formulas 

(𝑡 ≪ 𝛾−1):  

 

Ω𝑜𝑓𝑓(𝜔𝑐) ≈
−2𝜋𝛾

ln|
μ

ђ𝜔𝑐
−

μ

ђ𝜔𝑐
𝑚−1|−ln|(

μ

ђ𝜔𝑐
−1)(

𝜔𝑐
𝜔𝑐
𝑚−1)|

,  

 Ω𝑜𝑛(𝜔𝑐) ≈
−2𝜋𝛾

ln|1−
ђ𝜔𝑐
𝜇
|
.   

 (7) 

 

The minimum frequencies are realized at the maximum 

amplitude (see Figure 3), whereas for and 

lim
𝜔𝑐→0

[Ω𝑜𝑛,/𝑜𝑓𝑓(𝜔𝑐)] = ∞ and corresponding amplitudas are 

zeros. 

 

 
Fig 2:- The properties of the screened electrostatic potential in the quasistationary case (𝛾 ≪ 𝜔𝑐). Frame (a) shows the coordinate 

dependence of the potential for different chemical potentials  μ =9.1,9.2,9.3,9.4 × ђ𝜔𝑐 (lines 1-4 correspondingly) and for the 

temperature 𝑇 = 0.1 × ђ𝜔𝑐
𝑚 potentials. The frame (b) shows the temperature dependence of the potential. The lines numbering is 

the same as on the frame (a). The frame (c) shows the time-dependence of the potential φ at the point y=H/2. The chemical potential 

and the maximum cyclotron frequency related as 𝜇 = 9.5 × ђ𝜔𝑐
𝑚. The oscillations arising when switching off (line 1) and on (line 

2) of the magnetic field at the time moment t=0. The time in units γ
−1

. The heterostructure geometry is defined by the next 

parameters H=5.8l
min

c
 and d=0.2l

min

c
. The influence of relaxation processes is neglected. 

 

III. BONDARY GROUND STATE 
 

Equations (2)-(5) do not take into account the tails of 

states localized in the region y∈(0,l
c
) . Thus states 

should be treated as boundary states because they essentially 

penetrate the magnetic field-free region. In fact, in [Error! 

Reference source not found.], the authors analyzed 

in detail the boundary states that arise at the boundary of the 

magnetic field breaking. In particular, the case 

corresponding to 𝐵(𝑦) = 𝐵𝑚𝜃(𝑦).  was analyzed. In the 
Schroedieuer equation, the authors did not include the 

potential of type 𝜙(𝑦, 𝑡), so if 𝑇 < ђ𝜔𝑐  their results are 

true only in the case 𝜇 = ђ𝜔𝑐 (𝑁𝐿𝐿 +
1

2
), where 𝑁𝐿𝐿 is the 

positive integer. Specifically when ђ𝜔𝑐𝑁𝐿𝐿 < 𝜇 <

ђ𝜔𝑐 (𝑁𝐿𝐿 +
1

2
)  the concentration of electrons in Landau 

levels is lower than that for the free electrons and the 

boundary states could arise. Indeed, the superposition of the 

effective potential for the magnetic field and the potential 

𝜙(𝑦, 𝑡) can lead to the electron confinement (see Fig. 2a, 

taking into account the change of sign for the potential 
energy of an electron due to a negative charge). We have 

used approach of variatinal method with trial wave-function 

 

  𝛹0(𝑥, 𝑦) ≅ {
𝐴> exp [−

(𝑦−𝑦0)
2

𝑎2
] , 𝑦 > 0;

𝐴> exp [
(2𝑦𝑦0−𝑦0

2)

𝑎2
] , 𝑦 ≤ 0;

 

 
The results of the computation are shown in Fig. 3. One 

can see that the deeper states appear on higher distance from 

the boundary 𝑦0, on the other hand, they are more sensitive 

to the temperature. Particularly, ground state for 𝑦0 = 0.3𝑙𝑐 
disappears at 𝑇 ≥ 0.32ђ𝜔𝑐, whereas states for 𝑦0 = 0.1𝑙𝑐 
disappears only when 𝑇 ≥ 0.35ђ𝜔𝑐 (compare Fig. 3 (c) and 

(d)). n the limit case 𝑦0 → ∞  we should obtain Landau 

solution for the ground state, i.e. 𝑎 = √2𝑙𝑐. Comparing this 

value with the values in Fig. 3 (a,b) we can conclude that the 

boundary ground states demonstrate higher localization than 

the corresponding Landau states.  
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Fig 3:- Contour plots on frames (a) and (b) depict the parameter a obtained from the variational method versus temperature and 

chemical potential. The corresponding ground state energies are shown on frames (c) and (d). The case on frames (a) and (c) is for 

𝑦0 = 0.3𝑙𝑐 whereas (b) and (d) is for 𝑦0 = 0.1𝑙𝑐.  

 

 

Fig 4:- The cyclotron and magnetoplasmon resonance condition. The lines 1, 2 describe Ω𝑜𝑛,/𝑜𝑓𝑓(𝜔𝑐) when γ=2×10
10

 s
−1

 and 

lines 3, 4 are the same for γ=2×10
8

 s
−1

 vs. cyclotron frequency. The short arrows are the markers for resonant conditions. The 

cyclotron and magnetoplasmon frequencies are ω
c
 and ω

p
. The conxcentration of 2D electrons is 1.8×10

11
 cm

−2
. 

 

We should note, that the effect of the state density in the case of an asymmetric magnetic field 𝐵(𝑦) = 𝐵𝑚𝑠𝑔𝑛(𝑦) is not 

significant. 

 

IV. ULTRAFAST SWITCHING OF THE  

MAGNETIC FIELD 

 

Under the slow magnetic field switching and low 

temperature, the relaxation processes are not significant. On 

the other hand, if the ultrafast switching of the magnetic field 

takes place, then Ω
nim

on,off
∼ω

m

c
. Under these conditions, 

the quantum lifetimes on Landau levels τ
n

 are essential 

parameters. The faster switching of the magnetic field the 

shorter quantum lifetime at the certain Landau level. In the 

limit case, one obtains that Landau levels are an incorrect 

approach. In this section, we consider the influence of the 

finite quantum lifetime on the phenomena described in the 

first section. Nevertheless, below we suppose ω
m

c
≫γ 

because of using of the perturbation theory. As well one 

must modify the functions describing the time-dependent 

magnetic field. After transformation, the cyclotron 
frequency has the next form:  
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 𝜔𝑐(𝑡) =

{
𝜔𝑐
𝑚exp [−𝛾 ∫ 𝑑𝑡′𝑓𝛽(𝑡

′𝑡

−∞
)] + 𝜔𝑐

𝑏 ,⋯ 𝑠𝑤𝑖𝑡𝑐ℎ 𝑜𝑓𝑓;

𝜔𝑐
𝑚 {1 − exp [−𝛾 ∫ 𝑑𝑡′𝑓𝛽(𝑡

′𝑡

−∞
)]} + 𝜔𝑐

𝑏 , ⋯ 𝑠𝑤𝑖𝑡𝑐ℎ 𝑜𝑛;
   (8) 

 

where ω
b

c
≪ω

m

c
 is due to small background magnetic 

field and f
β

(t)  is any smooth function satisfying the 

condition lim
𝑡→∞

[𝑓𝛽(𝑡)] = 𝜃(𝑡) , besides γ,β≪ω
m

c
. This 

means that the wave function Ψ
n

(t,x,y)  is obtained by 

the substitution ω
c
=ω

c
(t) in the stationary solution of the 

Schrodinger equation Ψ
(st.)

n
(x,y)  is a good approach (see 

[Error! Reference source not found.] p. 424, the 

reduction to the 2D case is obvious):  

 

𝛹𝑛(𝑡, 𝑦, 𝑧) = exp [𝑖 ∫ 𝐻̂0(𝑡
′)𝑑𝑡′

𝑡

0
]𝛹𝑛

𝑠𝑡.(𝑦, 𝑧)|𝜔с=𝜔с(𝑡).   (9) 

 
The time-dependent density of states could be 

introduced as follows:  
 

𝜌𝛾(𝐸, 𝑡, 𝑦̅) =
1

2𝜋
∑ ∫ exp (𝑖

𝐸

ђ
∆𝑡 +

0

−∞
∞
𝑛=0

∫
𝑑𝑡′

𝜏𝑛(𝑡
′)

𝑡

𝑡−∆𝑡
) ⟨𝛹𝑛 , 𝑡, 𝑦̅|𝛹𝑛, 𝑦̅, 𝑡 + ∆𝑡⟩𝑑∆𝑡 + 𝑐. 𝑐. 

 (10) 

 

The distribution function 𝑓𝛾(𝐸, 𝑡, 𝑦̅) and the density of 

states must satisfy  

 

 𝜌𝛾→0(𝐸, 𝑡, 𝑦̅) =
1

2𝜋𝑙𝑐
2∑ 𝛿 [𝐸 − ђ𝜔𝑐 (𝑛 +

1

2
)]∞

𝑛=0 , 

 𝑓𝛾→0(𝐸, 𝑡, 𝑦̅) =

[1 + exp (
𝐸−𝜇

𝑇
)]
−1

.     (11) 

 
After rewriting them in the from 𝜌𝛾(𝐸, 𝑡, 𝑦̅) =

𝜌𝛾→0(𝐸, 𝑡, 𝑦̅) + ∆𝜌𝛾→0(𝐸, 𝑡, 𝑦̅)  and 𝑓𝛾(𝐸, 𝑡, 𝑦̅) =

𝑓𝛾→0(𝐸, 𝑡, 𝑦̅) + ∆𝑓𝛾→0(𝐸, 𝑡, 𝑦̅)  and neglecting 

∆𝑓𝛾→0(𝐸, 𝑡, 𝑦̅)∆𝜌𝛾→0(𝐸, 𝑡, 𝑦̅)  one could calculate the 

concentration in the region 𝑦 > 0  as 𝑛𝐿(𝑡) =

∫ 𝜌𝛾(𝐸, 𝑡, 𝑦̅)𝑓𝛾→0(𝐸, 𝑡, 𝑦̅) + 𝜌𝛾→0(𝐸, 𝑡, 𝑦̅)∆𝑓𝛾(𝐸, 𝑡, 𝑦̅)𝑑𝐸
∞

0
, 

where the second term is zero because of (Error! 

Reference source not found.). Transforming the 

hamiltonian 𝐻̂0(𝑡
′) to act locally in time one could obtain  

 

𝜌𝛾(𝐸, 𝑡, 𝑦̅) =
1

2𝜋𝑙𝑐
2(𝑡)

∑ ∫ exp [𝑖
𝐸

∆
∆𝑡 − 𝑖𝜑(𝑡, 𝑡 +

0

−∞
∞
𝑛=0

∆𝑡) (𝑛 +
1

2
) + ∫

𝑑𝑡′

𝜏𝑛(𝑡
′,𝑦̅)

𝑡

𝑡−∆𝑡
] × 𝐴𝑛(𝑡, 𝑡 + ∆𝑡, 𝑦̅)𝑑∆𝑡 + 𝑐. 𝑐. , (12) 

 

where  

𝜑(𝑡, 𝑡′) =
1

2
[𝜔𝑐(𝑡

′)(𝑡 − 𝑡′) +
1

𝜔𝑐(𝑡
′)
∫𝑑𝑡′′𝜔𝑐

2(𝑡′′)

𝑡

𝑡′

], 

 

𝐴𝑛(𝑡, 𝑡
′, 𝑦̅) ≅

1

2𝜋
(
1

2
)
𝑛−

1

2
(√

𝜔𝑐(𝑡
′)

𝜔𝑐(𝑡)
+

√
𝜔𝑐(𝑡)

𝜔𝑐(𝑡
′)
)

𝑛−
1

2

exp {−
𝑦̅2𝑚

8ђ

[𝜔𝑐(𝑡)
2−𝜔𝑐(𝑡′)

2]
2

𝜔𝑐(𝑡)𝜔𝑐(𝑡′)
2+𝜔𝑐(𝑡′)𝜔𝑐(𝑡)

2
}; 

                                             (13)
  

  whereas τ
n
(t',ȳ)  is defined by (Error! Reference 

source not found.). The equation (1) demonstrates two 

peculariries because of the ultrafast switching of the 
magnetic field. The first one is because of retarding effect. 

Namely, the energy of the n-th level is not definited by 

current cyclotron frequancy ω
c
(t) , but by some 

time-averaged cyclotron frequancy (see 𝜑  in Error! 

Reference source not found.). We neglact this effect 

below, supposing that at least one of the conditions γ≪ω
c
(t) 

or γ≪τ
−1

n
(ȳ,t)  is satisfied. The second pecularity is 

because of finite quantum life-time. We will use local in 

time approach 𝐴𝑛(𝑡, 𝑡′, 𝑦̅) ≈ 1 , 𝜑(𝑡, 𝑡′) ≈ 𝜔𝑐(𝑡)(𝑡 −

𝑡′) and ∫
𝑑𝑡′

𝜏𝑛(𝑡
′,𝑦̅)

𝑡

𝑡−∆𝑡
≈

∆𝑡

𝜏𝑛(𝑡,𝑦̅)
  to study it influence on the 

electrostatic potential. Then the additional electrons 

concentration under the ultrafast switching magnetic filed 

and T→0 is  

 

∆𝑛̃(𝑡) ≈
1

2𝜋𝑙𝑐(𝑡)
2
∑ {arctan [

𝜇

ђ
−𝜔𝑐(𝑡)(𝑛+

1

2
)

𝜏𝑛
−1(𝑡,𝑦̅)

] +∞
𝑛=0

arctan [
𝜔𝑐(𝑡)(𝑛+1/2)

𝜏𝑛
−1(𝑡,𝑦̅)

]},       (13) 

 
where we are not considering dynamical screening and 

cyclotron resonance (see Fig.4). In contrast to the eq.(6), the 

statical screening is impossible in the case of ultrafast 

switching of the magnetic field. The corresponding potential 
can be calculated using the procedure described in the last 

part of Appendix A. The results of the calculations described 

in Fig.5. In Fig. 5(a) one could see quantum lifetimes depend 

on both as coordinate and time. The maximal values for 

inverse quantum lifetimes are realized when the magnetic 

fields almost switched off. The inverse quantum lifetimes 

also rapidly increase with the coordinate y. In Fig 5(b) one 

can see that the oscillation of the concentration are quenched 

with the relaxation but still observable. Also, the results 

depict the new feature. Namely, the envelope of the 

time-dependent concentration increases proportionally to 
the inverse quantum lifetimes. This is because of quantum 

levels broadening. Comparing the time dependencies of the 

concentration and the electrostatic potential (Fig.5(c)), one 

could note that in the region t ∈(−0.15 ns, 0.25 ns) 

concentration proportional to the potential derivative. To 

understand this feature we should take into account that in 

this time interval both, the potential and the concentration 

are strongly affected by the short lifetimes. On the other 

hand, the lifetimes are the functions of the coordinate. Thus 

the integration over the y coordinate in the right-hand side of 

(Error! Reference source not found.) could be 

transformed into the integral over the time interval. 
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Fig 5:- A finite quantum life times modify the oscillation. 
The frame (a) shows cyclotron frequancy (line 1) and invese 

quantume life times for the different quantum levels 

n=10, 20 and different distance from the magtentic field step 

y; the line 2 for n=10 and y=0.1 μm, the line 3 for n=10 and 

y=0.2, the line 4 for n=20 and y=0.1 μm, the line 5 for n=10 

and y=0.3 μm,the line 6 for n=20 and y=0.2 μm, the line 7 for 

n=20 and y=0.3 μm. The frame (b) shows the oscillations of 

the concentration of the electon gas under the magnetic filed 

y>0 relatively to the free electon gas concentraion; the line 1 

for y=0.1 μm, the line 2 for y=0.2 μm the line 3 for y=0.3 μm. 

The frame (c) shows electrostatic potential; the lines 1, 2 and 
3 have the same meaning as on frame (b). Calculation are 

performed for GaAs QW with H=300 nm and d=10 nm, 

𝜔𝑐
𝑚 = 1012𝑠−1, 𝛾 = 0.08𝜔𝑐

𝑚, 𝛽 = 0.04𝜔𝑐
𝑚, 𝜔𝑐

𝑏 =
0.25𝜔𝑐

𝑚, 𝜇 = 9.8 ђ𝜔𝑐
𝑚 and T→0. The case of the 

switching off the discontineous magnetic field. 

 

V. CONCLUSION 

 

We have considered the effects of density of state 

variation arising in a discontinuous magnetic field. It was 

demonstrated that in the quasi-stationary regime, the density 

of state variation could cause boundary states near the 

magnetic filed step. The result is in contradiction with the 
one-electron quantum calculation because the latter does not 

take into account average electrostatic potential arising 

because of the difference in concentration for the free 2D 

electrons and the electrons under the magnetic field. 

 

Also, special attention was paid to the effects araising 

when the discontinuous magnetic field is switching on (off). 

The corresponding transient processes are supplemented by 

the oscillations of the electrostatic potential near the step of 

the magnetic field. Besides, we have analyzed how the 

phenomenon will show itself in the case of ultrafast 
switching off of the magnetic field when the period of 

densities variation is comparable to the cyclotron period. It 

is obtained that the finite quantum lifetimes break spatial 

homogeneity of the Landau states along the y direction. 

Particularly, for for GaAs QW with H=300 nm and d=10 nm 

and the parameters 𝜔𝑐
𝑚 = 1012𝑠−1 , 𝛾 = 0.08𝜔𝑐

𝑚 , 𝛽 =
0.04𝜔𝑐

𝑚 , 𝜔𝑐
𝑏 = 0.25𝜔𝑐

𝑚 , 𝜇 = 9.8 ђ𝜔𝑐
𝑚   it is expected 

that Landau states will be broken inside the region y>0.3μm. 

Whereas, the new features related to the Landau levels 

broadening are expected inside the region 0<y<0.3μm. The 

brief analysis shows that oscillations could be tuned to the 

magnetoplasmon resonance. The detailed analysis is out of 

scope. We hope that the considered above phenomena will 

be interesting for both, the research of discontinuous 

magnetic field and for ultrafast magnetization. The possible 

application field is to design the new methods of ultrafast 

magnetization detection. 
 

A. Appendix A 

To determine the electrostatic potential, the charge 

distribution (2), we consider the auxiliary problem [see. Fig. 

2 (b)]. Let in the plane 𝑧 = 𝑧1 be the charges distributed 

with the surface density 𝑒𝑛𝑓  for 𝑦 < 0 and 𝑒𝑛𝐿  for 𝑦 >

0. Also, in the plane 𝑧 = 𝑧2 , the surface charge density 

−𝑒𝑛𝑓  for 𝑦 < 0 and −𝑒𝑛𝐿  for 𝑦 > 0 the corresponding 

Poisson equation is  

 

∆𝜙𝜎(𝑦, 𝑧, 𝑧1, 𝑧2) = −
2𝜋𝑒∆𝑛

𝜖
𝑠𝑔𝑛(𝑦)[𝛿(𝑧 − 𝑧1) − 𝛿(𝑧 −

𝑧2)],   (A.1) 

 

we also use standart disignation for the Dirac delta 

function δ(x). Then, for the region 0<y<H, the solution of the 

equation is  

 

𝜙𝜎(𝑦, 𝑧, 𝑧1, 𝑧2) =
2𝜋𝑒∆𝑛

𝜖
𝑠𝑔𝑛(𝑦) [𝜃(𝑧 − 𝑧1)𝜃(𝑧2 − 𝑧) (𝑧 −

𝑧1+𝑧2

2
) +

𝑧1−𝑧2

2
(𝜃(𝑧 − 𝑧1) − 𝜃(𝑧2 − 𝑧)) −

∑ 𝑎̃𝑛(𝑧1, 𝑧2)cos (𝜆𝑛𝑧)exp (−𝜆𝑛|𝑦|)
∞
𝑛=0 ],  

                            (A.2) 

 

where 𝜆𝑛 = 𝜋𝑛/𝐻  are eigenvalues, sgn(x) is the 

signum function and coefficients:  

 

𝑎̃𝑛≠0(𝑧1, 𝑧2) =
1

2𝐻𝜆𝑛
2
∑ (−1)𝑗2
𝑗=1  cos (𝜆𝑛𝑧𝑗); 

𝑎̃𝑛≠0(𝑧1, 𝑧2) =
𝑧1−𝑧2

2
(1 −

𝑧1−𝑧2

𝐻
).       (A.3) 

 
The heterostructure potential 𝜙ℎ(𝑦, 𝑧)  is the 

superposition of the potentials 𝜙𝜎(𝑦, 𝑧)  defined by 

(Error! Reference source not found.)-(Error! 

Reference source not found.):  

 

𝜙ℎ(𝑦, 𝑧) =
2

𝑑(𝐻−𝑑)
∫ sin2 (

𝜋𝑧1

𝑑
)𝑑𝑧1 ∫ 𝜙𝜎(𝑦, 𝑧, 𝑧1, 𝑧2)𝑑𝑧2

𝐻

𝑑

𝑑

0
.   (A.4) 

 
Note, that heterostructure potential satisfies the 

Poisson equation ∆𝜙𝜎(𝑦, 𝑧) = −4𝜋𝜎(𝑦, 𝑧)/𝜖 , where 

𝜎(𝑦, 𝑧) in the righthand side is defined by equation (2). The 

potential that affects the 2D-elecrons in QW could be 

obtained via averaging of𝜙ℎ(𝑦, 𝑧):  

 

𝜙(𝑦) =
2

𝑑
∫ 𝑠𝑖𝑛2 (

𝜋𝑧

𝑑
)𝜙ℎ(𝑦, 𝑧)

𝑑

0
𝑑𝑧 .   (A.5) 

 

Performing the integration, one obtains (Error! 

Reference source not found.).  
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In the case of spatial inhomogeneouty we suppose that 

2D electron concentraition n
L

 is a smooth function of y 

coordinate. To get potential one should replace ∆𝑛 →

𝜕𝑛𝐿(𝑦′)/𝜕𝑦′ × ∆𝑦  and 𝑦  to 𝑦 − 𝑦′  in (Error! 

Reference source not found.) and integrate the result 

over the inhomogeneouty region in QW. For convinience, 

we introduce the function  

 

 𝑢(𝑦) = 𝑠𝑔𝑛(𝑦)
𝜙(𝑦)

∆𝑛
.   (A.6) 

 

The function (Error! Reference source not 

found.) is the ratio of the potential (Error! Reference 

source not found.) to the concentration. The extra 

concenration on Landau levels is  

 

 ∆𝑛𝑖𝑛ℎ(𝑦) = 𝑛𝐿(𝑦) − 𝑛𝑓,   (A.7) 

 
where 𝑛𝐿(𝑦) is inhomogeneous function of coordinate 

𝑦. The additional requirements are ∆𝑛𝑖𝑛ℎ(𝑦)|𝑦≤0 = 0 and 

exp (−𝑜𝑦)∆𝑛𝑖𝑛ℎ(𝑦)|𝑦→∞ = 0 (o is any positive real value). 

Then the averaged trough QW electrostatic potential 

𝜙𝑖𝑛ℎ(𝑦) could be calculated with the next formula  

 

𝜙𝑖𝑛ℎ(𝑦) = ∫
∆𝑛𝑖𝑛ℎ(𝑦

′)

𝑑𝑦′
𝑢(𝑦 − 𝑦′)𝑑𝑦′

𝑦

0
,⋯ 𝑦(𝑦 ≥ 0).   (A.8) 

 
After integration by part one also could get more 

convinient formula:  

 

𝜙𝑖𝑛ℎ(𝑦) = −∫
𝑢(𝑦−𝑦′)

𝑑𝑦′
∆𝑛𝑖𝑛ℎ(𝑦

′)𝑑𝑦′
𝑦

0
,⋯ 𝑦(𝑦 ≥ 0),   (A.9) 

 
where we have used u(0)=0. 
 

B. Appendix B 

The effect of the ultrafast magnetic field dynamics on 

the carrier concentration is described below. We consider 

the strong inequality 𝛾 ≪ 𝜔𝑐
𝑚   to be true. This means that 

there is a time interval when the wave function  

𝛹𝑛(𝑡, 𝑥, 𝑦) is obtained by the substitution 𝜔с = 𝜔с(𝑡)  in 

the stationary solution of the Schrodinger equation 

𝛹𝑛
𝑠𝑡.(𝑥, 𝑦) (see [22 ] p. 424, the reduction to the 2D case is 

obvious) is a good zero approximation:  
 

𝛹𝑛(𝑡, 𝑦, 𝑧) = exp [𝑖 ∫ 𝐻̂0(𝑡
′)𝑑𝑡′

𝑡

0
]𝛹𝑛

𝑠𝑡.(𝑦, 𝑧)|𝜔с=𝜔с(𝑡).   (B.1) 

 

Substituting Eq. (Error! Reference source not 

found.) into the time-dependent Schrodinger Equation 

gives the equation with the term that could be considered as 

a perturbation:  

 

𝑖ђ
𝜕𝛹𝑛(𝑡,𝑥,𝑦)

𝜕𝑡
= [𝐻̂0(𝑡), 𝛹𝑛(𝑡, 𝑥, 𝑦)] + [𝑉̂(𝑡),𝛹𝑛(𝑡, 𝑥, 𝑦)],   (B.2) 

 

where  

 [𝑉̂(𝑡), 𝛹𝑛(𝑡, 𝑥, 𝑦)] = 𝑖ђ
𝜕𝜔с(𝑡)

𝜕𝑡

𝜕𝛹𝑛(𝑡,𝑥,𝑦)

𝜕𝜔с
 ,   (B.3) 

 

After going to the creation â
+

px,t
 and annihilation 

â
p

x
,t

 operators and excluding non-hermitian part one 

obtains  

  

𝑉̂(𝑡) = 𝑖ђ
𝜕ln[ωс(𝑡)]

𝜕𝑡
[
𝑎̂𝑝𝑥

2−𝑎̂𝑝𝑥
+ 2

4
+

𝑝𝒙

√2𝑚ђ𝜔с(𝑡)
(𝑎̂𝑝𝑥 − 𝑎̂𝑝𝑥

+ ) −

𝑎̂𝑝𝑥
2 1

4𝑛̂
].   (B.4) 

 

The Liouville equation for the system could be written 

as follows:  

 

𝑖ђ
𝜕ɳ̂(𝑡)

𝜕𝑡
= [𝐻̂0(𝑡), ɳ̂(𝑡)] + [𝑉̂ℎ(𝑡), 𝛿ɳ̂(𝑡)],  

𝑖ђ
𝜕𝛿ɳ̂(𝑡)

𝜕𝑡
= [𝐻̂0(𝑡), 𝛿ɳ̂(𝑡)] + [𝑉̂ℎ(𝑡), ɳ̂(𝑡)],   (B.5) 

 

where ɳ̂(𝑡)  and 𝛿ɳ̂(𝑡)  are the diagonal and 

off-diagonal elements of the density matrix and 𝑉̂ℎ(𝑡) =
1

2
𝑉̂ + ℎ. 𝑐.. The first approximations for the solutions are  

  

𝛿ɳ̂(𝑡)

≅ −
𝑖

ђ
∫ 𝑑𝑡′exp [𝑖𝜑(𝑡, 𝑡′)𝑛̂(𝑡′)]

𝑡

−∞

[𝑉̂ℎ(𝑡
′), ɳ̂0(𝑡

′)] exp[−𝑖𝜑(𝑡, 𝑡′)𝑛̂(𝑡′)], 

ɳ̂(𝑡) ≅ ɳ̂0(𝑡) −
𝑖

ђ
∫ 𝑑𝑡′exp [𝑖𝜑(𝑡, 𝑡′)𝑛̂(𝑡′)]
𝑡

−∞
[𝑉̂ℎ(𝑡

′), 𝛿ɳ̂(𝑡′)]exp [−𝑖𝜑(𝑡, 𝑡′)𝑛̂(𝑡′)]

,   (B.6) 

 
where ɳ̂0(𝑡

′)  is the densiy matrix built on states 

(Error! Reference source not found.), 𝑛̂(𝑡′) =

𝑎̂𝑝𝑥
+ 𝑎̂𝑝𝑥   and the phase 𝜑(𝑡, 𝑡′)  is defined by (Error! 

Reference source not found.). The population of the 

Landau levels is defenited by the expression:  
 

𝑓𝑛𝑦̅(𝑡) = ⟨𝑛, 𝑡, 𝑦̅|ɳ̂(𝑡)|𝑛, 𝑡, 𝑦̅⟩,    

𝑓0𝑛𝑦̅(𝑡) = ⟨𝑛, 𝑡, 𝑦̅|ɳ̂0(𝑡)|𝑛, 𝑡, 𝑦̅⟩,   (B.7) 

 

where 𝑦̅(𝑡) = 𝑝𝑥/[𝑚𝜔с(𝑡)] . Using (Error! 

Reference source not found.) and (Error! 

Reference source not found.) we get the expression:  

 
𝜕𝑓𝑛𝑦̅(𝑡)

𝜕𝑡
=

𝜕𝑓𝑛𝑦̅
0 (𝑡)

𝜕𝑡
−

𝜕ln[ωс(𝑡)]

𝜕𝑡
∫ 𝑑𝑡′

𝜕ln[ωс(𝑡′)]

𝜕𝑡

𝑡

−∞
∑ 𝜈𝑛,𝑛+𝑘(𝑡, 𝑡′, 𝑦̅)[𝑓𝑛+𝑘,𝑦̅(𝑡′) −
2
𝑘=−2

𝑓𝑛,𝑦̅(𝑡′)],   (B.8) 

 

where the koeficients 𝜈𝑛,𝑛+𝑘(𝑡, 𝑡′)  are defined as 

follows:  

 

http://www.ijisrt.com/


Volume 4, Issue 11, November – 2019                      International Journal of Innovative Science and Research Technology                                                 

             ISSN No:-2456-2165 

 

IJISRT19NOV118                                www.ijisrt.com                                              624 

𝜈𝑛,𝑛+𝑘(𝑡, 𝑡
′) =

{
 

 
1

8
(𝑛 + 𝑘/2)(𝑛 + 1 + 𝑘/2)cos[2 𝜑(𝑡, 𝑡′)] ,   𝑛 + 𝑘 ≥ 0, 𝑘 = ±2; 

𝑛
𝜔с(𝑡′)

𝜔с(𝑡)
[
𝑦̅(𝑡′)

𝑙𝑐(𝑡′)
]
2

cos[𝜑(𝑡, 𝑡′)],                   𝑛 + 𝑘 ≥ 0, 𝑘 = ±1; 

0,                                             𝑛 + 𝑘 < 0;
                                                (B.9) 

 

Whereas 𝑙𝑐(𝑡) = √ђ/[𝑚𝜔с(𝑡)] . Summing over all 

Landau levels one cold obtain that the second term in 

(Error! Reference source not found.) does not 

change the concentration:  

 

∑
𝜕𝑓𝑛𝑦̅(𝑡)

𝜕𝑡
∞
𝑛=0 = ∑

𝜕𝑓𝑛𝑝𝑥
0 (𝑡)

𝜕𝑡
∞
𝑛=0 .    (B.10) 

 
Since, while maintaining the same accuracy, in the 

subintegral expression of (Error! Reference source 

not found.) we can replace 𝑓𝑛𝑦̅(𝑡
′) = 𝑓𝑛𝑦̅(𝑡) +

∑
𝜕𝑓0𝑛𝑦̅(𝑡)

𝜕𝑡
∞
𝑛=0

(𝑡−𝑡′)𝑛

𝑛!
, then we can estimate the quantum 

lifetime as:  

 

𝜏𝑛
−1 ≈

𝜕ln[ωс(𝑡)]

𝜕𝑡
∫ 𝑑𝑡′

𝜕ln[ωс(𝑡′)]

𝜕𝑡′
∑ |𝜈𝑛,𝑛+𝑘(𝑡, 𝑡

′, 𝑦̅)|2
𝑘=−2

𝑡

−∞
,   (B.11) 

 

where we can use absolute values of (Error! 

Reference source not found.) because the summation 

performed for the symmetric range.  
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