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Abstract:- This paper presents the closed form stability 

analysis of solid non-prismatic columns. Using 

fundamental kinematics and Hooke’s law, the total 

potential energy functional of a non-prismatic column was 

obtained. This was minimized with respect to deflection 

and the non-linear Euler-Bernoulli equation of 

equilibrium of a non-prismatic column was obtained. Two 

mathematical axioms were employed to completely 

integrate the non-linear governing equation. Individual 

deflection equations for four columns of various boundary 

conditions were obtained. Substituting the deflection 

equation into the non-linear governing equation and 

rearranging it gave the closed form formula for 

calculating buckling loads of non-prismatic columns. This 

formula was used to determine buckling loads for eight 

example problems. Results from four of the example 

problems were compared with results from earlier study 

that used an approximate method called weighted moment 

of inertia. The highest percentage difference recorded is 

9.59%, which validates the present method since the result 

from earlier study is based on approximate method. 

Keywords—closed form; non-prismatic; deflection; 

governing equations; buckling. 

 

I. INTRODUCTION 

        Buckling analysis of non-prismatic column presents non-

linear governing equation of equilibrium of forces. This makes 

it somewhat intractable to handle. In a bid to circumvent the 

integration of the non-linear governing equation, several 

scholars employ various technics in the analyses. The 

difficulty involved in the analysis of non-prismatic columns 

leads to use of approximate methods. However, it is pertinent 

to accurately analyze the non-prismatic columns because it 

(non-prismatic column construction) is used in getting 

economical column in practice [1]. [1] used modified matrix 
technique to determine the inelastic buckling loads of non-

prismatic Columns. In the technique he included geometric 

residual and material non-linearity effects. In solving 

numerical problems, he employed iteration, which made his 

technique numerical method. [2] based his formulation on 

numerically solving governing equation of equilibrium of 

forces of non-prismatic column to obtain buckling loads. [3] 

used finite element model ANSYS 12.0 to perform the non-

linear analysis of non-prismatic columns of square and circular 

sections. Their results indicate that tapering ratio and 

slenderness ratio affect the buckling loads of the non-prismatic 

columns. Another author that used non-analytical approach is 

[4]. More so, [5] proposed numerical approach in their paper 

for determining the buckling load of non-prismatic columns. 
This they did by discretizing the non-prismatic column on 

non-uniform elastic foundation into finite segments. They 

validated their method by comparing its results with results 

from analytical approach. In his work, he used Matlab coding 

in finite element analysis to formulate eigenvalue problem that 

determine the buckling loads of non-prismatic columns. 

Furthermore, [6], in their work determined the buckling loads 

of columns whose material obeys Ludwick’s constitutive law 

by numerically solving ordinary differential equations of non-

prismatic column. 

 
However, some scholars tried using analytical 

approaches to solve the problem of non-prismatic columns. [7] 

used energy method and modified vibrational mode shape 

(MVM) in buckling analysis of non-prismatic columns. They 

used some numerical problems to demonstrate the accuracy 

and efficiency of their method. In their own, [8] considered the 

stability non-prismatic column under its self-weight and end 

load. They transformed the Euler–Bernoulli equation 

equilibrium of forces of columns into a functional from where 

they obtained critical buckling load. They used solution to 

numerical problems to validate their method. Furthermore, [9] 
presented a paper during a conference in Lisbon titled 

“buckling analysis of non-prismatic columns using slope-

deflection method”. Their work brought in a new analytical 

method for analysis of tapered columns that has fast 

convergence. To validate their method, numerical problems 

were solved using their method and finite element method. 

The two results compared well with each other. In their own 

work, [10] formulated exact elemental stiffness matrix of non-

prismatic beam–column using Euler-Bernoulli beam theory. 

To demonstrate the accuracy and efficiency of the method 

numerical problems were solved. From the foregoing, earlier 

scholars have approached the analysis of non-prismatic 
columns numerically and analytically. However, they 

circumvented the integration of the governing equation of 

equilibrium of forces of non-prismatic column because of its 

non-linear nature. Hence, the essence of the present work is to 
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integrate the non-linear governing equation of non-prismatic 

column to obtain its closed form solution. 
 

II. MATHEMATICAL FORMULATION 

 

A. Assumptions 

The material used in the continuum is homogenous and 

isotropic. Shear strains and normal strains acting on x-y 

surface and x-z surface are small when compared with normal 

strain acting on y-z plane. Hence, neglecting them shall not 

affect the gross response of the column. Thickness of the 

continuum varies along the length (that along x axis) and the 

variation is continuous and differentiable. 

A. Kinematics 

The displacement considered are u, v and w along x, y 

and z axes respectively.  From the assumptions of zero shear 

strains within x-z and y-z planes, displacements u and v relate 

to the displacement w as: 

u =  −z
dw

dx
 =  −S

t

L

dw

dR
        (1) 

v =  −z
dw

dy
 =  −S

t

b

dw

dQ
        (2) 

where: R, Q and S are non-dimensional coordinates along x, y 

and z axes respectively defined as: 

R =  
x

L
 ; Q =  

y

b
 ; S =

z

t
       (3) 

where: L, b and t are dimensions of column along x, y and z 

axes respectively. 

The normal strain acting on y-z plane is defined as: 

ε𝑥𝑥 =
du

𝑑x
              (4) 

 

Substituting equations 2 and 3 into equation 4 gives: 

ε𝑅𝑅 =  −
𝑡𝑠

𝐿2
∗

𝑑2𝑤

𝑑𝑅2
         (5) 

B. Hooke’s Law 

Hooke’s law is the relation between stress and strain. Thus  

𝜎𝑅  ∝   𝜀𝑅          (6) 

Introducing proportionality constant in equation 6 gives 

𝜎𝑅 =   𝐸𝜀𝑅       (7) 

Where E is the Young’s modulus. Substituting equation 5 into 

equation 7 gives 

𝜎𝑅 =  −
𝐸𝑡𝑠

𝐿2
∗ 

𝑑2𝑤

𝑑𝑅2
      (8) 

C. Strain Energy 

Strain energy of a column is half of the product of strain and 

stress summed up in the domain of the column. That is: 

𝑈 =  
1

2
∭ 𝜀𝑅 𝜎𝑅  𝑑𝑥 𝑑𝑦 𝑑𝑧 =  

𝑏𝑡𝐿

2
∭ 𝜀𝑅 𝜎𝑅  𝑑𝑅 𝑑𝑄 𝑑𝑆   (9) 

Substituting equations 5 and 8 into equation 9 gives: 

𝑈 =  
𝐸𝑏

2𝐿3
∭ 𝑆2𝑡3 (

𝑑2𝑤

𝑑𝑅2
)

2

     𝑑𝑅 𝑑𝑄 𝑑𝑆    (10)  

Rearranging equation 10 gives:  

𝑈 =  ∫ 𝑑𝑄 ∗ ∫ 𝑆2  𝑑𝑆 ∗  ∫ 𝑡3
1

0

0.5

−0.5

1

0

∗ (
𝑑2𝑤

𝑑𝑅2
)

2

𝑑𝑅

∗
𝐸𝑏

2𝐿3
    (11) 

Carrying out the closed domain integration of equation 11 with 

respect to Q and S gives: 

𝑈 =  
𝐸𝑏

24𝐿3
∫ 𝑡3

1

0

∗ (
𝑑2𝑤

𝑑𝑅2
)

2

  𝑑𝑅    (12) 

A diagram of non-prismatic column is shown in figure 1 

 

 

 

 

 

 

Fig 1:- Non-prismatic column 

 𝐿 

 

𝑡 =  𝑡𝑜(R − Rn + n) 

𝑡 = 𝑛𝑡𝑜 

𝑡𝑜 

N 

N 

http://www.ijisrt.com/


Volume 5, Issue 3, March – 2020                                                 International Journal of  Innovative Science and Research Technology                                                 

                                               ISSN No:-2456-2165 

 
IJISRT20MAR175                                                   www.ijisrt.com                           107 

Here the base is the reference point and the thickness at 

that point is designated as to while at any other arbitrary point, 

t is a product of  to and  Fo  

The thickness of the column at any arbitrary point along 

R axis is defined as 

𝑡 =  𝐹𝑜 ∗   𝑡𝑠𝑜       (13) 

Where  𝑡𝑠𝑜  is the thickness at a reference point and 𝐹𝑜 is 

the function that defines how the thickness varies along R axis.  

Substituting equation 13 into equation 12 gives: 

𝑈 =  
𝐸𝑏

24𝐿3
∫ 𝐹0

3 ∗  𝑡𝑠𝑜
3

1

0

∗ (
𝑑2𝑤

𝑑𝑅2
)

2

   𝑑𝑅   (14) 

Simplifying equation 14 gives:  

𝑈 =  
𝐸𝐼𝑠𝑜

2𝐿3
∫ 𝐹2 ∗ 

1

0

(
𝑑2𝑤

𝑑𝑅2
)

2

   𝑑𝑅   (15) 

Where the second moment of area at the reference point 

denoted as   𝐼𝑠𝑜  and the function that defines how the second 

moment of area varies along R axis denoted as   𝐹2 are defined 

as:  

𝐼𝑠𝑜   =   
𝑏 𝑡𝑠𝑜

3

12
     (16) 

𝐹2   =   𝐹0
3           (17) 

Total potential energy functional for buckling analysis of non-

prismatic column  

The external work for buckling analysis of column is given by 

[11] as: 

𝑉𝑁 =  
𝑁

2𝐿
∫ (

𝑑𝑤

𝑑𝑅
)

1

0

  𝑑𝑅   (18) 

Subtracting equation 18 from equation 15 gives the total 

potential energy functional as: 

Π =  
𝐸𝐼𝑠𝑜

2𝐿3
∫ 𝐹2 ∗ 

1

0

(
𝑑2𝑤

𝑑𝑅2
)

2

 𝑑𝑅 −
𝑁

2𝐿
∫ (

𝑑𝑤

𝑑𝑅
)

1

0

  𝑑𝑅     (19) 

Rearranging equation 19 gives: 

Π =  
𝐸𝐼𝑠𝑜

2𝐿3
∫ [𝐹2 ∗ (

𝑑2𝑤

𝑑𝑅2
)

2

 𝑑𝑅 −
𝑁𝐿2

𝐸𝐼𝑠𝑜

(
𝑑𝑤

𝑑𝑅
)] 

1

0

 𝑑𝑅   (20) 

Euler-Bernoulli equilibrium of forces equation of line 

continuum of varying thickness. 

 
Minimization of total potential energy functional with 

respect to deflection gives Euler-Bernoulli equilibrium of 

forces (resultant of forces, FR acting on the column in state of 

equilibrium). The domain (d1 ≤ R ≤ d2) of the Euler-Bernoulli 

equilibrium of forces is the bent part of the column, whose 

length is called the effective length, Le. Hence, minimizing 

equation 20 gives: 

𝐹𝑅 =
𝑑𝜋

𝑑𝑤
=

𝐸 𝐼𝑠𝑜

𝐿3
∫ (𝐹2

𝑑4𝑤

𝑑𝑅4
+

𝑁𝐿2

𝐸 𝐼𝑠𝑜

.
𝑑2𝑤

𝑑𝑅2
)

𝑑2

𝑑1

𝑑𝑅 = 0  (21) 

 

III. SOLUTION NON-LINEAR EULER-BERNOULLI 

EQUATION OF EQUILIBRIUM OF FORCES 

FOR BUCKLING OF NON-PRISMATIC 

COLUMN 

Let buckling load n be defined as a product of two functions 

as: 

𝑁 =   𝑁1 ∗  𝑁2      (22) 

Substituting equation 22 into equation 21 gives: 

∫ (𝐹2

𝑑4𝑤

𝑑𝑅4
+ 𝑁2

𝑁1𝐿2

𝐸 𝐼𝑠𝑜

.
𝑑2𝑤

𝑑𝑅2
)

𝑑2

𝑑1

𝑑𝑅 = 0     (23) 

Integrating equation 23 with respect to R and rearranging the 

outcome gives: 

∬ 𝐹2 ∗
𝑑4𝑤

𝑑𝑅4
 𝑑𝑅𝑑𝑅

𝑑2

𝑑1

=  − ∬ 𝑁2

𝑁1𝐿2

𝐸 𝐼𝑠𝑜

∗
𝑑2𝑤

𝑑𝑅2
𝑑𝑅𝑑𝑅

𝑑2

𝑑1

 

= 0   (24) 

Using the following mathematical axiom (or maxim), equation 

24 can be simplified. Let the axiom be: 

∬ 𝐺1𝐺2 𝑑𝑅 𝑑𝑅 = 𝑛1 ∫ 𝐺1𝑑𝑅 ∗ ∫ 𝐺2𝑑𝑅   (25) 

Where  𝑛1  is a constant. 

 When the product of A and B is the same as product of 

C and D and quantity A is the same as quantity C, the it 

logically follows that quantity B is the same as quantity D. this 

is mathematically expressed as: 

𝐼𝑓 𝐴 × 𝐵 = 𝐶 × 𝐷 𝑎𝑛𝑑 𝐴 = 𝐶 then B = D   (26) 
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With the axiom of equation 25, the left hand side of 

equation 24 is simplified as: 

∫ ∫ 𝐹2 ∗
𝑑4𝑤

𝑑𝑅4
𝑑𝑅𝑑𝑅

𝑑2

𝑑1

= 𝑛1 ∫ 𝐹2 𝑑𝑅 ∗ ∫
𝑑4𝑤

𝑑𝑅4
𝑑𝑅

𝑑2

𝑑1

  (27) 

Similarly, with the axiom of equation 25, the right hand 

side of equation 24 is simplified as: 

∫ ∫ 𝑁2

𝑁1𝐿2

𝐸 𝐼𝑠𝑜

∗
𝑑2𝑤

𝑑𝑅2
𝑑𝑅𝑑𝑅

𝑑2

𝑑1

= 𝑛1 ∫ 𝑁2 𝑑𝑅 ∗
𝑁1𝐿2

𝐸 𝐼𝑠𝑜

∫
𝑑2𝑤

𝑑𝑅2
𝑑𝑅

𝑑2

𝑑1

  (28) 

Substituting equations 27 and 28 into equation 24 gives: 

𝑛1 ∫ 𝐹2 𝑑𝑅 ∗ ∫
𝑑4𝑤

𝑑𝑅4
𝑑𝑅

𝑑2

𝑑1

=  − 𝑛1 ∫ 𝑁2 𝑑𝑅 ∗
𝑁1𝐿2

𝐸 𝐼𝑠𝑜

∫
𝑑2𝑤

𝑑𝑅2
𝑑𝑅

𝑑2

𝑑1

 

= 0  (29) 

With the axiom of equation 26, equation 29 gives two 

independent equations as: 

𝑛1 ∫ 𝐹2 𝑑𝑅 =   𝑛1 ∫ 𝑁2 𝑑𝑅   (30) 

 

∫
𝑑4𝑤

𝑑𝑅4
𝑑𝑅

𝑑2

𝑑1

= − 
𝑁1𝐿2

𝐸 𝐼𝑠𝑜

∫
𝑑2𝑤

𝑑𝑅2
𝑑𝑅

𝑑2

𝑑1

 = 0     (31) 

Solving equation 30 gives: 

 𝑁2  =  𝐹2     (32) 

Rearranging equation 31 gives: 

∫ [𝐹2 𝑑𝑅 −   𝑁2 𝑑𝑅]
1

0

 =   0     (33) 

∫ [
𝑑4𝑤

𝑑𝑅4
  +   

𝑁1𝐿2

𝐸 𝐼𝑠𝑜

∗
𝑑2𝑤

𝑑𝑅2
]

𝑑2

𝑑1

 𝑑𝑅 = 0    (34) 

For the integral of equation 34 to be zero, its integrand must be 

zero. That is: 

𝑑4𝑤

𝑑𝑅4
  +  

𝑁1𝐿2

𝐸 𝐼𝑠𝑜

∗
𝑑2𝑤

𝑑𝑅2
 = 0     (35) 

The ready solution of equation 35 is: 

𝑤 = 𝑎0 + 𝑎1𝑅 + 𝑎2 cos (
𝑁1𝐿2

𝐸 𝐼𝑠𝑜

) 𝑅 + 𝑎3 sin (
𝑁1𝐿2

𝐸 𝐼𝑠𝑜

) 𝑅     (36) 

 

A.  Satisfying the boundary conditions of the non-prismatic 

columns 

Four non-prismatic columns of various boundary 
conditions are considered. The boundary conditions are 

denoted as SS, CC, CS and CF standing for simply supported 

at both ends, clamped at both end, clamped at one end and 

simply support at the other end, and clamped at one end and 

free of support at the other end respectively. After satisfying 

the boundary conditions, the individual deflection functions 

for the columns, which are presented on Table 1 become: 

 𝑤 =   𝐴 h      (37) 

Where: A is the deflection coefficient and h is the shape 

function. 
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Columns/domain Boundary conditions Shape function of the deflection 

SS 

0 ≤ 𝑅 ≤ 1 

𝑤(0) =  
𝑑2𝑤(0)

𝑑𝑅2
= 0; 

𝑤(1) =  
𝑑2𝑤(1)

𝑑𝑅2
= 0 

𝑆𝑖𝑛(𝜋𝑅) 

CC 

0.25 ≤ 𝑅 ≤ 0.75 

𝑤(0) =  
𝑑𝑤(0)

𝑑𝑅
= 0; 

𝑤(1) =  
𝑑𝑤(1)

𝑑𝑅
= 0 

Cos 2πR − 1 

CS 

0.3 ≤ 𝑅 ≤ 1 

𝑤(0) =  
𝑑𝑤(0)

𝑑𝑅
= 0; 

𝑤(1) =  
𝑑2𝑤(1)

𝑑𝑅2
= 0 

𝑔1 − 𝑔1. 𝑅 − 𝑔1 cos 𝑔1𝑅 + sin 𝑔1𝑅 

𝑊ℎ𝑒𝑟𝑒: 𝑔1 = 4.49340946 

CF 

−1 ≤ 𝑅 ≤ 1 

𝑤(0) =  
𝑑𝑤(0)

𝑑𝑅
= 0;  𝑀(1) =  𝑉(1) = 0 Cos

𝜋𝑅

2
− 1 

Table 1: Shape functions of the deflection (w = Ah) for columns of various boundary conditions 

M =  moment; V =  shear force; A = deflection coefficient; h = shape function 

 

B. Calculation of  the buckling loads of non-prismatic 

columns 

Substituting equation 37 into equation 34 gives: 

𝐴 ∫ [
𝑑4ℎ

𝑑𝑅4
  +   

𝑁1𝐿2

𝐸 𝐼𝑠𝑜

∗
𝑑2ℎ

𝑑𝑅2
]

𝑑2

𝑑1

 𝑑𝑅 = 0   (38) 

Rearranging equation 38 and making the buckling load the 

subject gives: 

𝑁1 =
𝐸 𝐼𝑠𝑜

𝐿2
∗

∫
𝑑4ℎ
𝑑𝑅4

𝑑2

𝑑1
𝑑𝑅

− ∫
𝑑2ℎ
𝑑𝑅2

𝑑2

𝑑1
𝑑𝑅

      (39) 

Substituting equations 32 and 39 into equation 22 gives 

buckling load of non-prismatic column: 

N =
𝐸 𝐼𝑠𝑜

𝐿2
∗

∫ 𝐹2.
𝑑4ℎ
𝑑𝑅4

𝑑2

𝑑1
𝑑𝑅

− ∫
𝑑2ℎ
𝑑𝑅2

𝑑2

𝑑1
𝑑𝑅

      (40) 

Substituting the shape function for ss non-prismatic column 

from Table 1 into equitation 40 gives:  

𝑁 =
𝐸 𝐼𝑠𝑜

𝐿2
∗

∫ 𝐹2. [𝜋4 𝑆𝑖𝑛(𝜋𝑅)]
1

0
𝑑𝑅

− ∫ [−𝜋2 𝑆𝑖𝑛(𝜋𝑅)]
1

0
𝑑𝑅

= (𝜋2 ∗
𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

𝐿𝑒

∗ ∫ 𝐹2

1

0

𝑑𝑅    (41) 

Substituting the shape function for cc non-prismatic column 

from Table 1 into equitation 40 gives:  

𝑁 =
𝐸 𝐼𝑠𝑜

𝐿2
∗

∫ 𝐹2. [16𝜋4 Cos 2πR]
0.75

0.25
𝑑𝑅

− ∫ [−4𝜋2 Cos 2πR]
0.75

0.25
𝑑𝑅

= (4𝜋2 ∗
𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

𝐿𝑒

∗ ∫ 𝐹2

0.75

0.25

𝑑𝑅   (42) 
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Substituting the shape function for cs non-prismatic column 

from Table 1 into equitation 40 gives:  

𝑁 =
𝐸 𝐼𝑠𝑜

𝐿2
∗

∫ 𝐹2. [𝑔1
4(−𝑔1 cos 𝑔1𝑅 + sin 𝑔1𝑅)]

1

0.3
𝑑𝑅

− ∫ [−𝑔1
2(−𝑔1 cos 𝑔1𝑅 + sin 𝑔1𝑅)]

1

0.3
𝑑𝑅

= (𝑔1
2 ∗

𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

𝐿𝑒

∗ ∫ 𝐹2

1

0.3

𝑑𝑅  (43) 

Substituting the shape function for cf non-prismatic column 

from Table 1 into equitation (40) gives:  

𝑁 =
𝐸 𝐼𝑠𝑜

𝐿2
∗

∫ 𝐹2. [
𝜋4

16 Cos
𝜋𝑅
2

]
1

−1
𝑑𝑅

− ∫ [−
𝜋2

4
Cos

𝜋𝑅
2

]
1

−1
𝑑𝑅

= (
𝜋2

4
∗

𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

𝐿𝑒

∗ ∫ 𝐹2

1

−1

𝑑𝑅    (44) 

From equations 41, 42, 43 and 44, it is concluded that the 

buckling load on non-prismatic column is a function of 

buckling load of prismatic column and is defined (generally) 

as: 

𝑁 = 𝑁𝑠𝑜 ∗
𝐿

𝐿𝑒

∗ ∫ 𝐹2

𝑑2

𝑑1

𝑑𝑅     (45) 

Where: Nso is the buckling load of prismatic column.  

The buckling load is expressed as: 

𝑁 = N𝑑 ∗
𝐸 𝐼𝑠𝑜

𝐿2
    (46) 

Where: N𝑑  is the non dimensional buckling load of the column.  

 

 

 

 

 

 

 

IV. EXAMPLE PROBLEMS 

Some problems given by [12] to determine buckling loads are: 

A. Example 1 (Ex P1). 

 

 

 

 

 

Fig 2:- Simply supported beam under buckling for Ex P1 

∫ 𝐹2

1

0

𝑑𝑅 = ∫ [1 + Sin(𝜋𝑅)]
0.5

0

𝑑𝑅 + ∫ [1 + Sin(𝜋𝑅)]
1

0.5

𝑑𝑅

= (1 +
2

𝜋
) (47) 

𝑁 = (𝜋2 ∗
𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

𝐿𝑒

∗ (1 +
2

𝜋
) = (𝜋2 + 2𝜋)

𝐸 𝐼𝑠𝑜

𝐿2
 (48) 

B. Example 2 (Ex P2). 

 

 

 

 

 

Fig 3:- Simply supported beam under buckling for Ex P2 

∫ 𝐹2

1

0

𝑑𝑅 = ∫ (1 + 2R)
0.5

0

𝑑𝑅 + ∫ (3 −  2R)
1

0.5

𝑑𝑅 = 1.5  (49) 

𝑁 = (𝜋2 ∗
𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

𝐿𝑒

∗ 1.5 = 1.5𝜋2 ∗
𝐸 𝐼𝑠𝑜

𝐿2
   (50) 

 

Left  Right  

𝐼(𝑅) =  𝐼[1 + Sin(𝜋𝑅)] 

𝐼 𝐼 
𝐼𝑠𝑜 = 2𝐼  N N 

0.5 𝐿 0.5 𝐿 

𝐿 

Left  Right  

𝐼(𝑅) =  𝐼(3 −  2R) 

 

𝐼(𝑅) =  𝐼(1 + 2R) 

𝐼 

 

𝐼 

 

 
N N 

0.5 𝐿 

 

0.5 𝐿 

  𝐿 

 

2𝐼 
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C. Example 3 (Ex P3). 

 

 

 

 

 

Fig 4:- Simply supported beam under buckling for Ex P3 

∫ 𝐹2

1

0

𝑑𝑅 = ∫ (1 + √2R)
0.5

0

𝑑𝑅 + ∫ (1 + √2(1 − R))
1

0.5

𝑑𝑅

=
10

6
    (51) 

𝑁 = (𝜋2 ∗
𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

𝐿𝑒

∗
10

6
=

10

6
𝜋2 ∗

𝐸 𝐼𝑠𝑜

𝐿2
    (52) 

D.  Example 4 (Ex P4). 

 

 

 

 

Fig 5:- Simply supported beam under buckling for Ex P4 

∫ 𝐹2

1

0

𝑑𝑅 = ∫ (1 + 4R2)
0.5

0

𝑑𝑅 + ∫ (1 + 4(1 − R)2)
1

0.5

𝑑𝑅

=
4

3
   (53) 

𝑁 = (𝜋2 ∗
𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

𝐿𝑒

∗
4

3
=

4

3
𝜋2 ∗

𝐸 𝐼𝑠𝑜

𝐿2
     (54) 

Other example problems are 

 

 

E.  Example 5 (Ex P5). 

. 

 

 

 

Fig 6:- Clamped supported beam under buckling for Ex P5 

∫ 𝐹2

0.75

0.25

𝑑𝑅 = ∫ (1 − 0.5𝑅3)
0.75

0.25

𝑑𝑅 = 0.4609375    (55) 

𝑁 = (4𝜋2 ∗
𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

0.5𝐿
∗ ∫ 𝐹2

0.75

0.25

𝑑𝑅

= (8𝜋2 ∗
𝐸 𝐼𝑠𝑜

𝐿2
) ∗ 0.4609375

= 3.6875𝜋2 ∗
𝐸 𝐼𝑠𝑜

𝐿2
   (56) 

F.  Example 6 (Ex P6). 

. 

 

 

 

Fig 7:- Clamped supported beam under buckling for Ex P6 

∫ 𝐹2

0.1

0.3

𝑑𝑅 = ∫ (1.4R + 0.3)3
0.7

0.3

𝑑𝑅 + ∫ (1.7 −  1.4R)3
1

0.7

𝑑𝑅

= 0.3077074  (57) 

𝑁 = (𝑔1
2 ∗

𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

0.7𝐿
∗ 0.3077074

= 0.439582𝑔1
2 ∗

𝐸 𝐼𝑠𝑜

𝐿2
   (58) 

 

 

 

Left  Right  

𝐼(𝑅) =  𝐼(1 + √2(1 − R)) 𝐼(𝑅) =  𝐼(1 + √2R) 

𝐼 

 

𝐼 

 

 
N N 

0.5 𝐿 

 

0.5 𝐿 

  𝐿 

 

2𝐼 

 

Left  Right  

𝐼(𝑅) =  𝐼(1 + 4(1 − R)2) 

 

𝐼(𝑅) =  𝐼(1 + 4R2) 

𝐼 𝐼  
N N 

0.5 𝐿 0.5 𝐿 

 𝐿 

2𝐼 

0.56 
1.0 

𝐹2  =  1 − 0.5𝑅3 

N 
N 

L 

Left  Right  

𝑡 =  𝑡𝑜(1.7 −  1.4R) 

 

𝑡 =  𝑡𝑜(1.4R + 0.3) 

0.3 𝑡𝑜 0.3 𝑡𝑜 𝑡𝑜 
N N 

0.5 𝐿 0.5 𝐿 

 𝐿 
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G. Example 7 (Ex P7). 

 

 

 

 

 

Fig 8:- Clamped supported beam under buckling for Ex P7 

 

∫ 𝐹2

1

0.3

𝑑𝑅 = ∫ (R + 0.3)3
0.7

0.3

𝑑𝑅 + ∫ (−4 3⁄ + 29R 15⁄ )3
1

0.7

𝑑𝑅

= 0.2343586   (59) 

𝑁 = (𝑔1
2 ∗

𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

0.7𝐿
∗ 0.2343586 

= 0.334798𝑔1
2 ∗

𝐸 𝐼𝑠𝑜

𝐿2
   (60) 

H.  Example 8 (Ex P8). 

 

 

 

 

Fig 9:- Cantilever beam under buckling for Ex P8 

∫ 𝐹2

1

−

𝑑𝑅 = (∫ F2L

0

−0.6

dR + ∫ F2L

0.6

0

dR)

+ (∫ 𝐹2𝑅

−0.6

−1

𝑑𝑅 + ∫ 𝐹2𝑅

1

0.6

𝑑𝑅)

= 2 ∫ (R + 0.4)3
0.6

0

𝑑𝑅

+ 2 ∫ (2.2 −  2 R)3
1

0.6

𝑑𝑅 = 0.7368     (61) 

𝑁 = (
𝜋2

4
∗

𝐸 𝐼𝑠𝑜

𝐿2
) ∗

𝐿

2L
∗ 0.7368 = 0.0921𝜋2 ∗

𝐸 𝐼𝑠𝑜

𝐿2
      (62) 

V. RESULTS AND DISCUSSIONS 

The results from the present study obtained using the 

closed form formula are compared with results from [12] 

obtained using numerical methods. The summary of the results 

is presented on Table 2, which contains the non-dimensional 
buckling loads. The method used by [12] in solving problems 

Ex p1, Ex P2, Ex P3 and Ex P4 is an approximate method 

called weighted moment of inertia. It is expected that his 

results should be close to exact results. However, the closeness 

of his results and the results from the closed form formula is 

an indication that the results from the present study ought to be 

desired exact results. This fit is assumed since the non-linear 

governing equation was actually integrated without 

circumventing it (integration), the outcome of the integration 

gave the closed form formula used in getting the results 

presented on Table 2. The authors are recommending for 
future studies to consider using the approach used herein for 

bending analyses of non-prismatic beams and vibration 

analyses of non-prismatic beams. 

 

 

Example Problem Ex P1. Ex P2. Ex P3. Ex P4. Ex P5. Ex P6. Ex P7. Ex P8. 

Present Result 16.153 14.804 16.449 13.159 36.394 8.8755 6.760 0.909 

Manicka Results 17.866 16.106 17.757 14.43 - - - - 

Percentage difference 9.59 8.08 7.36 8.80 - - - - 

Table 2:- Non-dimensional buckling loads from present study and from [12]. 

 

 

 

 

 

 
 

Left  Right  

𝑡 = 𝑡𝑜(−4 3⁄ + 29R 15⁄ ) 
𝑡 = 𝑡𝑜(R + 0.3) 

0.6 𝑡𝑜 0.3 𝑡𝑜 𝑡𝑜 
N N 

0.7 𝐿 
0.3 𝐿 

𝐿 

Left  Right  

𝑡 = 𝑡𝑜(R + 0.4) 

0.2 𝑡𝑜 0.4 𝑡𝑜 
𝑡𝑜 N 

N 

0.6 𝐿 
0.4 𝐿 

 𝐿 

𝑡 = 𝑡𝑜(2.2 −  2 R) 
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	Buckling analysis of non-prismatic column presents non-linear governing equation of equilibrium of forces. This makes it somewhat intractable to handle. In a bid to circumvent the integration of the non-linear governing equation, several schol...
	However, some scholars tried using analytical approaches to solve the problem of non-prismatic columns. [7] used energy method and modified vibrational mode shape (MVM) in buckling analysis of non-prismatic columns. They used some numerical problems t...
	R= ,x-L. ;Q= ,y-b. ;S=,z-t.       (3)
	where: L, b and t are dimensions of column along x, y and z axes respectively.
	The normal strain acting on y-z plane is defined as:
	,ε-𝑥𝑥.=,du-𝑑x.              (4)
	Substituting equations 2 and 3 into equation 4 gives:
	,ε-𝑅𝑅.= −,𝑡𝑠-,𝐿-2..∗,,𝑑-2.𝑤-𝑑,𝑅-2..         (5)
	Hooke’s law is the relation between stress and strain. Thus
	,𝜎-𝑅. ∝  ,𝜀-𝑅.         (6)
	Introducing proportionality constant in equation 6 gives
	,𝜎-𝑅.=  𝐸,𝜀-𝑅.      (7)
	Where E is the Young’s modulus. Substituting equation 5 into equation 7 gives
	,𝜎-𝑅.= −,𝐸𝑡𝑠-,𝐿-2..∗ ,,𝑑-2.𝑤-𝑑,𝑅-2..      (8)
	Strain energy of a column is half of the product of strain and stress summed up in the domain of the column. That is:
	𝑈= ,1-2.,,𝜀-𝑅..,𝜎-𝑅. 𝑑𝑥 𝑑𝑦 𝑑𝑧 = ,𝑏𝑡𝐿-2.,,𝜀-𝑅..,𝜎-𝑅. 𝑑𝑅 𝑑𝑄 𝑑𝑆   (9)
	Substituting equations 5 and 8 into equation 9 gives:
	𝑈= ,𝐸𝑏-,2𝐿-3..,,𝑆-2.,𝑡-3.,,,,𝑑-2.𝑤-𝑑,𝑅-2...-2..     𝑑𝑅 𝑑𝑄 𝑑𝑆    (10)
	Rearranging equation 10 gives:
	𝑈= ,0-1-𝑑𝑄∗,−0.5-0.5-,𝑆-2.  𝑑𝑆 ∗ ,0-1-,𝑡-3....∗,,,,𝑑-2.𝑤-𝑑,𝑅-2...-2.𝑑𝑅∗,𝐸𝑏-2,𝐿-3..    (11)
	Carrying out the closed domain integration of equation 11 with respect to Q and S gives:
	𝑡= ,𝐹-𝑜.∗  ,𝑡-𝑠𝑜.      (13)
	Where  ,𝑡-𝑠𝑜.  is the thickness at a reference point and ,𝐹-𝑜. is the function that defines how the thickness varies along R axis.
	Substituting equation 13 into equation 12 gives:
	𝑈= ,𝐸𝑏-,24𝐿-3..,0-1-,,𝐹-0.-3.∗ ,,𝑡-𝑠𝑜.-3..∗,,,,𝑑-2.𝑤-𝑑,𝑅-2...-2.   𝑑𝑅   (14)
	Simplifying equation 14 gives:
	𝑈= ,𝐸,𝐼-𝑠𝑜.-,2𝐿-3..,0-1-,𝐹-2.∗ .,,,,𝑑-2.𝑤-𝑑,𝑅-2...-2.   𝑑𝑅   (15)
	Where the second moment of area at the reference point denoted as   ,𝐼-𝑠𝑜.  and the function that defines how the second moment of area varies along R axis denoted as   ,𝐹-2. are defined as:
	,𝐼-𝑠𝑜.  =  ,𝑏 ,,𝑡-𝑠𝑜.-3.-12.     (16)
	,𝐹-2.  =  ,,𝐹-0.-3.           (17)
	Euler-Bernoulli equilibrium of forces equation of line continuum of varying thickness.
	,𝐹-𝑅.=,𝑑𝜋-𝑑𝑤.=,𝐸 ,𝐼-𝑠𝑜.-,𝐿-3..,,𝑑-1.-,𝑑-2.-,,𝐹-2.,,𝑑-4.𝑤-𝑑,𝑅-4..+,𝑁,𝐿-2.-𝐸 ,𝐼-𝑠𝑜...,,𝑑-2.𝑤-𝑑,𝑅-2....𝑑𝑅=0  (21)
	Let buckling load n be defined as a product of two functions as:
	𝑁 =  ,𝑁-1.∗ ,𝑁-2.      (22)
	,,𝑑-1.-,𝑑-2.-,,𝐹-2.,,𝑑-4.𝑤-𝑑,𝑅-4..+,𝑁-2.,,𝑁-1.,𝐿-2.-𝐸 ,𝐼-𝑠𝑜...,,𝑑-2.𝑤-𝑑,𝑅-2....𝑑𝑅=0     (23)
	,,𝑑-1.-,𝑑-2.-,,𝑑-4.𝑤-𝑑,𝑅-4..𝑑𝑅.=− ,,𝑁-1.,𝐿-2.-𝐸 ,𝐼-𝑠𝑜..,,𝑑-1.-,𝑑-2.-,,𝑑-2.𝑤-,𝑑𝑅-2..𝑑𝑅. =0     (31)
	Solving equation 30 gives:
	,𝑁-2. = ,𝐹-2.     (32)
	Rearranging equation 31 gives:
	,0-1-,,𝐹-2. 𝑑𝑅 −  ,𝑁-2. 𝑑𝑅.. =  0     (33)
	,,𝑑-1.-,𝑑-2.-,,,𝑑-4.𝑤-𝑑,𝑅-4..  +  ,,𝑁-1.,𝐿-2.-𝐸 ,𝐼-𝑠𝑜..∗,,𝑑-2.𝑤-,𝑑𝑅-2.... 𝑑𝑅 =0    (34)
	For the integral of equation 34 to be zero, its integrand must be zero. That is:
	,,𝑑-4.𝑤-𝑑,𝑅-4..  +  ,,𝑁-1.,𝐿-2.-𝐸 ,𝐼-𝑠𝑜..∗,,𝑑-2.𝑤-,𝑑𝑅-2.. =0     (35)
	The ready solution of equation 35 is:
	𝑤=,𝑎-0.+,𝑎-1.𝑅+,𝑎-2.,cos-,,,𝑁-1.,𝐿-2.-𝐸 ,𝐼-𝑠𝑜...𝑅.+,𝑎-3.,sin-,,,𝑁-1.,𝐿-2.-𝐸 ,𝐼-𝑠𝑜...𝑅.     (36)
	𝑤 =  𝐴 h      (37)
	𝐴,,𝑑-1.-,𝑑-2.-,,,𝑑-4.ℎ-𝑑,𝑅-4..  +  ,,𝑁-1.,𝐿-2.-𝐸 ,𝐼-𝑠𝑜..∗,,𝑑-2.ℎ-,𝑑𝑅-2.... 𝑑𝑅 =0   (38)
	Table 2:- Non-dimensional buckling loads from present study and from [12].
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