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Abstract:- This paper makes an attempt to explain the 

procedure as well as estimate the VaR of a selected 

portfolio of the Nifty Sectoral Indices using approaches 

such as GJR GARCH-EVT-Copula, Filtered Historical 

Simulation, Generalised Extreme Value Theory and t 

Copula. The GJR GARCH-EVT-t Copula model 
extracts the filtered residuals obtained using the GJR 

GARCH technique and by using the Gaussian Kernel 

method for interior of the distribution and Extreme 

Value Theory for upper and lower tails to estimate the 

cumulative distribution of the residuals. A comparison 

is made between the estimated VaR simulation by the 

Monte-Carlo method, the aforementioned method and 

by using t Copula to get the joint distribution of each 

sectorial indices. The normalised maxima of the 

sequence is measured by the GEV distribution. An 

alternative to the Monte Carlo simulation and the 

Historical simulation is the FHS technique. The mean 

equation is modelled using the ARMA model while the 

volatility is modelled using GARCH with a non-

parametric specification of the probability distribution 

of asset returns.  The VaR estimates of the equally 

weighted portfolio of NIFTY Sectoral indices of 95% 
and 99% confidence intervals are backtested over a 

2478-day estimation window.  
 

Keywords:- Value at Risk, NIFTY Sectorial Indices. 

 

I. INTRODUCTION 
 

Traditionally capital markets are considered as 

barometer of an economy of a country and plays a crucial 

role in generating capital required for the economy. One of 

the inherent characteristics of these capital markets is that 

they are highly volatile in nature. With the implementation 

of globalization and liberalization policies by the 

developing countries the unrestricted flow of capital among 

the markets of the economies has resulted in the financial 

integration with world markets. Especially the developing 

markets due to their potential for better returns started 
attracting large capital inflows. As a result, the volatility of 

these capital markets also became a major concern for the 

investors. As the changes in the stock prices are very 

sensitive to the events happen at economy level there is a 

need for the economies to maintain the stable economic 

conditions so that the volatility of stock prices is always 

kept under control.  

 

Although the VaR has become a very popular 

assessment of risk, it is not a problem-free solution also. 

First it is not always possible compare the VaR measured 

by traditional VaR models. They may often be fairly 

different, as demonstrated by numerous studies. And most 

of the studies focus on the univariate case of marginal VaR, 

component VaR and incremental VaR making it 

undesirable for portfolio risk management.    

 
An attempt to empirically test and evaluate the VaR 

estimates of the portfolio consisting of NIFTY Sectoral 

Indices using GJR GARCH, Copula Theory, Extreme 

Value Theory and FHS technique is made in this study. The 

EVT is integrated with a time series model in order to 

obtain a conditional EVT which can filter the 

heteroscedasticity and the autocorrelations in the financial 

data. The multivariate joint probability density function is 

used to fit the stock market portfolios but it underestimates 

the VaR of the portfolios. The copula method helps in 

fitting the multivariate dependence model and is simple and 

flexible. 

 

The section 2, 3, 4 and 5 deals with the Literature 

Review, Methodology, Results & Discussions and 

Summary & conclusions respectively. 

 

II. LITERATURE REVIEW 
 

The Heteroskedastic multivariate financial models 

have been introduced by Nelson (1981), Kraft and Engel 

(1982), Bollerslev et al. (1988), Diebold and Nerlove 

(1989), among others. Different multivariate financial 

models impose different restrictions on the dynamic 

behaviour of the variances, co variances and correlations. 

Since the financial time series are leptokurtic with heavy 

tails which make VaR being underestimated for i.i.d 

Gaussian distribution. So we tend to adopt the EVT and 

Copula in order to understand and model the tails and 

encapsulate the heavy-tail into the VaR estimation.  

 

Lauridsen (2000) in his paper showed several defects 

of the VaR models in modelling the distribution of tails of 

profits and losses and extreme value models based on 
GARCH can be improvised by integrating changes in the 

volatility level. Burridge, John, Michael, & Chih (2000) 

proposed to estimate the market risk based on Extreme 

Value Theory which attempted to model the rare market 

events. Mendes & Carvalhal (2003) proposed that the 

Extreme Value Theory to analyse ten Asian stock market 

for estimating the VaR is a more conservative way to 

decide the capital requirements than traditional VaR 

models. Selcuk, Gencay & Fatuk (2004) demonstrated that 

the Generalized Pareto Distribution (GDP) and Extreme 

Value Theory aptly fits the tails of the return distribution in 
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these markets and are more accurate at higher quantiles. 

Palaro & Hotta (2006) demonstrated that the conditional 

Copula theory can be an intense tool in estimating the VaR 

for a portfolio of Nasdaq and S&P 500 stock indices. Gilli 

& Këllezi (2006) proved that the POT method 
demonstrated more prevalent in the long term behaviour 

and it was favourable to compute in the interval estimates 

as it better endeavours the information about the 

distribution of the model.  Bohdalova (2007) presented few 

strategies that uses Copula approach for making prudent 

choices as for the data employed and computational aspects 

are concerned can be made to decrease the overall cost and 

computational time. Marimoutou, Raggad, & Trabelsi 

(2009) results showed that the Conditional Extreme Value 

Theory and Filtered Historical Simulation procedures are 

indeed offering a major improvement as suggested for oil 

markets. Staudt, FCAS & MAAA (2010) highlighted a few 

of the considerations in modelling joint behaviour with 

Copulas such as choosing a Copula which appropriately 

catches the tail dependence and representing the skewness 

and kurtosis of the fundamental data and have natural 

interpretation. Huang, Chein & Wang  (2011), Gondje-
Dacka & Yang (2014) and Zhang, Zhou, Ming, Yang & 

Zhou (2015) has proved that it has the ability to understand 

and process the complex structure among the financial 

market events and even calculated the maximum loss and 

maximum gain of the distribution. Yi, Y., Feng, X., & 

Huang  (2014) and Xiao & Koeniker (2009)  proposed a 

method to estimate extreme conditional quantiles by 

combining quantile GARCH model of an Extreme Value 

theory approach. Zhang, H., Guo, J., & Zhou (2015) 

observed that the prediction effect of VaR is significantly 

more beneficial in a relatively stable market and VaR will 

underestimate market risk if there are large fluctuations in 

market and suggested to utilize stress testing. Singh, Allen 

& Powell (2017) applied GARCH (1,1) based by dynamic 

EVT approach and appeared with backtesting in stable as 

well as in extreme market conditions for the ASX-AII 

ordinaries(Australian) index and the S&P-500 (USA) 
Index. 

 

III. METHODOLOGY 

 
 Extreme value Theory (EVT) 

Let us assume X represents the random variable of 

loss and is independently identically distributed given by: 

 

𝐹(𝑥) = Pr(𝑋 ≤ 𝑥) 
 

EVT heavily uses the Fisher- Trippett theorem and 
thus giving us practical solutions to n extreme random loss 

variables to measure the normalised maxima of the 

sequence. This process is also known as Generalized 

Extreme value (GEV) distribution given by: 

 

𝐻(𝑧;𝑎, 𝑏) =

{
 
 

 
 
exp[−(1 + 𝑧

𝑥 − 𝑏

𝑎
)
−
1
𝑧

] : 𝑧 ≠ 0

exp[−𝑒𝑥𝑝 (
𝑥 − 𝑏

𝑎
)] : 𝑧 = 0

 

 
When under the condition of x appears to 1+ z(x-b)/a 

> 0 and the parameters a and b in the GEV distribution 

refers to the location and scale parameters of the limiting 

distribution in H, their meaning is close but they are distinct 

from mean and standard deviation. The final parameter i.e. 

z is critical and it corresponds to the tail index as it shows 

the heaviness of extreme losses in the data sample. 

 

Let’s define Extreme value at risk directly relating to 

the fitted GEV distribution Hn (to n data points) given by: - 

Pr[𝐻𝑛 < 𝐻
′] = 𝑝 = Pr[𝑋 < 𝐻′]𝑛 = [𝛼]𝑛 

 

Where α is the VaR confidence level associated with 

the threshold H’. This can be defined as:  

𝐸𝑉𝑎𝑅 = {
𝑏𝑛[1 − (−𝑛ln(∝))

−𝑛𝑧𝑛] : (𝐹𝑟𝑒𝑐ℎ𝑒𝑡; 𝑧 > 0)

𝑏𝑛 − 𝑎𝑛𝑙𝑛[−𝑛𝑙𝑛(∝)] : (𝐺𝑢𝑚𝑏𝑒𝑙; 𝑧 = 0)
 

 
 Copula Function 

Copula are primarily used to minimise tail risk. The 

price dependencies of multivariate distribution which can 

be split into into k univariate, marginal distribution and a 

copula theory can be formed. Let 𝑋1, 𝑋2 , 𝑋3, …… . , 𝑋𝑑 as the 

random variables. Then, their cumulative distribution 

function is denoted by 𝐻(𝑥1, 𝑥2, 𝑥3, …… , 𝑥𝑑) =
𝑃[𝑋1 < 𝑥1 , 𝑋2 < 𝑥2, …… ,𝑋𝑑 < 𝑥𝑑] and the marginal as per 

the  Sklar’s theorem can be seen to be 𝐹𝑖(𝑥) = 𝑃[𝑋𝑖 ≤ 𝑥] . 
Copula can be defined as a multivariate distribution 

consisting of random variables in which each of its 

marginal distributions is uniform. It elucidates the 

dependence amongst two or more variables which possess 

the characteristic of non-normal distribution. 

 

IV. RESULTS AND DISCUSSIONS 

 
A. GJR-GARCH-EVT-Copula Model 

It is necessary that the data needs to independent and 

identically distributed (i.i.d) before even we use EVT to 

model the tails of the distribution (i.e. of an individual 

index). The two important which every financial return 

exhibit is autocorrelation and heteroskedascity. Now we 

may look at different figures which depict the relation 

between ACF of returns as well as ACF of squared returns 

for a particular nation. 
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 ACF plots of Top 5 NIFTY 50 Sectoral Indices 

 

 
Fig 1A:- Sample ACF of returns and sample ACF of squared returns of NIFTY Bank 

 

 
Fig 1B:- Sample ACF of returns and sample ACF of squared returns of NIFTY FMCG 

 

 
Fig 1C:- Sample ACF of returns and sample ACF of squared returns of NIFTY Private Bank 

 

 
Fig 1D:- Sample ACF of returns and sample ACF of squared returns of NIFTY IT 
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Fig 1E:- Sample ACF of returns and sample ACF of squared returns of NIFTY Financial Services 

Fig 1:- ACF plots of Top 5 NIFTY 50 Sectoral Indices 

 

We require the GARCH model essentially to 

condition the data for the tail estimation process. The 

reason being that the squared returns illustrates a high 

degree of persistence w.r.t to variance. GARCH will also 

be crucially helpful in filtering out the serial dependence 

which is exhibited by the data. One which is quite 

noticeable is the fact that the returns are not independent 

from one day to the next. But AR (1)-GJR GARCH (1, 1) 

model helps in producing i.i.d observation which sorts out 

the requirement necessary for EVT. Now we try to fit AR 

(1)-GJR GARCH (1, 1) models to each index: - 
 

 

 
 

After we fit AR (1)-GJR GARCH (1, 1) models to 

each index, we can then compare model residuals as well as 

the equivalent conditional standard deviation which is 

separated out from the raw returns. 

 

 

 

http://www.ijisrt.com/


Volume 5, Issue 2, February – 2020                                       International Journal of  Innovative Science and Research Technology                                                 

              ISSN No:-2456-2165 

 
IJISRT20FEB443                                                   www.ijisrt.com                   1044 

 
Fig 2:- Filtered residuals and filtered conditional standard deviations for NIFTY Sectorial Indices 

 

When we closely perceive the lower graphs we observe a persistent variation in volatility present in the filtered residuals. 

Later on we can standardize the residuals. These standardized residuals follow zero – mean and unit- variance (i.i.d series). 

Therefore, it shows the EVT estimation of the sample CDF tail. 

 

 The ACF of the standardized residuals and squared standardized residuals. 
 

 
Fig 3A:- Sample ACF of the standardized returns and squared standardized residuals of NIFTY Bank 

 

 
Fig 3B:- Sample ACF of the standardized returns and squared standardized residuals of NIFTY FMCG 
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Fig 3C:- Sample ACF of the standardized returns and squared standardized residuals of NIFTY Private Bank 

 

 
Fig 3D:- Sample ACF of the standardized returns and squared standardized residuals of NIFTY IT 

 

 
Fig 3E:- Sample ACF of the standardized returns and squared standardized residuals of NIFTY Financial Services 

Fig 3:- Sample ACF of the standardized returns & squared standardized residuals of NIFTY Sectorial Indices 

 

The next task involves fitting a probability 

distribution for each index so that their daily movements 

can be traced (this can be done after we filter out the data). 

While doing we are not concerned whether the data that is 
being analyzed is from normal distribution or any other 

form of simple parametric distribution. 

 

Interior of the distribution is where we find the 

majority of the data, so we can use kernel density estimate 

for it. One of the biggest drawback of it is that it executes 

poorly when it is applied it to upper and lower tails. In the 

practice of risk management, we notice that it is of utmost 

importance that we accurately portray the tails of the 

distribution, even when the observed data in the tails is 
scarce. This gap is bridged with the help of GPD 

(generalized Pareto distribution).  

 

After approximating three distinct regions of 

composite semi-parametric empirical CDF, we graphically 

join them and we will be able to see the results.  
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Fig 4:- Empirical CDF of a Top 5 NIFTY Sectoral Indices 
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We then suture together three distinct regions of the composite semi parametric empirical CDF which were estimated before 

and the results are displayed above. By observation we get to know that both lower and upper tail regions are appropriate for 

extrapolation. While the kernel smooth interior denoted in black can be used for interpolation. 

 

We already know that the older graph illustrated CDF so it is indispensable to check whether the GPD would fit in detail. 
The parameterized Cumulative density function of GPD is given as: 

 

 
 

Let us plot the empirical CDF of upper tail in excess of the residuals. This has to be supplemented with the CDF being fitted 

with the GPD. 

 

 

 

 
Fig 5:- Upper Tail of Standardized Residuals of NIFTY Sectoral Indices 
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From the last figure we can perceive that the 

empirically generated CDF curve for a specific nation 

matches well with the fitted GPD results. Thus far we have 

only used 10% of the standardized residuals and we notice 

that the fitted distribution quiet closely resembles the 
exceedances data. Hence we can conclude that the GPD 

model is a good choice. Consequently, for each of the five 

NIFTY Sectoral Indices we have five separate univariate 

models which describes the distribution of daily gains and 

losses. But the problem arises in tying these models 

together and this is done by Copula model. As per the 

definition of the Copula we know that it is a multivariate 

probability distribution whose individual variables are 

uniformly distributed. Thus we take these resultant 

univariate distributions to transform the individual data of 

each index to uniform scale. This form is crucial for fitting 

a Copula. 

 

B. Filtered Historical Simulation  

FHS combines a relatively sophisticated model-based 
treatment of volatility (GARCH) with a nonparametric 

specification of the probability distribution of asset returns. 

FHS retains the non-parametric nature of historical 

simulation by bootstrapping (sampling with replacement) 

from standardised residuals.    

 

This method requires the observations to be i.i.d. But 

as we have already seen that the vast majority of the 

financial return series display various degrees of 

autocorrelation and heteroskedascity. 

 

 
Fig 6:- Sample ACF and Sample ACF of Squared of the Portfolio Returns 

 

The sample ACF of the portfolio returns exhibit a 

mild serial correlation. However, when the Sample ACF is 

squared it illuminates the degree of persistence in variance. 

Thus makes it necessary for the GARCH model to 

condition the data used in the bootstrapping method. 

 

Thus for generating a series of i.i.d observations, we 
can fit AR (1) +EGARCH (1, 1) model given below: 

 
𝑟𝑡 = 𝑐 + 𝜃𝑟𝑡−1 +𝜖𝑡 , 𝜖𝑡𝑁(0, 𝜎𝑡) 

 
And a symmetric EGARCH for conditional variance 

looks like 

 
 

Thus this shows that where AR model could only 

compensate for auto correlation, EGARCH model is able to 

compensate for heteroskedascity. 

 

 
Table 1:- Result of ARMA (1,0,0) Model 

 

 
Table 2:- Result of EGARCH (1,1) Conditional Variance 

Model: 

 

We see that the estimation depicts that there are six 

estimated parameters accompanied by their corresponding 

standard errors. (I.e. AR conditional mean model has two 

parameters while EGARCH conditional variance model has 

four parameters. 
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Thus the fitted model can be written as: 

𝑟𝑡 = −0.00065 ∗ 10
−7+ 0.0645𝑟𝑡−1 + 𝜖𝑡,𝜖𝑡 = 𝑁(0, 𝜎𝑡) 

log[𝜎2
𝑡
] = −0.0936049+ 0.99log[𝜎2

𝑡
] + 0.13(|𝑧𝑡−1|

− 𝐸[|𝑧𝑡−1|) − 0.08𝑧𝑡−1 
 

The t-statistic of AR (1) in ARCH (1, 0,0) model is 

greater than two which means that the parameter should be 

statistically significant, while for GARCH and ARCH in 

EGARCH (1,1) model). 

 

Now next major step involves in modelling the 

residuals and the resultant standard deviation which are 

filtered out from the raw returns. Below graph depicts the 

variation in heteroskedascity present in the filtered residual. 

The i.i.d property is of significant for it allows 
bootstrapping that uses sampling procedures to safely avoid 

the downsides of choosing the sample from a population. 

The reason being that the successive observation is 

critically dependent upon each other. 

 

Now let us take a look at the ACF of the standardized 

residual as well as the squared standardized residual. 

 

 
Fig 7:- Sample ACF of Standardized Residuals and Sample ACF of Squared Standardized Residuals 

 

As we try to match both the ACF of the standardized residuals as well as the raw returns, it is revealed that the standardized 

residuals are exhibiting properties of being approximately i.i.d. therefore it is more amenable for subsequent bootstrapping. 
We then sample for 10000 times on the filtered standard residual based on the bootstrapping method. This may be taken to input 

of i.i.d noise process of the holding period. 

 

The below figure shows the cumulative distribution function and probability density function of simulation of one-month 

return. 

 

 

 
Fig 8:- Simulated One-month of Top 5 NIFTY 50 Sectoral Indices Portfolio Returns CDF 
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C. Copula Simulation 

Computing value at risk is shown in the following example. These are used for portfolio using multivariable Copula 

simulation with fat tailed marginal distribution. To calculate optimal risk-return portfolios, these simulations are used. 

 

 Returns & Marginal Distributions:  
The distributions of returns of each index are characterized individually to make Copula modelling. Although each return 

series distribution can be featured parametrically, it is needed to fit a semi-parametric model by utilizing a piecewise distribution 

with generalized pareto tails. To improve the behaviour in each tail, extreme value theory is used. 

 

 
Fig 9:- Pairwise Correlation of Historical Returns 

 

For top 5 NIFTY 50 Sectoral Index return series the code segment makes an object of type pareto tails. To create a 

composite semi-parametric CDF for every index, pareto tail objects encloses the estimates of parametric pareto lower and upper 

tail and the nonparametric kernel – smoothed interior. 

 

 
 

The outcome which is a piecewise distribution object permits interpolation index in interior of CDF whereas extrapolation 

(function evaluation) in each tail. To estimate quantities out of historical record, extrapolation can be used though it has not valued 

for operations of risk management. The fit coming from pareto tail distribution is compared with normal distribution here. 
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Fig 10:- Semi-Parametric Piecewise Probability Plot for NIFTY Sectoral Indices 
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 Copula Calibration  

The Statistics toolbox function can be used to calibrate and simulate a t-Copula to data. Daily index returns are used to 

estimate the parameters of Gaussian and t-Copula are used to estimate the function Copula fit. When the scalar degrees of freedom 

become infinitely large then the t-Copula becomes a Gaussian Copula. These two Copula shares linear correlation as basic 

parameter and become same family. 
 

 
Fig 11:- Transformed returns prior to fitting a Copula 

 

The Calibration of a linear correlation matrix of a 

Gaussian Copula is straightforward whereas it is not the 

same case for t-Copula. So in order to calibrate a t-Copula, 

Statistics tool box software give two techniques. The 

following code segment first transform the daily centred 

returns into uniform variates by using the piecewise, semi-
parametric Cumulative Distribution Functions derived from 

above and then Gaussian and t-Copulas are fitted into the 

transformed data. 

 

 
 

The estimated correlation matrix is quite similar to 

linear correlation matrix though they are not identical. 

 

 
 

t-Copula parameters have to be by the parameters 

obtained from t-Copula calibration which are of lower 

degree of freedoms have to be noted and a significant 

exodus from the Gaussian situation has to be indicated. 

 

 
 

The expected correlation matrix is related but not 

identical to the linear correlation matrix 

 

 
 

 Copula Simulation  

As the parameter of the Copula have been estimated. 

The combined dependent uniform variates have to be 

simulated by utilizing the function Copularnd. The uniform 

variates from Copularnd has to be transformed into daily 

central returns by extrapolating pareto tails and 
interpolating smoothed interior. The historical data set is 

tallied with simulated centred returns and the returns 

obtained are consistent. The returns obtained are assumed 

to independent of time but at any instant may possess 

dependence and rank correlation induced by Copula. 
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Fig 12:- Pairwise correlation of simulated returns 

 
D. Generalised extreme value theory and extreme VaR 

GEV distribution alone can be used to measure the 

normalised maxima of the sequence. This distribution is 

also called Fisher Tippet Distribution because it measures 

the chance of deviation of an event from the probability 

distribution’s central tendency i.e. median. The family of 

GEV have converged to three types of Extreme value 

distributions i.e. Gamma, Gumbel and the Frechet 
distributions. 

 

So let’s look at the sample of N=5 largest losses on 

per NIFTY sectoral indices over last 2478 days, we can 

effortlessly fit it with GEV distribution and get the best 

estimates for the parameter z, an and b parameters. But if 

you see is a very small parameter. Instead of that why can’t 

extract 5 worst losses that took place in the last 2478 days. 

thus it increases our n substantially to n=25. 

 

As mentioned earlier the MATLAB’s cell array is 

holding 2478 return series (each 2478 day long). We 

Increase the sample size to n=30 points by taking the top 5 

maximal daily losses for each stock. Now we fit the GEV 

distribution 

𝐻(𝑧; 𝑎, 𝑏) = exp[−(1 + 𝑧
𝑥 − 𝑏

𝑎
)
−
1
𝑧

] 

 
While engaging the ready to use function gevfit from 

Matlab statistics toolbox we get, 

   
 

The best estimates of the model’s parameters are Z25, 

a25, b25. The negative value of z actually comes from the 

Fretchet distribution since we fitted data with negative 

signs. 

 

 
Fig 13:- Probability Density Function of Generalised 

Extreme Value Distribution 

 

The best estimation of the 1 month EVAR is given as: - 

𝐸𝑉𝑎𝑅 = 𝑏25 −
𝑎25

−𝑧25
[1 – (-n ln(0.95))nz

25]  = -0.0729 

𝐸𝑉𝑎𝑅 = 𝑏25 −
𝑎25

−𝑧25
[1 – (-n ln (0.99)) nz

25] = -0.1241 

 

The EVaR value is indicative of the fact that among 

the 5 NIFTY Sectoral Indices in our portfolio we are 

definitely expecting an extreme loss of 12.41% & 7.29% on 

the following month (taken from the last 2478 trading 

days). The cumulative distribution function for NIFTY 50 

Sectoral Indices are given as: 

 

 
Fig 14:- Cumulative Distribution Function of Generalised 

Extreme Value Distribution 

 
 Computing VaR using different models 

In this section, we go through the methods of 

calculation and the approach adopted to establish our 

findings. Initially, we embark upon the task of transforming 

the individual standardized residuals pertaining to the AR 

(1)-GJR GARCH (1, 1) models into uniform variates. We 

attain this by utilizing the semi-parametric empirical CDF 

after which we fit the t Copula to the transformed data. It is 

important to note that the estimated optimal degrees of 

freedom for the t Copula is 8.4108.  In this research, we 

also adopt the vital techniques of Filtered Historical 

Simulation, t Copula and Generalized Extreme Value 

method for comparison. Using the same, we simulate 1, 

00,000 independent random trails of dependent 
standardized index residuals spanning a month-long 

horizon of 22 trading days. Lastly, we form a 1/5 equally 

weighted index portfolio composed of the individual 

indices assuming that we are given the simulated returns of 
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each index. Next, we work on calculating the VaR at 99% 

and 95% confidence levels, again spanning the month-long 

risk horizon. In the table constructed below, we list out the 

estimated figures of 95% and 99% VaRs for t(8.4108) and 

other models. 

 

 
Table 3:- Value-at-Risk Calculations for the different models 

 

We can see that the table 3, that the CEVT-Copula 

based approach given the estimated optimal degree of 

freedom as 8.4108 performs best to be only followed by t 

Copula. Finally, it is to be noted that The Generalized 

Extreme Value approach and Filtered Historical Simulation 

overestimate the portfolio VaR. 

 

V. CONCLUSIONS 
 

The paper is an attempt to find an appropriate VaR 

model among the set of models namely GJR GARCH, 

EVT-Copula, t copula, Filtered Historical Simulation and 

General Extreme Value Distribution to estimate the VaR of 

returns of the NIFTY Sectoral Indices. 
 

First, the market risk of the NIFTY Sectoral Indices 

portfolio is modelled by the Monte Carlo simulation using 

the t copula and EVT. Second, the distribution of the 

residuals is modelled using the POT based EVT. Lastly, the 

data and the simulated residuals are checked for their strong 

or weak correlation by fitting a seven-dimensional t copula.  

 

Hence there is a perennial conflict as the method 

chosen by a financial institution decides the risk capital it 

holds. It is a non-trivial issue because choosing a method 

for portfolio VaR problems inaccurately measures market 

risk can have adverse impact on the functioning of the 

financial institutions. So the results of this study can be 

used to perform a good risk management on Global 

investors. 
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