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Abstract:- A finite difference scheme is used with the 

Navier-Stokes equations for the completely coupled 

formulation of Stream Function-Vorticity.  Fine Graded 

Mesh is used in the cavity to address vortex flow dynamics 

and gradual continuations for Re=100, 1000, 8000 and 

12,000 allows solutions to be computed in the grid of 

32x32, 64x64, 128x128, 256x256, 512x512 and 1024x1024. 

The formation of recent tertiary with quaternary corners 

vortex are visualized using advanced computer system in 

this work as a significant feature. Comparisons are done 

with standard queries in the given literatures and our 

results are found to be more accurate. 
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I. INTRODUCTION 

 

Lid-driven square cavity flow problems have witnessed 

a great deal of progress by recent researchers. By certain 

finite difference approaches, Navier-Strokes equations 

describes incompressible viscous fluids are overcome. 

Representation of incompressible viscous flows by Navier-

Stokes equations are solved by many finite difference 

methods. Developments in computer technology hardware 

with 10th Generation intel@core*i7 advanced computational 

algorithms have made it possible to make attempts towards 

core processor workstation computer system as well as in the 

study and numerical approach to highly complex flow 

problems. 

 

 

 

 

 

 

 

 

 

High end processor workstation computer system as 

well as in the analysis and numerical solution of extremely 

complex flow problems, advanced numerical algorithms have 

allowed attempts to be made towards various lists such as 

Lid-driven square cavity. Harlow et al. [1] developed a new 

method for the limitation of which is partially constrained and 

slightly open numerical investigation of the time dependent 

flow of the incompressible fluid. Ghia et al. [2] investigated 

the two-dimensional Navier-Stokes vorticity-stream function 

formulation of an incompressible equations. Carlos et al. [3] 

solved the flow problem inside a square cavity, whose lid has 

constant pace. Zhang [4] found that multi-grid techniques are 

used to model the two-dimensional square-driven flow of  

cavities with small to large quantities of Reynolds numbers in 

compact fourth-order finite differential schemes.  Erturk et al. 

[5] examined the 2-D steady incompressible driven cavity 

flow numerical calculations.   Jun Zhang et al. [6] proposed 

an efficient Legendre-Gulerkin method of spectral elements 

for constant steady flows in rectangular cavities. Poochinapan 

[7] studied in the stream function formulation, the properties 

of approximations to nonlinear terms of the 2-D 

incompressible Navier-Stokes equations. 

 

Barragy et al. [8] observed a new tertiary and 

quaternary corner vortex by a p-type finite element scheme. 

Sundarammal et al. [9-10] studied Graphical visualization for 

closed form solutions. The present study reflects an attempt to 

use the multigrid approach in the Navier-Stokes solution for a 

Lid-driven square cavity flow issue with an aim of achieving 

solutions as high as possible for Reynolds numbers and mesh 

refinements. 
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II. MATHEMATICAL MODEL 

 

The physical system known to have a two-dimensional 

steady state (2-D) length L of the lid-driven square cavity is 

shown in Figure 1. The flow inside a square cavity in which 

the top wall (lid) travels at a uniform level. Here, u and v are 

the ones that are parameters of the x and y directions of the 

velocity vectors, the fluid density and their constant viscosity 

μ. 

 

 
Fig. 1. Physical system of Lid-driven Square Cavity 

 

The incompressible two dimensional Navier-Stokes 

equations with the lid velocity ULid , the mass and it is possible 

to write momentum equations in dimensionality form as 
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After non-dimensionalising, the mass and momentum 

equations can be written as 
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p is the pressure. 
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No slip boundary condition has been applied for u and v 

directions at bottom and side walls as 

 

𝑢 = 0 𝑎𝑛𝑑 𝑣 = 0 
 

and in the top wall  

 

𝑢 = 𝑈𝑙𝑖𝑑 = 1 𝑎𝑛𝑑 𝑣 = 0  
 

Here incompressible Navier-Stokes equations using the 

lid-driven cavity are solved with staggered grid for finite 

volume discretization. Pressure-Correction technique with 2-

step time integration of Adams-Bashforth, ADI and Thomas 

algorithm is used to solve the poisson pressure equations. 

Second Ordered Central (SOC), the finite volume technique is 

fixed to discretize the governing functions and finite volume 

operator on the x-momentum and y-momentum equations are 

utilized to obtain the numerical solutions. Pre and Post 

processing is done using Matlab software. 

 

III. RESULTS AND DISCUSSION 

 

Set the fluid that is trapped inside a square cavity in 

motion by the upper wall, which is sliding towards from left to 

right at constant velocity. In figure 2, the domain is the square 

unit cavity [7] and the viscous incompressible flow is 

controlled by the equations of Navier-Stokes and powered by 

the upper wall. The viscous and pressure forces characteristics 

depend on the number of Reynolds, the broad clockwise-

rotating hierarchy of eddies emerges, main whose position 

occurs near the geometric middle of the square cavity and 

many small eddies, secondary eddies rotating counter 

clockwise, tertiary eddies rotating clockwise whose locations 

occur at the three appropriate corners of the square. All the 

findings cited in this section were obtained using uniform 

Cartesian grids from the stream function-vorticity formulation 

version of a finite-difference variant. 

 

 
Fig. 2.    Basic features of 2D flow circulation problem 
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The number of Reynolds, Re is the reflection of the fluid 

flow power, with the increase of Re the fluid flow becomes 

stronger. The flow domain is unchanged when the Re is 

increased. This greatly encourages analysis across the entire 

spectrum of the number of Reynolds, 0<Re<∞. Almost all 

phenomena that may occur in incompressible flows exhibit 

cavity flows such as primary eddies, corner eddies, corner 

singularities and secondary flows.  

 

The top boundary velocity is set to be u=1.0 and v=0 for 

all five mesh grid of 32x32, 64x64, 128x128, 256x256, 

512x512 and 1024x1024. The grid is set to be 32x32 in figure 

3-4. In Figure 3(a), in bottom corner right wall, single eddy is 

observed when Re=100. As Reynolds number increases to 

1000 in the laminar flow, two eddies are observed in bottom 

corner of left and right boundary wall in figure 3(b). When 

Reynolds number moves from laminar flow to turbulent flow 

for Re=8000, three eddies are observed from two bottom 

corner walls and left top wall. It is observed that when 

Re=100, the starting to develop corner eddies in figure 3(a) 

and this growth being very rapid when Re=1000 in figure 

3(b). Note the growth of the eddy in the second corner in this 

process. When Re=8000 in figure 3(c), the growth of corner 

eddy at the top wall is repeated indefinitely as the measure of 

Reynolds number rises. When Re=12000, the full growth of 

three corner eddies at all the walls are calculated and 

visualized in figure 3(d).  

 

Figure 4 shows the stream function 𝜓 patterns for four 

increasing Reynolds numbers, Re=100, 1000, 8000 and 

12000. For Re=100 in figure 4(a), the center of the primary 

eddy moves somewhat lower and to the right. When Re=1000 

in figure 4(b), the  primary eddy centre moved lower and back 

to the centre plane. As Re=8000 in figure 4(c), the center of 

the primary eddy to move toward the cavity's geometric 

centre. Further, as Re=12000 in figure 4(d), the center of the 

primary eddy move below the geometric center. We observed 

as Re increases, the primary eddy centers moves through 

various positions.  

 

The grid is set to be 64x64 in figure 5-6. In Figure 5(a), 

in bottom corner right wall, single eddy is observed when 

Re=100. As Reynolds number increases to 1000 in the laminar 

flow, two eddies are observed in bottom corner of left and 

right boundary wall in figure 5(b). When Reynolds number 

moves from laminar flow to turbulent flow for Re=8000, three 

eddies are observed from two bottom corner walls and left top 

wall. It is observed that when Re=100, the corner eddies begin 

to grow in figure 5(a) and this growth being very rapid when 

Re=1000 in figure 5(b). Note the growth of the eddy in the 

second corner in this process. When Re=8000 in figure 5(c), 

the growth of corner eddy at the top wall is repeated 

indefinitely as the amount of Reynolds number grows. When 

Re=12000, the full growth of three secondary corner eddies at 

all the walls and a bottom right  tertiary eddy  are calculated 

and visualized  in figure 5(d). 

 

 

 

 

 Figure 6 shows the stream function 𝜓 patterns for four 

increasing Reynolds numbers, Re=100, 1000, 8000 and 

12000. For Re=100 in figure 6(a), a little lower and to the 

right, the middle of the main eddy shifts. When Re=1000 in 

figure 6(b), the main eddy core shifted lower and back to the 

centre plane. As Re=8000 in figure 6(c), the center of the 

primary eddy  heading toward the cavity's geometric centre. 

Further, as Re=12000 in figure 6(d), the center of the primary 

eddy move below the geometric center. We observed as Re 

increases, the primary eddy centers moves through various 

positions.  

 

The grid is set to be 128x128 in figure 7-8. In Figure 

7(a), in bottom corner right wall, single eddy is observed when 

Re=100. As Reynolds number increases to 1000 in the laminar 

flow, two eddies are observed in bottom corner of left and 

right boundary wall in figure 7(b). When Reynolds number 

moves from laminar flow to turbulent flow for Re=8000, three 

eddies are observed from two bottom corner walls and left top 

wall. It is observed that when Re=100, the corner eddies are 

beginning to develop in figure 7(a) and this growth being very 

rapid when Re=1000 in figure 7(b). Note the growth of the 

eddy in the second corner in this process. When Re=8000 in 

figure 7(c), the growth of corner eddy at the top wall is 

repeated indefinitely as the number of Reynolds rises. When 

Re=12000, the full growth of three secondary corner eddies at 

all the walls and a bottom right  tertiary eddy  are calculated 

and visualized  in figure 7(d).  

 

Figure 8 shows the stream function 𝜓 patterns for four 

increasing Reynolds numbers, Re=100, 1000, 8000 and 

12000.  In figure 8(a) for Re=100, the middle of the main eddy 

shifts a little lower and to the right. In Figure 8(b), as 

Re=1000, the centre of the main eddy shifted lower and back 

towards the centre plane. The middle of the main eddy shifts 

into the geometric centre of the cavity as Re=8000 in figure 

8(c). Further, as Re=12000 in figure 8(d), below the 

geometrical centre, the centre of the primary eddy shifts.  We 

observed as Re increases, the primary eddy centers moves 

through various positions.  

 

The grid is set to be 256x256, 512x512 and 1024x1024 

in figure 9-11 respectively. Figure 9-11 shows the stream 

function 𝜓  patterns for four increasing Reynolds numbers, 

Re=100, 1000, 8000 and 12000. A little below and to the 

right, the middle of the main eddy moves for Re=100 in figure 

9(a)-11(a). In Figure 9(b)-11(b), as Re=1000, the major eddy 

core moved lower and back toward the centre plane. As 

Re=8000 in Figure 9(c)-11(c), to travel into the geometric core 

of the cavity, the centre of the main eddy. Further, as 

Re=12000 in figure 9(d)-11(d), the center of the primary eddy 

move below the geometric center. We observed as Re 

increases, the primary eddy centers moves through various 

positions. The comparison is made with Ghia et al [2] and 

found to be more accurate.  
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(a) 

 

(b) 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.  3.    Streamlines of the circulation of fluid in the square cavity for the ascending values of Reynolds Number with mesh 32x32  

(a) Re=100 (b) Re=1000 (c) Re=8000 and (d) Re=12000 

 

(c) 

 
(d) 
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(a)

 
 

(b) 

 

 

(c) 

 

(d) 

 
 

Fig.  4.    Primary Eddy center of the Stream function  moves towards the geometric center of the square cavity for the ascending 

values of Renolds Number with mesh 32x32  (a) Re=100 (b) Re=1000 (c) Re=8000 and (d) Re=12000 
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(a) 

 

(b) 

 
 

 

 

 

 

(c) 

 

(d) 

 

 

Fig.  5.   Square cavity fluid flow streamlines for the ascending values of Reynolds Number with mesh 64x64(a) Re=100(b) 

Re=1000(c) Re=8000 and (d) Re=12000(a) Re=100(b) Re=1000(c) Re=8000 and (d) Re=12000 
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(a) 

 

(b) 

 
 
 

 

 

 

 

 

Fig.  6.    For the ascending values of Reynolds Number with mesh 64x64 (a) Re=100 (b) Re=1000 (c) Re=8000 and (d) Re=12000, 

the main eddy centre of the stream function travels into the geometric center of the square cavity. 

 

 

 

 

 

 

(c) 

 
(d) 
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(a) 

 
(b) 

 
 
 

 

 

 

 

 

 

Fig.  7.    Square cavity fluid flow streamlines for the ascending values of Reynolds Number with mesh 128x128(a) Re=100(b) 

Re=1000(c) Re=8000 and (d) Re=12000(b) Re=100(b) Re=1000(c) Re=8000 and (d) Re=12000 

 

 

 

(c) 

 
(d) 
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(a) 

 
(b) 

 
 

c  

(d) 

 
 

Fig.  8.    For the ascending values of Reynolds Number with a mesh of 128x128 (a) Re=100 (b) Re=1000 (c) Re=8000 and (d) 

Re=12000, the main Eddy center of the Stream function travels into the square cavity's geometric centre. 
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(a) 

 
(b) 

 
 
 

(c) 

 
(d) 

 
 

 

 

Fig.  9.   The Eddy core of the Stream function moves to the geometric middle of the square cavity with mesh 512x512(a) 

Re=100(b) Re=1000(c) Re=8000 and (d) Re=12000(a) Re=100(b) Re=1000(c) Re=8000 and (d) Re=12000 for the ascending 

values of Reynolds Number with mesh 512x512, 
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(a) 

 
(b) 

 
 
 

 

 

 

(c) 

 
(d) 

 
Fig.  10.    For the ascending values of Reynolds Number with mesh 512x512, the main Eddy core of the Stream function travels 

into the geometric center of the square cavity with mesh 512x512 (a) Re=100 (b) Re=1000 (c) Re=8000 and (d) Re=12000 
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(a) 

 
(b) 

 
 

 

 
(d) 

 
 

Fig.  11.    For ascending values of Reynolds Number with mesh 1024x1024 (a) Re=100 (b) Re=1000 (c) Re=8000 and (d) 

Re=12000, the main Eddy core of the Stream feature travels into the square cavity's geometric centre. 
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IV. CONCLUSION 

 

This paper extends previous work by Santhana Krishnan 

Narayanan et al.[11] to the Numerical solution visualization 

analysis with lid-driven square cavity flow of 32x32 and 

64x64 mesh grid. For the laminar flow with Re=100, 1000 and 

turbulent flow with Re=8000, 12000 fine mesh solutions were 

obtained very efficiently. The finest mesh size used in the grid 

series, 32x32, 64x64, 128x128, 256x256, 512x512 and 

1024x1024. A very critical parameter persists. The robustness 

and reliability of the overall solution strategies has been shown 

using this Lid-driven square cavity problem. Comprehensive 

specific outcomes have been presented. The present findings 

comply with published fine-grid solutions.  

 

ACKNOWLEDGMENT 

 

For their constructive suggestions, the writers 

acknowledge the suggestions and comments. 

 

REFERENCES 

 

[1]. Harlow F.H and Welch J.E, ”Numerical Calculation of 

Time-Dependent viscous incompressible flow of fluid 

with free surface”, The Physics of Fluids, Vol. 3, pp. 

2182-2189, 1965. 

[2]. Ghia V, Ghia K and Shin C, “High resolutions for 

incompressible flow using the Navier-Stokes equations 

and a multigrid method”, Journal of computational 

Physics, Vol. 48, No. 3, pp. 387-411, 1982. 

[3]. Carlos H.M, Roberta S and Araki L.K, “The Lid-driven 

square cavity flow : Numerical solution with a 

1024x1024 grid”, Journal of the Brazil Soc. of Mech. 

Sci. &Engg., Vol. XXXI, No. 3/191, pp. 186-198, 2009. 

[4]. Zhang J, “Numerical simulation of 2D square driven 

cavity using fourth-order compact finite difference 

schemes, Computers and Mathematics with 

Applications, Vol. 45, pp. 43-52, 2003. 

[5]. Erturk E, Carke T.C and Gokcol, “Numerical solutions 

of steady incompressible driven cavity flow at high 

Reynolds number”, International Journal of Numerical 

methods in Fluids, Vol. 48, pp. 747-774, 2005. 

[6]. Jun Zhang, Jianjun Jiao, Fubiao Lin, Wulan Li and Tao 

Sun, “An efficient Legendre-Galerkin spectral element 

method for the steady flows in rectangular cavities”, Int. 

J. of Computer Mathematics, DOI: 

10.1080/00207160.2019.1659962, Pp 1-14, 2019. 

[7]. Poochinapan K, “Numerical Implementations for 2-D 

Lid-driven cavity flow in Stream function formulation”, 

Int. Scholarly Research Network, Vol. 2012, pp 1-17, 

2012. 

[8]. Barragy E, Carey G.F, “Stream Function-Vorticity 

driven cavity solution using p-finite element”, Computers 

and Fluid, Vol. 28, No. 5, pp. 453-468, 1997. 

[9]. Sundarammal K., Ali. J. Chamkha and Santhana 

Krishnan Narayanan. “MHD squeezes film 

characteristics between finite porous parallel 

rectangular plates with surface roughness” International 

journal of Numerical methods for heat and fluid flow. 

Vol. 24(7): pp. 1595-1609, 2014. 

[10]. Santhana Krishnan, Narayanan, Ali J. Chamkha  and 

Sundarammal Kesavan., “Squeeze film behavior in 

porous Transversely circular stepped plates with a 

couple stress fluid”, Engineering Computations, Emerald 

Publications, Vol. 33(2), pp. 328–343, 2016. 

[11]. Santhana Krishnan Narayanan, Antony Alphonnse Ligori 

and  Jagan Raj, “Visualization analysis of Numerical 

solution with 32x32 and 64x64 mesh grid lid-driven 

square cavity flow”, International journal of Innovative 

Science and Research Technology,  Vol. 5, Issue 9, pp. 

652-656, 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijisrt.com/

	II. MATHEMATICAL MODEL
	III. RESULTS AND DISCUSSION
	IV. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES


