
Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1278

Fusion Reality

Akhildev MJ

Computer Science and Engineering

Sahrdaya College of Engineering and Technology,

Kodakara, Kerala 680684, India

Albin Saj Chalissery

Computer Science and Engineering

Sahrdaya College of Engineering and Technology,

Kodakara, Kerala 680684, India

Maritta Stephen
Computer Science and Engineering

Sahrdaya College of Engineering and Technology,

Kodakara, Kerala 680684, India

Deepa Devassy
Computer Science and Engineering

Sahrdaya College of Engineering and Technology,

Kodakara, Kerala 680684, India

Abstract:- Fusion Reality is the next generation reality

that will change the aspect of everything. We talk about

a lot of reality technologies including augmented reality

and virtual reality. But experiencing mixed reality is

really expensive. This paper deals with fusion reality

which aims to develop a software development kit that

includes support for developing mixed reality

applications within minutes. Our development kit is

included in the official website of our fusion reality.

Developers can download and install the Unity 3D

software. After downloading the software developers

can import the fusion reality kit package which is

available at our website and can start to create theirs on

mixed reality applications.

The website contains the necessary files for

developing fusion reality applications as well as

integrated with an artificially intelligent chatbot which

can be helpful in solving any doubts and queries the

developers might have while developing the application.

The chatbot is also available on telegram social media

applications and developers can utilize the telegram

application also to solve doubts and queries.

Atoms, CoronaAR are android applications

developed with a fusion reality kit of ours. Atoms deal

with chemistry and aim to decrease the complexity of

learning periodic table and other chemistry related

things. CoronaAR also built with the latest technologies

and tools associated with the fusion reality SDK and

assets. Atoms are capable of augmenting the periodic

table and elements with details of each particular

element having its basic properties with isotopes,

compounds and video displays to learn or experience

periodic table like never before. CoronaAR enables

peoples to interact with Indian rupees notes to get a

better understanding about the Corona virus, the

precautions to be taken and the better ways to overcome

disease with tips. Atoms, CoronaAR are just examples

of what people can build with Fusion reality kit. All the

existing augmented reality and virtual reality

applications can also be modified with fusion reality kit

to make it more understandable and productive.

Keywords:- Fusion Reality, Mixed Reality, Virtual Reality,

Augmented Reality, Unity, Vuforia.

I. INTRODUCTION

Fusion Reality is the next generation reality that will

change the aspect of everything. We talk about a lot of
reality technologies including augmented reality and virtual

reality. But experiencing mixed reality is really expensive.

This paper deals with fusion reality which aims to develop

a software development kit that includes support for

developing mixed reality applications within minutes.

Our development kit is included in the official website

of our fusion reality. Developers can download and install

the Unity 3D software. After referring website as well as

integrated with an artificially intelligent chatbot which can

be helpful in solving any doubts and queries the developers
might have while developing the application. The chatbot is

also available on telegram social media applications and

developers can utilize the telegram application also to solve

doubts and queries.

Atoms, CoronaAR are android applications developed

with a fusion reality kit of ours. Atoms deal with chemistry

and aim to decrease the complexity of learning periodic

table and other chemistry related things. CoronaAR also

built with the latest technologies and tools associated with

the fusion reality SDK and assets. Atoms are capable of

augmenting the periodic table and elements with details of
each particular element having its basic properties with

isotopes, compounds and video displays to learn or

experience periodic table like never before.

CoronaAR enables peoples to interact with Indian

rupees notes to get a better understanding about the Corona

virus, the precautions to be taken and the better ways to

overcome disease with tips. Atoms, CoronaAR are just

examples of what people can build with Fusion reality kit.

All the existing augmented reality and virtual reality

applications can also be modified with fusion reality kit to
make it more understandable and productive.

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1279

II. ARCHITECTURE

Fig 1:- Fusion Reality Architecture

Following are the architecture components.

 Camera

A camera is a visual device used to record images. At

their most basic, cameras are sealed cases (the camera

body) with a little hole (the opening) that lets light in to

grab a picture on a light-sensitive surface (usually
photographic film or a digital sensor). Cameras have

various devices to check how the light falls onto the light-

sensitive surface. The still image camera is the central

device in the art of photography and taken pictures may be

photographed later as a part of the means of photography,

digital imaging, photographic printing. Downloading the

software developers can import the fusion reality kit

package which is available at our website and can start to

create theirs on mixed reality applications. The website

contains the necessary files for developing fusion reality

 Vuforia AR Engine

Vuforia AR engine provides the basic functionalities

of Augmented reality. It provides various 3D Model

projections and augmenting the same into ground/terrain or

mid-air. This layer helps to 1279tilize all the features of the

Augmented reality.

 Left Camera

The viewport of the left camera is set from w=1 to

w=0.5. This setup will make the screen render in the virtual

reality mode that is the AR camera is divided into two

horizontal spaces. Left horizontal space is left camera.

 Right Camera

The viewport of the right camera is set from w=1 to

w=0.5. This setup will make the screen render in the virtual

reality mode that is the AR camera is divided into two

horizontal spaces. Right horizontal space is right camera.

 Pointer

Pointer is used as a visual aid for aiming. The position

of the pointer is either at a default position in space or on

the surface of a VRInteractiveItem as determined by the
VREyeRaycaster.

 Virtual Interaction Script

Virtual interaction Script consists of several scripts
that helps to interact with the virtual objects in the

Augmented environment. This module enables the user to

complete operations in an easy way compared to other

existing methods used in virtual reality.

III. COMPARISON TABLE

Fig 2

IV. IMPLEMENTATION

The implementation includes the following phases.

 Fusion Reality Kit development

 Chat Bot integrated Website Development.

 Atoms - Application built with Fusion Reality Kit.

A. Fusion Reality Kit development

The fusion reality kit supports the Unity 3D

environment. Vuforia is a public platform available to

create and develop an Augmented reality application. The

kit is developed with the support of the vuforia augmented
reality plugin. In the package manager, vuforia plugin is

installed and imported. AR camera is the default camera

provided by the vuforia to scan the environment as well as

markers. In Fusion reality, we created a camera inside the

AR camera. The newly added camera will act like the Left

camera and the script CameraFieldView.cs is added. The

script will set the field of view of the newly added camera

to that of the AR camera which is default camera of the

Vuforia.

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1280

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

public class CameraFieldView : MonoBehaviour

{

 void Start()

 {

 StartCoroutine(Wait());

 }

 IEnumerator Wait()

 {

 yield return new WaitForSeconds(1);

this.GetComponent<Camera>().fieldOfView =
GameObject.Find("ARCamera").GetComponent<Camera>

().fieldOfView;

 }

}

After creating the Left camera which is duplicated to create

the right camera in which together with the

CameraFieldView script CameraFocusControl.cs script is

added

using UnityEngine;

using Vuforia;

public class CameraFocusController : MonoBehaviour {
 private bool myVuforiaStarted = false;

 void Start ()

 {

 VuforiaARController vuforia =

VuforiaARController.Instance;

 if (vuforia != null)

vuforia.RegisterVuforiaStartedCallback(StartAfterVuforia);

 }

 private void StartAfterVuforia()

 {
 myVuforiaStarted = true;

 SetAutofocus();

 }

 void OnApplicationPause(bool pause)

 {

 if (!pause)

 {

 if (myVuforiaStarted)

 }

 }

 private void SetAutofocus()
 {

 if

(CameraDevice.Instance.SetFocusMode(CameraDevice.Fo

cusMode.FOCUS_MODE_CONTINUOUSAUTO))

 Debug.Log("Autofocus is set");

 else

Debug.Log("Sorry this device doesn't support auto focus");

 }

}

The script will set the auto focus mode for the right

camera after vuforia instance is created. The focus mode
used in the right camera is

CONTINUOUS_AUTO_FOCUS. The viewport of the left

camera and right camera is set from w=1 to w=0.5. This

setup will make the screen render in the virtual reality

mode that is the AR camera is divided into two horizontal

spaces. Fusion reality not only deals with mixing

augmented reality and virtual reality. To add virtual reality

input to the software kit under the Right camera new

canvas added and named it as Reticle. The reticle will help

to navigate through in the mixed reality environment.

Under reticle, the necessary UI contents to visualize the

reticle(cursor) is designed. To enable the functionalities of
the reticle in the camera context Reticle.cs, VRInput.cs,

VREyeRayCastor.cs is added. Reticle.cs is used as a visual

aid for aiming. The position of reticle will be default in

space or the surface of a VRInteractiveItem as determined

by the VREyeRaycaster.

using UnityEngine;

using UnityEngine.UI;

public class myReticle : MonoBehaviour

{

 [SerializeField] public float m_DefaultDistance = 5f;
 [SerializeField] private bool m_UseNormal;

 [SerializeField] private Image m_Image;

 [SerializeField] private Transform

m_ReticleTransform;

 [SerializeField] private Transform m_Camera;

 private Vector3 m_OriginalScale;

 private Quaternion m_OriginalRotation;

 private float timeToClick = 1f;

 private bool filling = false;

 public bool UseNormal

 {

 get { return m_UseNormal; }

 set { m_UseNormal = value; }

 }

 public Transform ReticleTransform { get { return

m_ReticleTransform; } }

 private void Awake()

 {

 m_OriginalScale = m_ReticleTransform.localScale;

 m_OriginalRotation =

m_ReticleTransform.localRotation;

 }

 public void Hide()

 {

 Debug.Log ("Hiding image");

 m_Image.enabled = false;
 }

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1281

 public void Show()

 {
 Debug.Log ("Hiding image");

 m_Image.enabled = true;

 }

 public void SetPosition ()

 {

 m_ReticleTransform.position = m_Camera.position

+ m_Camera.forward * m_DefaultDistance;

 m_ReticleTransform.localScale = m_OriginalScale *

m_DefaultDistance;

 m_ReticleTransform.localRotation =

m_OriginalRotation;
 }

 public void SetPosition (RaycastHit hit)

 {

 m_ReticleTransform.position = hit.point;

 m_ReticleTransform.localScale = m_OriginalScale *

hit.distance;

 if (m_UseNormal)

 m_ReticleTransform.rotation =

Quaternion.FromToRotation (Vector3.forward, hit.normal);
 else

 m_ReticleTransform.localRotation =

m_OriginalRotation;

 }

 public void fillInTime(float mainTimeToClick) {

 m_Image.fillAmount = 0f;

 filling = true;

 timeToClick = mainTimeToClick;

 }

 public void stopFilling() {

 filling = false;

 m_Image.fillAmount = 0f;

 }

 private void Update() {

 if (filling) {

 m_Image.fillAmount +=

Time.deltaTime/timeToClick;

 if (m_Image.fillAmount > 1) {
 m_Image.fillAmount = 0f;

 filling = false;

 }

 }

 }

}

VRInput class encapsulates all the input required for

most VR games. It has events that can be subscribed to by

classes that need specific input. This class must exist in

every scene and so can be attached to the main camera for
ease.

using System;

using UnityEngine;
namespace VRStandardAssets.Utils

{

 public class VRInput : MonoBehaviour

 {

 public enum SwipeDirection

 {

 NONE,

 UP,

 DOWN,

 LEFT,

 RIGHT

 };
 public event Action<SwipeDirection> OnSwipe;

 public event Action OnClick;

 public event Action OnDown;

 public event Action OnUp;

 public event Action OnDoubleClick;

 public event Action OnCancel;

 [SerializeField] private float my_DoubleClickTime =

0.3f;

 [SerializeField] private float my_SwipeWidth = 0.3f;

 private Vector2 my_MouseDownPosition;

 private Vector2 my_MouseUpPosition;
 private float my_LastMouseUpTime;

 private float my_LastHorizontalValue;

 private float my_LastVerticalValue;

 public float DoubleClickTime{ get { return

my_DoubleClickTime; } }

 private void Update()

 {

 CheckInput();

 }

 private void CheckInput()

 {

 SwipeDirection swipe = SwipeDirection.NONE;
 if (Input.GetButtonDown("Fire1"))

 {

 my_MouseDownPosition = new

Vector2(Input.mousePosition.x, Input.mousePosition.y);

 if (OnDown != null)

 OnDown();

 }

 if (Input.GetButtonUp ("Fire1"))

 {

 my_MouseUpPosition = new Vector2

(Input.mousePosition.x, Input.mousePosition.y);
 swipe = DetectSwipe ();

 }

 if (swipe == SwipeDirection.NONE)

 swipe = DetectKeyboardEmulatedSwipe();

 if (OnSwipe != null)

 OnSwipe(swipe);

 if(Input.GetButtonUp ("Fire1"))

 {

 if (OnUp != null)

 OnUp();

 if (Time.time - my_LastMouseUpTime <
my_DoubleClickTime)

 {

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1282

 if (OnDoubleClick != null)

 OnDoubleClick();
 }

 else

 {

 if (OnClick != null)

 OnClick();

 }

 my_LastMouseUpTime = Time.time;

 }

 if (Input.GetButtonDown("Cancel"))

 {

 if (OnCancel != null)

 OnCancel();
 }

 }

 private SwipeDirection DetectSwipe ()

 {

 Vector2 swipeData = (my_MouseUpPosition -

my_MouseDownPosition).normalized;

 bool swipeIsVertical = Mathf.Abs (swipeData.x) <

my_SwipeWidth;

 bool swipeIsHorizontal = Mathf.Abs(swipeData.y) <

my_SwipeWidth;

 if (swipeData.y > 0f && swipeIsVertical)
 return SwipeDirection.UP;

 if (swipeData.y < 0f && swipeIsVertical)

 return SwipeDirection.DOWN;

 if (swipeData.x > 0f && swipeIsHorizontal)

 return SwipeDirection.RIGHT;

 if (swipeData.x < 0f && swipeIsHorizontal)

 return SwipeDirection.LEFT;

 return SwipeDirection.NONE;

 }

 private SwipeDirection DetectKeyboardEmulatedSwipe

()

 {
 float horizontal = Input.GetAxis ("Horizontal");

 float vertical = Input.GetAxis ("Vertical");

 bool noHorizontalInputPreviously = Mathf.Abs

(my_LastHorizontalValue) < float.Epsilon;

 bool noVerticalInputPreviously =

Mathf.Abs(my_LastVerticalValue) < float.Epsilon;

 my_LastHorizontalValue = horizontal;

 my_LastVerticalValue = vertical;

 if (vertical > 0f && noVerticalInputPreviously)

 return SwipeDirection.UP;

 if (vertical < 0f && noVerticalInputPreviously)
 return SwipeDirection.DOWN;

 if (horizontal > 0f && noHorizontalInputPreviously)

 return SwipeDirection.RIGHT;

 if (horizontal < 0f && noHorizontalInputPreviously)

 return SwipeDirection.LEFT;

 return SwipeDirection.NONE;

 }

 private void OnDestroy()

 {

 OnSwipe = null;

 OnClick = null;
 OnDoubleClick = null;

 OnDown = null;

 OnUp = null;

 }
 }

}

VREyeRayCastor.cs used in order to interact with

objects in the scene. This class casts a ray into the scene

and if it finds a VRInteractiveItem it exposes it for other

classes to use. This script should generally be placed on the

camera.

using System;

using UnityEngine;

namespace VRStandardAssets.Utils

{
 public class VREyeRaycaster : MonoBehaviour

 {

 public event Action<RaycastHit> OnRaycasthit;

 [SerializeField] private Transform my_Camera;

 [SerializeField] private LayerMask

my_ExclusionLayers;

 [SerializeField] private Reticle my_Reticle;

 [SerializeField] private VRInput my_VrInput;

 [SerializeField] private bool my_ShowDebugRay;

 [SerializeField] private float my_DebugRayLength =

50f;
 [SerializeField] private float my_DebugRayDuration =

1f;

 [SerializeField] private float my_RayLength = 5000f;

 [SerializeField] private float autoClickTime = 1f;

 private VRInteractiveItem my_CurrentInteractible;

 private VRInteractiveItem my_LastInteractible;

 public VRInteractiveItem CurrentInteractible

 {

 get { return my_CurrentInteractible; }

 }

 private void OnEnable()

 {
 my_VrInput.OnClick += HandleClick;

 my_VrInput.OnDoubleClick += HandleDoubleClick;

 my_VrInput.OnUp += HandleUp;

 my_VrInput.OnDown += HandleDown;

 }

 private void OnDisable ()

 {

 my_VrInput.OnClick -= HandleClick;

 my_VrInput.OnDoubleClick -= HandleDoubleClick;

 my_VrInput.OnUp -= HandleUp;

 my_VrInput.OnDown -= HandleDown;
 }

 private void Update()

 {

 EyeRaycast();

 }

 private void EyeRaycast()

 {

 if (my_ShowDebugRay)

 {

 Debug.DrawRay(my_Camera.position,

my_Camera.forward * my_DebugRayLength, Color.blue,
my_DebugRayDuration);

 }

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1283

 Ray ray = new Ray(my_Camera.position,

my_Camera.forward);
 RaycastHit hit;

 if (Physics.Raycast(ray, out hit, my_RayLength, ~

my_ExclusionLayers))

 {

 VRInteractiveItem interactible =

hit.collider.GetComponent<VRInteractiveItem>();

//attempt to get the VRInteractiveItem on the hit object

 my_CurrentInteractible = interactible;

 if (interactible && interactible !=

my_LastInteractible) {

 interactible.setAutoClickTime (autoClickTime);

 interactible.Over ();

my_Reticle.fillInTime (autoClickTime);

 }

 if (interactible != my_LastInteractible)

 DeactiveLastInteractible();

 my_LastInteractible = interactible;

 if (my_Reticle)

 my_Reticle.SetPosition(hit);

 if (OnRaycasthit != null)

 OnRaycasthit(hit);

 }

 else

 {

 DeactiveLastInteractible();

 my_CurrentInteractible = null;

 if (my_Reticle)

 my_Reticle.SetPosition();

 }

 }

 private void DeactiveLastInteractible()
 {

 if (my_LastInteractible == null)

 return;

 my_Reticle.stopFilling ();

 my_LastInteractible.Out();

 my_LastInteractible = null;

 }

 private void HandleUp()

 {

 if (my_CurrentInteractible != null)

 my_CurrentInteractible.Up();
 }

 private void HandleDown()

 {

 if (my_CurrentInteractible != null)

 my_CurrentInteractible.Down();

 }

 private void HandleClick()

 {

 Debug.Log ("HandleClick of

raycaster");

 if (my_CurrentInteractible != null)
 my_CurrentInteractible.Click();

 }

 private void HandleDoubleClick()

 {
 if (my_CurrentInteractible != null)

 my_CurrentInteractible.DoubleClick();

 }

 }

}

This is the setup for the Virtual reality input in the

context of an AR camera. Now a sample Image Target is

created with default Vuforia_mars database. And under

image target, 3D models are created. The interaction with

the item will be like our reticle is going over the 3D model,
on the 3D model, out the 3D model, click the 3D model,

Double-clicking the 3D model. To add these interactions to

the 3D model VRInteractiveItem.cs is added. Which will

enable the 3D models to be interactive.

using System;

using UnityEngine;

namespace VRStandardAssets.Utils

{

 public class VRInteractiveItem : MonoBehaviour

 {
 public event Action OnOver;

 public event Action OnOut;

 public event Action OnClick;

 public event Action OnDoubleClick;

 public event Action OnUp;

 public event Action OnDown;

 public bool autoClick = false;

 private float autoClickTime = 1f;

 private float clickTimerState = 0f;

 private bool clicked = false;

 protected bool m_IsOver;

 private void Update () {
 if (autoClick && m_IsOver &&

!clicked) {

 clickTimerState +=

Time.deltaTime;

 if (clickTimerState >=

autoClickTime) {

 clicked = true;

 Click ();

 }

 }

 }
 public bool IsOver

 {

 get { return m_IsOver; }

 }

 public void setAutoClickTime(float time)

{

 autoClickTime = time;

 }

 public void Over()

 {
 m_IsOver = true;

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1284

 if (OnOver != null)

 OnOver();
 }

 public void Out()

 {

 m_IsOver = false;

 clicked = false;

 clickTimerState = 0f;

 if (OnOut != null)

 OnOut();

 }

 public void Click()

 {
 if (OnClick != null)

 OnClick();

 }

 public void DoubleClick()

 {

 if (OnDoubleClick != null)

 OnDoubleClick();

 }

 public void Up()

 {

 if (OnUp != null)
 OnUp();

 }

 public void Down()

 {

 if (OnDown != null)

 OnDown();

 }

 }

}

Now the type of interactions are defined and we need

to perform some actions and get the output we desire. To
achieve interactions in real-time a new script

ExampleInteractiveItem.cs is added. The new script will

define ways to deal with the interactive item which is

defined by the above script.

using System;

using UnityEngine;

using VRStandardAssets.Utils;

using UnityEngine.SceneManagement;

using UnityEngine.UI;

namespace VRStandardAssets.Examples
{

 public class ExampleInteractiveItem : MonoBehaviour

 {

 [SerializeField] private VRInteractiveItem

my_InteractiveItem;

 [SerializeField] private Renderer my_Renderer;

 [SerializeField] private Material my_OverMaterial;

 [SerializeField] private Material my_NormalMaterial;

 [SerializeField] private Material my_ClickedMaterial;

 [SerializeField] private GameObject secondObject;

 private void Awake()
 {

 my_NormalMaterial = my_Renderer.material;

 }

 private void OnEnable()
 {

 Debug.Log("Enabled");

 my_InteractiveItem.OnOver += HandleOver;

 my_InteractiveItem.OnOut += HandleOut;

 my_InteractiveItem.OnClick += HandleClick;

 }

 private void OnDisable()

 {

 Debug.Log("Disabled");

 my_InteractiveItem.OnOver -= HandleOver;

 my_InteractiveItem.OnOut -= HandleOut;

 my_InteractiveItem.OnClick -= HandleClick;
 }

 private void HandleOver()

 {

 my_Renderer.material = my_OverMaterial;

 Debug.Log("Showed over state");

 }

 private void HandleOut()

 {

 my_Renderer.material = my_NormalMaterial;

 Debug.Log("Showed out state");

 }
 private void HandleClick()

 {

 my_Renderer.material = my_ClickedMaterial;

 Debug.Log("Showed click state");

 secondObject.SetActive(true);

 }

 }

}

These files are the basic files for the development of

any fusion reality application. The files together with assets
and demo scenes are integrated to create the software

development kit.

B. Chat Bot integrated Website Development.

The website is created with HTML and CSS. Using

HTML the front end of the website script is created. Using

CSS the styling of the HTML elements is done.

Fig 3:- Fusion Reality Website Home Page

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1285

Fig 4:- Fusion Reality Website Download Page

A chatbot is created with the Dialog Flow platform of

google. In the chatbot intents and entities are created to

solve any doubts and queries. These possible queries are

given as input to the bot and using which the bot is trained.

After the bot is made using the integration module of
google, the chatbot is integrated into the website and

telegram.

The chatbot is available at the website and can solve

any queries that the developer has in the context of fusion

reality application development using our software

development kit.

Fig 5:- Fusion Reality Website Chatbot Page

C. Fusion Reality - Application built with Fusion Reality

Kit.

Fusion Reality is built with the latest technologies and

tools associated with the fusion reality SDK and assets
which are capable of augmenting the periodic table and

elements with details of each particular element having its

basic properties with isotopes, compounds, and video

displays to learn or experience periodic table like never

before. This is built by downloading the software

development kit from the website which is developed in the

first phase. After downloading the files imported to the new

project in unity.

Fig 6:- Unity After uploading files

In vuforia a developer account is created and a new

license key created. The license key is pasted into the key

column in the Inspector menu of AR Camera. A new

database of periodic elements markers created using canva

which is a web application to create posters and images.

Fig 7:- Oxygen marker created in canva

The database is downloaded from the vuforia website
and imported to unity.

Fig 8:- Importing Image Targets

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1286

A new image target is created and the target is

selected from a new database. One of the image target
oxygen is used. Under the image target, the cubes are added

for interacting with particular elements. Each cube acts as

buttons and the ExampleInteractiveItem.cs is modified to

the current use and scripts are added to the cubes. A cube

with enabling oxygen molecule 3D model added with

oxygen.cs and others with similar code.

using System;

using UnityEngine;

using VRStandardAssets.Utils;

using UnityEngine.SceneManagement;

using UnityEngine.UI;

namespace VRStandardAssets.Examples

{

 public class oxygen : MonoBehaviour

 {

 [SerializeField] private VRInteractiveItem

m_InteractiveItem;

 [SerializeField] private Renderer m_Renderer;

 [SerializeField] private Material m_OverMaterial;

 [SerializeField] private Material m_NormalMaterial;

 [SerializeField] private Material m_ClickedMaterial;
 [SerializeField] private GameObject

renderObject,removeObject1,removeObject2,removeObject

3;

 private void Awake()

 {

 m_NormalMaterial = m_Renderer.material;

 }

 private void OnEnable()

 {

 Debug.Log("Enable");
 m_InteractiveItem.OnOver += HandleOver;

 m_InteractiveItem.OnOut += HandleOut;

 m_InteractiveItem.OnClick += HandleClick;

 }

 private void OnDisable()

 {

 Debug.Log("Disable");

 m_InteractiveItem.OnOver -= HandleOver;

 m_InteractiveItem.OnOut -= HandleOut;

 m_InteractiveItem.OnClick -= HandleClick;
 }

 private void HandleOver()

 {

 m_Renderer.material = m_OverMaterial;

 Debug.Log("Show over state");

 }

 private void HandleOut()

 {

 m_Renderer.material = m_NormalMaterial;

 Debug.Log("Show out state");
 }

 private void HandleClick()

 {

 m_Renderer.material = m_ClickedMaterial;
 Debug.Log("Show click state");

 renderObject.SetActive(true);

 removeObject1.SetActive(false);

 removeObject2.SetActive(false);

 removeObject3.SetActive(false);

 }

 }

}

Fig 9:- Fusion Reality Application icon on Android

Fig 10:- Earth View Using Fusion Reality

Fig 11:- Clicked Button Colour in Fusion Reality

Fig 12:- Watching Video of Earth Using Fusion Reality

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1287

Fig 13:- Viewing Inner Layers of Earth Using Fusion

Reality

Fig 14:- Viewing Inner and Outer Layers of Earth Using

Fusion Reality

Fig 15:- Viewing Oxygen Molecule Using Fusion Reality

Fig 16:- Viewing Ozone Molecule Using Fusion Reality

Fig 17:- Viewing Water Molecule Using Fusion Reality

Fig 18:- Viewing Oxygen Video Using Fusion Reality

Fig 19:- Combined View of Earth and Oxygen Using

Fusion Reality

V. HARDWARE SPECIFICATION

The hardware components are Low-cost virtual reality

headset and Android mobile device.

Fig 20:- Virtual Reality Headset

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1288

A virtual reality headset is a head-mounted device

which provides virtual reality for the user. Virtual reality
headsets commonly used with games but they and in other

applications, including simulators and trainers. Some VR

headsets have eye tracking sensors and gaming controllers.

They includes a stereoscopic stereo sound, head mounted

display, and also head motion tracking sensors. The lenses

of the headset help for mapping the up-close display to a

wide field of view, while also providing a more

comfortable distant point of focus.

Fig 21:- Android device

Android is a Linux based OS (operating system)

which is designed for touch screens mobile devices such as
smartphones and tablet computers. The operating system

has developed a lot in the past fifteen years starting from

black and white phones to recent smartphones or mini

computers. One of the most commonly used mobile

operating system these days is android. Android is a

powerful operating system and it supports a large number

of softwares in Smartphones. These softwares are more

user friendly and advanced for users. The hardware

supports for android software is ARM architecture

platform. The android is an open-source operating system

which means it's free and anyone can use it.

VI. SOFTWARE SPECIFICATION:

Softwares used are Unity 3D, Visual Studio Code,

Vuforia Plugin.

Fig 22:- Unity 3D Software

Unity is a cross platform game engine which supports

large number of platforms developed by Unity
Technologies, is used to design and integrate the toolkit

developed. The engine can be used to create 3D, 2D,

VR(virtual reality), and AR(augmented reality) games, as

well as simulations and also other experiences.

Fig 23:- Visual Studio Code Software

A highly modifiable source code editor. Visual Studio

code is very useful for debugging, embedded Git control

and GitHub, syntax highlighting. The users allowed to

change the keyboard shortcuts, preferences, theme, and

install extensions that add additional functionality.The

compiled binaries are freeware for any purposes. The

source code is free and also open-source, released under the

permissive MIT License.

Fig 24:- Vuforia Web App

Vuforia is an augmented reality software development

kit) used for computer vision technology and allows the
production of augmented reality applications. It can

identify and track planar pictures and 3D objects in real-

time. When viewed within the camera of mobile the image

registration ability enables developers to position and orient

virtual objects, such as 3D figures and other media, about

real-world objects. The position and orientation of the

image in real-time are traced by the virtual object so that

the viewer's perspective on the object corresponds with the

appearance on the target and appears to be a part of the

real-world display.

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1289

Fig 25:- Dialog Flow Web App

The FR Bot made accessible to the user within the

website and telegram which is a chatbot created on a

platform called DialogFlow. DialogFlow is a platform

related to design and combine conversational user

interfaces in different mobiles, devices, web applications,

and chatbots which is a natural language recognition

platform. Various intents for user interface are created and

are made as many users as effectively as possible. The user

can interact with the chatbot and post or ask his questions

and doubts. The SDK's contain voice recognition, natural

language recognition, and text-to-speech. api.ai grants a
web interface to create and test conversation situations.

Fig 26:- Canva Web App

VII. CONCLUSION

Technology is changing rapidly. Most people are

using modern technology to do various activities. Life has

become more convenient and enjoyable. You will realize

that the recent development of technology has made it

possible for us to lead more comfortable lives.

In this era where technology is advancing each
second, the devices and humans must be technically

efficient. The project aims to develop an architecture which

incorporates various technologies. This project deals with

creating an architecture which combines different

technologies.

The Fusion Reality is a layered architecture

Incorporates Reality and Artificial Intelligence technologies

into daily lives so that our routines are made technically

advanced. The project aims to develop an architecture

incorporating various technologies like AR, VR, MR into a

single platform. It also build an SDK which can be used to
develop any Fusion Reality applications that run on any

system to perform various tasks including daily routines.

This makes our daily lives technically advanced and

promising.

The scope of the fusion reality kit is much more. All

the existing augmented reality and virtual reality

applications can also be modified with a fusion reality kit to

make it more understandable and productive. Developers

can integrate fusion reality in various fields including

Geography, Biology, Architecture, Medical, etc. to make

these fields more understandable and easier to learn.

FUTURE SCOPE

We have successfully developed a Fusion Reality

software development kit, and tested it’s working . This

project can be expanded to replace live target tracking

mechanism to object and space tracking mechanism so that

we may not require any target images for the augmentation.

It can also be extended by incorporating machine learning

to do facial recognition, object recognition, live target

selection etc. We successfully developed an application
using this development kit “ATOM”, like Atom we can

develop more complicated applications like AUTOCAD

which enables users to design modules using their hand in

live 3D word instead of monitors and keyboards .In such

application multiple users can develop on the same 3D

project at same time thus reducing the time and increasing

efficiency of their project.

REFERENCES

[1]. Krichenbauer, Max & Yamamoto, Goshiro &

Taketomi, Takafumi & Sandor Christian & Kato,
Hirokazu. (2017). Augmented Reality vs Virtual

Reality for 3D Object Manipulation. IEEE

Transactions on Visualization and Computer

Graphics. PP. 1-1. 10.1109/TVCG.2017.2658570.

[2]. T. Blum, V. Kleeberger, C. Bichlmeier, N. Navab,

"Mirracle: An Augmented Reality Magic Mirror

System for Anatomy Education", Proc. IEEE Virtual

Reality Short Papers and Posters (VRW), pp. 115-116,

Mar. 2012.

[3]. Krummenacher, G.; Ong, C.S.; Koller, S.; Kobayashi,

S.; Buhmann, J.M. Wheel Defect Detection with
Machine Learning. IEEE Trans. Intell. Transp. Syst.

2017

[4]. B. Luo, H. Wang, H. Liu, B. Li, F. Peng, "Early fault

detection of machine tools based on deep learning and

dynamic identification", IEEE Trans. Ind. Electron.,

vol. 66, no. 1, pp. 509-518, Jan. 2019

[5]. Li, Gang & Liu, Yuanan & Wang, Yongtian. (2017).

Evaluation of labelling layout methods in augmented

reality. 351-352. 10.1109/VR.2017.7892321.

[6]. Agrawal, Diptanshu & Mane, S. & Pacharne, Apoorva

& Tiwari, Snehal. (2018). IoT Based Augmented
Reality System of Human Heart: An Android

Application. 899-902. 10.1109/ICOEI.2018.8553807.

http://www.ijisrt.com/

Volume 5, Issue 6, June – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20JUN1127 www.ijisrt.com 1290

[7]. Ju, Xiaohui & Yang, Feng & Liang, Daojun. (2019).

LightNets: The Concept of Weakening Layers. IEEE
Access. PP. 1-1. 10.1109/ACCESS.2019.2923983.

[8]. Leibe, Bastian & Cornelis, Nico & Van Gool, Luc.

(2008). Coupled Object Detection and Tracking from

Static Cameras and Moving Vehicles. IEEE

transactions on pattern analysis and machine

intelligence. 30. 1683-98.10.1109/TPAMI.2008.170.

[9]. Karunasekera, Hasith & Wang, Han & Zhang,

Handuo. (2019). Multiple Object Tracking with

attention to Appearance, Structure, Motion and Size.

IEEE Access. PP. 1-1.

10.1109/ACCESS.2019.2932301.

[10]. Hussein, Sarfaraz & Kandel, Pujan & Bolan, Candice
& Wallace, Michael & Bagci, Ulas. (2019). Lung and

Pancreatic Tumor Characterization in the Deep

Learning Era: Novel Supervised and Unsupervised

Learning Approaches. IEEE Transactions on Medical

Imaging. PP. 1-1. 10.1109/TMI.2019.2894349.

[11]. Srinivasan, Srinikethan & Truong-Huu, Tram &

Gurusamy, Mohan. (2018). Machine Learning-based

Link Fault Identification and Localization in Complex

Networks.

http://www.ijisrt.com/

