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Abstract:- Interest in metamaterials arises because they 

produce novel properties like negative mass and modulus 

which cannot be realized in conventional materials. As 

the field of metamaterials develops, and research efforts 

are directed towards fabricating and realizing them 

physically, it is necessary to exhaustively understand their 

dynamics. In this study, the detailed analytical modeling 

of the design of a chiral mass-spring metamaterial system 

is presented. The conditions and frequency interval(s) 

where the effective dynamic parameters are negative are 

clearly established. Simulation result indicates that when 

both the translational and rotational resonance 

frequencies of the material coincide, a perfectly single 

negative parameter metamaterial is realized, which 

alternate from purely (single) negative modulus to purely 

(single) negative mass material at the point of resonance. 

It is shown that the frequency band in which the system 

exhibit simultaneously double negative (modulus and 

mass) behavior can be widened by reducing the stiffness 

of the horizontal spring, and maximum when the stiffness 

is zero. Hence, the horizontal spring is apparently a 

redundant member and may not necessarily be needed 

when fabricating the chiral system in three-dimension. 

 

Keywords:- Double Negativity, Effective Bulk Modulus, 

Effective Mass/Mass Density, Metamaterial. 

  

I. INTRODUCTION 

 

Naturally occurring materials possess only positive 
properties such as mass, bulk modulus, electrical permittivity 

and magnetic permeability. This is fundamentally necessary 

to maintain their innate constitution and structural stability. 

In static load applications for example, typical structural 

materials have positive mass and bulk modulus. In contrast, 

under dynamic loading at a certain frequency or range of 

frequencies, apparent negative mass and negative modulus 

can be observed in some properly structured man-made 

materials. Such engineered structures with the capacity for 

negative constitutive parameters are termed metamaterials. 

The emerging field of metamaterials leads to the design of 

structures which possess these anomalous but attractive 
characteristics for application in areas such as elimination of 

noise, acoustic cloaking for waves and reduction of vibration.  

 

The concept of a metamaterial originated from the field 

of electromagnetics in 1967, after Vaselego theoretically 

investigated a material with potentially negative permittivity 

ε and negative permeability μ [1]. Originally referred to as 

left-handed material (LHM), it was found to respond to 

electromagnetic wave propagation with both negative 

permittivity and permeability [2, 3]. When the permittivity ε 
and permeability μ of a material are both positive, the 

refractive index n (𝑛 = ±√𝜀 ∗ 𝜇) is positive real; hence, 

refraction of wave through it is conventionally in agreement 

with Snell’s law. If either of the two parameters has a 

negative sign, a complex refractive index results, and the 

medium will partially inhibit the propagation of incident 

waves through it. However, for a LHM the refractive index is 

negative real, and the phase and group velocities are anti-
parallel to each other. Incident waves from a positive-index 

medium to such a material would result in refracted waves 

which, though is in accordance with Snell’s law, but would 

lie on the same side of the boundary normal as the incident 

wave. 

 

LHMs are fabricated by combining a material that has 

the potential to provide negative permittivity with another 

that can provide negative permeability, usually at low 

resonant frequencies [3]. Since Vaselego’s discovery, 

extensive research attention is being focused on 

metamaterials. The concept has been extended to the closely-
related fields of mechanical metamaterials where propagation 

of acoustic and elastic waves are of interest. 

 

By coating heavy spheres with soft silicone and 

embedding them in epoxy, resulting in apparent negative 

elastic constant at certain loading frequencies, the general 

concept of elastic metamaterial with local mechanical 

resonance was introduced [4]. Subsequently, a good number 

of elastic/acoustic (EA) metamaterial that exhibit negative 

modulus has been reported in literature. Fang et. al. [5] 

experimentally demonstrated a one-dimensional (1D) 
ultrasonic metamaterial with negative bulk modulus (NBM) 

consisting of a periodic array of shunted sub-wavelength 

Helmholtz resonators connected to the fluid transmission 

channel. By coupling a number of the Helmholtz resonators 

sideways and face-to-face, Cheng et. al. [6] recorded a 

broadening of the sound-forbidding negative frequency band 

earlier reported in [5]. Ding and Zhao [7] showed, both 

experimentally and in simulation, that multiple and broad 
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negative frequency bands were developed in an acoustic 

transmission system comprising of three layers each of seven 
units of split-hollow-spheres arranged hexagonally and 

immersed in a sponge matrix, due to NBM developed in the 

system.  

 

Analytical models of three component phononic 

crystals of coated spheres and cylinders embedded in a host 

matrix were reported to exhibit negative mass densities 

(NMDs) near local resonances [8]. A composite of solid 

objects dispersed in a fluid medium was observed to exhibit 

NMD behavior both numerically and experimentally [9]. A 

design of negative (mass) density metamaterial whose unit 

cell combines two cylindrical sub-structures and a flexible 
membrane that act as an acoustic resonator, was reported to 

show complete opacity to sound waves at low frequencies 

[10]. A one-dimensional mass-spring structure with a smaller 

mass inside a bigger mass was observed to develop negative 

effective mass near the local resonant frequency of the 

internal mass [11]. It is now well established that negative 

mass/mass density can be realized in structured materials by 

including well-designed local mechanical resonators in their 

units. 

 

When both NBM and NMD are combined in a material, 
a metamaterial with double negative (DN) parameters can be 

realized. Li and Chan [12] theoretically demonstrated an 

acoustic metamaterial, of soft rubber in water, in which both 

the effective bulk modulus and density are simultaneously 
negative. The effective density and modulus of a 1D 

metamaterial with repeated units of shunted Helmholtz 

resonators was shown to exhibit strong dispersive 

characteristics with both parameters being simultaneously 

negative in certain frequency interval [13]. A design of DN 

elastic metamaterial was proposed and fabricated by a 3D 

printer [14]. Pope reported a DN elastic metamaterial design 

using analogies between electrical and mechanical circuits 

[15]. A composite structure consisting of an array of 

interspaced thin membranes and side-holes was fabricated 

and experimentally shown to have widened frequency range 

in which both the modulus and mass density are negative 
[16]. A detailed theoretical study of the dynamic behavior of 

a metamaterial system with both single negative (mass or 

modulus) and double negative (mass and modulus) in 

different loading frequencies due to rotational and 

translational motions built into the structure was reported 

[17]. A multi-layer active elastic metamaterial with 

simultaneous DN behavior in some frequency band, where 

the effective parameters can be tuned independently by 

incorporating feedback control forces to each layer of the 

system, have been reported extensively [18-21]. A DN 

property was reported in an elastic metamaterial of chiral 
microstructure which produced simultaneously translational 

and rotational resonances [22]. 

 

 
Fig 1:- 1D representative mass-spring system 

 

II. BACKGROUND OF THE STUDY 

 

The present work reports the analytical modeling of the 

1D metamaterial system whose representative cell is shown 

in Fig. 1. The double negative EA metamaterial was earlier 

proposed, but achieved in 2D with solid media by Liu et. al. 

[22]. For the 1D mass-spring system, it was shown that the 
effective modulus of the unit cell can be negative (i.e. NBM) 

in some frequency interval due to rotational resonance 

introduced by the chiral structure. It was also posited that 

NMD can be generated by the cell through the translational 

resonance of the disc. However, this was not shown by the 

authors, yet the system was conceived to exhibit 

simultaneously NBM and NMD behavior. Instead of 

demonstrating DN behavior for the 1D system, an analogous 

2D model was adopted. Moreover, citing geometric 

complexity, it was opined that it is not practicable to use 

analytical methods to solve the dynamic response of the 2D 

model, hence numerical method was adopted. The report 

notwithstanding, it apparently leaves out the attractive results 
realizable from an analytical study of the dynamical motions 

and interaction of the rotational and translational resonances 

of the 1D mass-spring system. Moreover, the numerical 

analysis approach adopted shrouds the rich results derivable 

from an in-depth analysis of the effect of the parameters and 

the response of the system. These make it imperative to 
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revisit the 1D mass-spring system, with the aim to model its 

dynamical motion interactions and observe the inherently 
rich and attractive behavior.  

 

III. FORMULATION OF THE PROBLEM 

 

The problem considered is the modeling and harmonic 

dynamical response of the 1D elastic metamaterial system 

shown in Fig. 1. It is a chiral mass-spring system with a 

central disc core of mass and moment of inertia 𝑀 and 𝐼 

respectively. Two pairs each of horizontal and tangential 

mass-less springs connect the disc to two end-pins, one on 

each side. The horizontal springs have constants 𝑘1, while the 

tangential springs have constants 𝑘2 and inclined at angle 𝛼 

to the horizontal. The representative cell, therefore, consists 

of one central rigid body and four linearly elastic mass-less 

springs that connect the disc to mass-less end-pins. The 

characteristic length of the cell is taken to be 𝐿, and is 

determined by the lengths of the springs. The central disc 

undergoes general plane motion with both rotation about the 

central axis O defined by 𝜃𝑑(𝑡) and translation in the 

longitudinal direction defined by 𝑥𝑑(𝑡). Thus, the overall 

linear motion of the elastodynamic system is limited only to 

the longitudinal direction while motion in the transverse 

direction is neglected. 

 

IV. DYNAMIC ANALYSIS OF THE SYSTEM 

 

A. Dynamic Motions and Natural Frequencies 

Since harmonic response is considered, Laplace 

transformation is applied to the equations of motion (EOMs) 

of the system, assuming zero initial conditions, and changing 

to the frequency variable with 𝑠 = 𝑗𝜔. First, pure rotational 

motion of the disc about its center is analyzed. From the free 

rotation of the disc, (1) is obtained; and from this, the 

rotational resonance frequency is obtained in (2), where 𝑅 is 

the disc radius and 𝐺 is the radius of gyration (𝐼 = 𝑀𝐺2).   

 

𝐼�̈�𝑑 + 2𝑘2𝑅2𝜃𝑑 = 0    `        (1) 

 

𝜔𝑜 = √
2𝑘2𝑅2

𝐼
= √

2𝑘2𝑅2

𝑀𝐺2            (2) 

 

When the rotation is due to displacement by elastic 

forces of the springs, (3) is obtained. From this and the 

resonance frequency 𝜔𝑜, the rotational displacement of the 

disc is obtained in (4).  

 

𝐼�̈�𝑑 = 𝑘2(𝑥𝑛+1 cos 𝛼 − 𝑅𝜃𝑑) × 𝑅 − 𝑘2(𝑅𝜃𝑑 −
(−𝑥𝑛 cos 𝛼)) × 𝑅                   

                                                                                            (3) 

 

𝜃𝑑(𝜔) = (
𝜔0

2

𝜔0
2−𝜔2

)
(𝑋𝑛+1−𝑋𝑛) cos 𝛼

2𝑅
          (4) 

 

As seen from (2), it is clear that the rotational resonance 

is induced wholly by the inclined springs 𝑘2; hence, the 

horizontal springs 𝑘1 have no effect on it. 

 

Next, pure translational motion of the disc is 

considered. The free translation of the disc is governed by 

(5). From this the translational resonance frequency 𝜔𝑙 in (6) 

is obtained. Similarly, by analyzing the linear displacements 

of the disc due to spring forces, (7) is obtained and, next to 

this, the linear displacement of the disc 𝑥𝑑(𝑡) is derived and 

shown in (8). Equation (6) shows that both the horizontal and 

inclined springs, 𝑘1 and 𝑘2 respectively, contribute to the 

translational resonance of the disc. 

 

𝑀�̈�𝑑 + 2𝑘1𝑥𝑑 + 2𝑘2(𝑥𝑑 cos 𝛼) cos 𝛼 = 0         (5) 

 

𝜔𝑙 = √
2(𝑘1+𝑘2 cos2 𝛼)

𝑀
            (6) 

 

𝑀�̈�𝑑

= 𝑘1(𝑥𝑛+1 − 𝑥𝑑) + 𝑘2([𝑥𝑛+1 − 𝑥𝑑] cos 𝛼) cos 𝛼
− 𝑘1(𝑥𝑑 − 𝑥𝑛)
− 𝑘2([𝑥𝑑

− 𝑥𝑛] cos 𝛼) cos 𝛼                                                                       (7) 

 

𝑋𝑑(𝜔) = (
𝜔𝑙

2

𝜔𝑙
2−𝜔2

)
(𝑋𝑛+1+𝑋𝑛)

2
           (8) 

 

Equations (4) and (8) clearly show the resonance 

behavior of both circular and linear motions with 

magnification factors of 
𝜔0

2

𝜔0
2−𝜔2 and 

𝜔𝑙
2

𝜔𝑙
2−𝜔2 respectively. 

Moreover, it is observed that both motions are frequency-

dependent. These would affect the apparent bulk modulus 

and mass density respectively of the system. It is worth 

mentioning that the rotational resonance frequency obtained 

in (2) is the same as that stated by [22]. However, the 

translational motion, and the associated resonance, was 

neither modeled nor reported.  

 

B. Effective Bulk Modulus and Effective Mass 

By solving the dynamic problem using (4) and (8), the 
behavior of the elastodynamic system can be established. The 

dynamic response of the cell is defined by the forces acting 

on it and the resulting displacements. The forces and 

displacements at both end-pins are denoted by 𝑓𝑛 and 𝑓𝑛+1, 

and 𝑥𝑛 and 𝑥𝑛+1 respectively as Figure 1 shows. The direct 

relationship between forces and displacements at both ends 

of the cell is used because it accurately describes the 

displacements through which the wave propagation in the 

metamaterial system can be evaluated.  

 
The average force applied to the system is established 

from the relationship between the average force applied to 

the cell and the deformation produced. The forces at the end-

pins are given by: 
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𝑓𝑛+1 = 𝑘1(𝑥𝑛+1 − 𝑥𝑑) + 𝑘2([𝑥𝑛+1 − 𝑥𝑑] cos 𝛼 − 𝑅𝜃𝑑) cos 𝛼 

(9a) 

 

𝑓𝑛 = 𝑘1(𝑥𝑑 − 𝑥𝑛) + 𝑘2([𝑥𝑑 − 𝑥𝑛] cos 𝛼 − 𝑅𝜃𝑑) cos 𝛼   

(9b) 

 

From these, the average force in (10) is derived using 

the expressions for 𝜃𝑑(𝜔) and 𝑋𝑑(𝜔) above. 

 
𝐹𝑛+1+𝐹𝑛

2
=

1

2
[𝑘1 + 𝑘2 (

𝜔2

𝜔2−𝜔0
2 cos2 𝛼)] (𝑋𝑛+1 − 𝑋𝑛)       (10) 

 

Hence, from (10), the effective dynamic bulk modulus 

𝑘𝑒𝑓𝑓(𝜔) of the system is expressed as: 

 

𝑘𝑒𝑓𝑓(𝜔) =
1

2
[𝑘1 + 𝑘2 (

𝜔2

𝜔2−𝜔0
2 cos2 𝛼)]       (11) 

 

It can be observed that the effective dynamic bulk 

modulus 𝑘𝑒𝑓𝑓(𝜔) is frequency-dependent and can become 

negative in certain frequency intervals due to the resonance 

behavior.  

 

Similarly, the net force applied and average 

acceleration of the system are used to derive the expression 

for the effective dynamic mass. Since the springs and pins are 

assumed mass-less, the mass of the system is same as the 

mass 𝑀 of the core disc. The net force applied to the system 
is given by (12). From this, the relationship between the net 

force and the average acceleration is obtained and presented 

in (13). 

 

𝑓𝑛+1 − 𝑓𝑛 = 𝑀�̈�𝑑      (12) 

 

𝐹𝑛+1 − 𝐹𝑛 = −𝜔2𝑀 (
𝜔𝑙

2

𝜔𝑙
2−𝜔2

) (
𝑋𝑛+1+𝑋𝑛

2
)    (13) 

 

From (13), it can be observed that the effective dynamic 

mass of the representative cell 𝑚𝑒𝑓𝑓(𝜔) is given by the 

expression 

 

𝑚𝑒𝑓𝑓(𝜔) = 𝑀 (
𝜔𝑙

2

𝜔𝑙
2−𝜔2

) =
𝑀

(1−𝜔2

𝜔𝑙
2⁄ )

    (14) 

 

Hence the effective dynamic mass 𝑚𝑒𝑓𝑓(𝜔) is 

frequency-dependent with a magnification factor of 
𝜔𝑙

2

𝜔𝑙
2−𝜔2, 

and can become negative in certain frequency interval due to 

the resonance behavior. It is worth noting that apart from 

using the direct relationship between force and displacement 

to define the effective dynamic bulk modulus and mass, other 
approaches can be used. These include for example the mean 

motion and energy of the unit cell [23, 24]. 

 

 
Fig 2:- Response of dynamic effective parameters (for 𝑘1 = 𝑘2 = 25,000 𝑁/𝑚), with negative domains shown by shaded (ash color) 

regions. (a) (blue color plot) shows response of  (normalized) effective bulk modulus, with negative behavior at frequencies below 

rotational resonance (𝜔𝑜 = 141.83 𝑟𝑎𝑑/𝑠); (b) (red color plot) shows response of (normalized) effective mass, with negative 

behavior at frequencies above translational resonance (𝜔𝑙 = 141.23 𝑟𝑎𝑑/𝑠); (c) combined plots of (a) and (b), shows frequency 

interval where both bulk modulus and mass density  are negative (i.e. DN band) shown by dashed-dotted arrow. 
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V. RESULTS AND DISCUSSION 

 
A. Behavior of Negative Bulk Modulus 

The effective dynamic modulus in (11) is a real term 

and comprises of two parts. The first part (𝑘1) is a positive 

constant and non-dispersive. The second part is frequency-

dependent and dispersive, and can be negative. For the 

dynamic modulus to be negative, the second and dispersive 

part must not only be negative but also numerically greater 

than the first part (i.e. 𝑘1). This gives rise to two conditions – 

a necessary condition and a sufficient condition. 

Necessary condition:    

 

𝑘2 (
𝜔2

𝜔2−𝜔0
2 cos2 𝛼) < 0     (15a) 

 

𝜔2 − 𝜔0
2 < 0;   𝜔 < 𝜔𝑜    (15b) 

 

Sufficient condition:   

 

|𝑘2 (
𝜔2

𝜔2−𝜔0
2 cos2 𝛼)| > 𝑘1       (16) 

 

 
Fig 3:- Plots of the signs of the effective parameters against frequency 𝜔 (when 𝜔𝑙 = 𝜔𝑜 ≈ 142 𝐻𝑧), at 𝑘1 = 25426 𝑁/𝑚 and 𝑘2 =

25000 𝑁/𝑚. (a) shows effective bulk modulus is negative in the frequency interval specified by (15b) (𝑖. 𝑒. 𝜔 < 𝜔𝑜) and (16) 

(𝑖. 𝑒. |𝑘2𝜔2 cos2 𝛼 /(𝜔2 − 𝜔0
2)| > 𝑘1), as shown by the dashed-dotted arrow; (b) shows effective mass is negative when 𝜔 > 𝜔𝑙 ; (c) 

combines plots (a) and (b), shows the threshold for simultaneously DN behavior when frequency 𝜔𝑙 = 𝜔𝑜 ≈ 142 𝐻𝑧. 

 

It is clear that the terms in the numerator of (15a) (i.e. 

𝑘2, 𝜔2 and cos2 𝛼) are positive definite. Hence the necessary 

condition is governed by the denominator, and defined by 
(15b). This shows that the effective dynamic modulus would 

become negative only at frequencies below the rotational 

resonance frequency 𝜔𝑜 of the core disc. This is shown in 

Fig. 2(a). Additionally, the sufficient condition in (16) fixes 

the frequency point at which the behavior of negative 

effective bulk modulus (NBM) initiates. Hence both 

conditions specify and fix the frequency interval within 

which the NBM behavior occurs; while (15b) defines the 

upper bound, (16) defines the lower bound, as shown in Fig. 

3(a) (where dashed-dotted arrow shows the frequency 

interval for NBM). Therefore the rotational resonance of the 
metamaterial system is responsible for the dynamic response 

of the effective bulk modulus leading to NBM behavior at a 

specified frequency interval upper-bounded by the resonance 

frequency 𝜔𝑜.  

 

 

B. Behavior of Negative Mass 
The effective dynamic mass equation in (14) shows that 

it is a real term and possess dispersive characteristics. As a 

function of frequency it can become negative when the 

associated magnification factor 
𝜔𝑙

2

𝜔𝑙
2−𝜔2, is negative. Since the 

numerator is a positive constant term, the only condition for 

the effective dynamic mass to be negative is that the 
denominator must be negative. This singular condition 

constitutes both a necessary and sufficient condition for the 

effective mass to be negative; and is described by (17). 

 

𝜔𝑙
2 − 𝜔2 < 0;   𝜔 > 𝜔𝑙        (17) 

 

Thus, the effective dynamic mass of the system would 

be negative at frequencies above the translational resonance 

frequency 𝜔𝑙. The response of the effective dynamic mass is 

plotted in Figure 2(b) which shows the NBM effect above 𝜔𝑙. 

Similarly, the sign of the effective dynamic mass is plotted in 

Figures 3(b), and clearly shows the effect of NMD. Therefore 
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the translation resonance of the metamaterial system is 

responsible for the dynamic response of the effective mass 
leading to the behavior of NMD at frequencies above the 

resonance frequency 𝜔𝑙. This demonstrates the latent idea 
conceived, but not proven, in [22] for the 1D mass-spring 

system. 

 

 
Fig 4:- Plot of signs of effective bulk modulus (blue colour) and mass (red colour) showing increase in double negative frequency 

bandwidth (denoted by dashed-dotted arrows) due to decrease in value of 𝑘1; (a) shows a small DN bandwidth when 𝑘1 = 𝑘2 =
25,000 𝑁/𝑚; (b) – (f) shows increasing DN bandwidth for constant 𝑘2 (at 25,000 𝑁/𝑚) and 𝑘1 =

20,000, 15,000, 10000,100, 𝑎𝑛𝑑 0 𝑁/𝑚 respectively 

  

C. Simultaneous Negative Bulk Modulus and Negative Mass 

(Double Negative) Behavior 
It is imperative to observe that when the frequency 

interval for both NBM and NMD overlap, the metamaterial 

system will exhibit simultaneously DN behavior. It is 

noteworthy that the potential for this DN behavior is 

specified by the frequency interval in which NBM occurs, as 

given by (15) and (16). Outside this interval, no DN behavior 

is achieved. Hence, for the system to exhibits DN behavior, 

the NMD must also occur in this interval to assure an overlap 

of the two intervals. This would assure an overlap of the two 

negative intervals. When 𝜔𝑙 exceeds 𝜔𝑜, no DN behavior 

results. However, when 𝜔𝑙 equals and coincides with 𝜔𝑜, the 

metamaterial system behaves as a perfectly single negative 

material. This occurs at frequencies above that defined by 

(16). As described in Fig. 3(c) this perfectly single negativity 

metamaterial behavior alternate from purely NBM to purely 

NMD at the common resonance (𝑖. 𝑒. 𝑎𝑡 𝜔𝑙 = 𝜔 = 𝜔𝑜). 

Therefore, to assure a DN frequency band and hence 

simultaneously NBM and NMD, the translational resonance 

frequency 𝜔𝑙 must be less than the rotational resonance 

frequency 𝜔𝑜. Fig. 4 demonstrates this DN behavior.  

 

 

It is observed that the width of the DN frequency band 

is the difference between the rotational resonance 𝜔𝑜 and the 

translational resonance 𝜔𝑙 (𝑖. 𝑒. 𝑤𝐷𝑁 = 𝜔𝑜 − 𝜔𝑙). This 

bandwidth can be widened. Since the frequency interval for 

NBM is apparently fixed, the DN bandwidth can only 

increase as the frequency position of the translational 

resonance 𝜔𝑙 shifts leftward towards lower frequencies. 

Importantly, this increase in the bandwidth can be realized by 

reducing the stiffness of the horizontal spring 𝑘1, as 

demonstrated in the plots of Fig. 4 (b) - (f). Interestingly, it is 

observed that maximum width of the DN band is achieved at 

zero 𝑘1 (i.e. when there is no horizontal spring), as shown in 

Fig. 4(f) where the 𝜔𝑙 coincides with lower bound of the 

NBM interval. Zero 𝑘1 entails removing the horizontal 

springs and retaining only the inclined springs. This implies 

that the inclined springs alone can sufficiently generate both 

the translational and rotational resonances (as (2) and (6) 

suggests), required for the simultaneously DN behavior of the 

system. So the horizontal springs appears to be redundant 

members, and not necessarily needed to achieve a 
simultaneously DN behavior for the elastodynamic 

metamaterial system. Therefore, the inclined springs alone 

can produce both NBM and NMD needed for DN behavior, 

and also assures that maximum bandwidth is attained. 
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VI. CONCLUSION 

 
The modeling and analysis of the dynamical behavior 

of an elastic metamaterial have been demonstrated. Both the 

translational and rotational resonances were established, and 

when their frequencies coincide, the material behaves as a 

perfectly single negative metamaterial. The metamaterial 

exhibits DN property, and its width is determined by the 

stiffness of the horizontal spring. It widens as the stiffness 

reduces and becomes maximum at zero stiffness. Thus the 

inclined springs alone, which introduces the chiral structure, 

sufficiently induces DN behavior in the system. The next 

stages in the study include coupling a number of the cells to 

investigate wave propagation through a transmission channel 
formed by an array of unit cells, implementing a control 

technique that will make the passive system active and 

comparing the performance of both systems. 
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