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I. INTRODUCTION 

 

Classical Multi-Criteria Decision-Making (MCDM) 

consists of choosing an alternative among a known set of 

alternatives based on their quantitative evaluations or 

numerical scores obtained with respect to different criteria. 

The model proposed here can be classified as Multi-Criteria 

Decision Making (MCDM) tool. Its purpose is to help the 

user to choose an alternative among a known set of 

alternatives based on their quantitative evaluations or 

numerical scores obtained with respect to selection criteria. 
Although the MCDM problem can be easily formulated, 

there are difficulties in solving it because of the lack of data 

or missing score values of an alternative for any criterion. 

Solving a classical MCDM becomes further complicated as 

the scores are expressed in different physical units and 

different scales, due to the diverse nature of the selection 

criteria. Such differences in the unit and scale of scores 

necessitate a normalization step that may yield further 

problems like the rank reversal. A rank reversal is a change 

in rank order when the structure of the MCDM problem is 

changed by adding or deleting alternatives. This usually 

happens when the choice of direct data normalization is 
made in the MCDM problem. Another barrier in solving 

such a problem is that no alternative exists which optimizes 

all the criteria jointly. Hence, MCDM problems are not 

exactly solved, but a decision is found by means of ranking 

or other relative compromises.  

 

 

 

A. Context 

Many methods have been developed to address the 

classical MCDM problem like Analytic Hierarchy Process 

(AHP), Elimination and Choice Expressing Reality 

(ELECTRE), Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS), and Estimator 

Ranking Vector (ERV). However, very few methods exist in 

the literature, which deal with non-classical MCDM 

problems having missing score values [1].  

 

In this paper, a step by step process of such a method 
developed by the authors is presented to solve a non-

classical MCDM problem. This was applied to create a 

Sustainability Assessment Tool (SAT) for ranking building 

materials used in Indian social housing projects. The SAT is 

a component of a Decision Support Toolkit (DST), an 

interactive and online toolkit comprising of a range of 

outputs, datasets, tools, and insights. The DST can help 

prospective users in choosing sustainable building materials 

and making and monitoring sustainable design interventions 

and construction practices in social housing projects. This 

study was carried out as part of the Mainstreaming 
Sustainable Social Housing in India project (MaS-SHIP) is a 

research project funded by the United Nations 

Environment’s 10 Year Framework Programme (10YFP) 

undertaken by the Low Carbon Building Research Group at 

Oxford Brookes University (UK), The Energy and 

Resources Institute (TERI), Development Alternatives and 

the United Nations Human Settlements Programme (UN-

Habitat) [2]. 

 

TOPSIS would have been an appropriate method to 

arrive at final individual values for each alternative across 

all criteria [3]. However, to account for the missing values 
and to avoid possible rank reversals, there was a need to 

convert the score matrix using a belief function approach 

from the Dempster-Shafer Theory [4]. Also known as the 

theory of belief functions, Dempster Shafer Theory is a 

generalization of the Bayesian theory of subjective 

probabilities. Where Bayesian theory requires probabilities 

for each question, belief functions allow us to assign degrees 

of belief on probabilities of the questions. Another reason 

for the authors to choose this method was to avoid possible 

rank reversals from direct normalization. 
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B. Structure of the paper 

The paper is structured as follows; the section II 
explains the formulation of the non-classical MCDM 

problem for ranking of alternatives. The subsequent sections 

III, IV & V define and explain the derivation of the values 

of belief, plausibility and uncertainty for all the score values 

in the MCDM problem formulated in section II. Section VI 

explains the derivation of global score values to determine 

the final rankings of the alternatives for the selected criteria.  

 

The stepwise method has been demonstrated by 

solving a hypothetical MCDM problem where the high 

school students are required to be ranked on the basis of 

defined selection criteria. The alternatives in this problem 
are the different students and the selection criteria are 

Performance in Physics, Performance in Chemistry, 

Performance in Mathematics, Discipline Issues Reported 

and Participation in Extra-curricular Activities.  

 

II. FORMULATING THE MCDM 

 

Shafer [4] defined the set of alternatives as the 

representative of the Frame of Discernment (FoD) of the 

problem. FoD is defined as the set of mutually exclusive 

“elementary” propositions.  In this case, the FoD of our 
problem is represented by a set of 7 alternatives denoted by 

 

𝐴 ≜  {𝐴1 , 𝐴2 , 𝐴3 … . . 𝐴7}                                        (1) 

 

The alternatives consist of students of a high school. 

The MCDM problem also consists of a set of 5 criteria for 

selection, denoted by  

𝐶 ≜  {𝐶1 , 𝐶2 , 𝐶3 … . . 𝐶5}                                         (2) 

 

The selection criteria consist of both quantitative 
(Performance in Physics, Performance in Chemistry, 

Performance in Mathematics) as well as qualitative 

(Discipline Issues Reported, Participation in Extra-curricular 

Activities) score values. Each criterion has a weighting 
factor which characterizes its relative importance. The set of 

normalized weights for the criteria denoted by  

𝑤 ≜  {𝑤1 , 𝑤2 , 𝑤3 … . . 𝑤5}                                      (3) 

 

The weights could be derived from AHP pairwise 

comparison survey done with experts from the field. This 

method was also adopted as part of the MaS-SHIP project to 

assign relative weights to the 18 attributes. The relative 

importance (weight) of each criterion is between 0 and 1,  

i.e.   𝑤𝑖 = [0,1] ∀ 𝑤𝑖 ∈ 𝑤                                       (4) 
and the sum of all weights in equal to 1, 

 i.e.   ∑ 𝑤ₓ = 15
𝑋=1                                                                (5) 

 

The score value is related to the evaluation of an alternative 

𝐴𝑖 for a criterion 𝐶𝑗, hence denoted by  

𝑆𝑖𝑗 = 𝑆𝑗(𝐴𝑖)                                                                      (6) 

 

The scores for criteria - Performance in Physics, 

Performance in Chemistry, and Performance in Mathematics 

are quantitative and would fall between the maximum (100) 

and the minimum (0) score values only. But, the scores for 

criteria – Discipline Issues Reported and Participation in 

Extra-curricular Activities are qualitative and represented as 

‘High’, ‘High-Medium’, ‘Medium’, ‘Medium-Low’, and 
‘Low’. If the score value for a particular alternative-criterion 

pair is missing, it is denoted by the “theta” symbol (θ).  

 

So the MCDM problem in this paper could be 

formulated as follows: given the (7×5) score matrix 

𝑆𝑖𝑗 = 𝑆𝑗(𝐴𝑖),   elements of which will either have a numerical 

value or θ value (when the score value is missing) and 

knowing the relative importance of criteria denoted by w , 

how to rank the elements of 𝐴 ≜  {𝐴1 , 𝐴2 , 𝐴3 … . . 𝐴17} to 
make the final decision?  

 

S
tu

d
e
n

ts
 

Performance 

Discipline Issues 

Reported 

Participation in Extra-

curricular Activities Physics Chemistry Mathematics 

Score Score Score 

High-Medium-

Low High-Medium-Low 

1 42 93 82 L VH 

2 56 45 θ L M 

3 48 70 95 L VH 

4 79 100 67 M-L L 

5 92 64 70 M-L L 

6 θ 58 86 L M 

7 83 36 99 L M-L 

Table 1:- Sample Score Matrix 
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III. BELIEF VALUES FROM ‘POSITIVE SUPPORT’ 

 
The belief of a score for an alternative in a particular 

criterion is the minimum chance of that alternative being 

better than another alternative in the same criterion. The 

belief value is a representation of the minimum evidence we 

have regarding the performance of an alternative in a 

criterion. It is the minimum probability of the alternative 

being better than another alternative in the same criterion. 

Hence, it is the summation of how much the score of the 

alternative is better than others in the criterion divided by 

the best score in the criterion. In this case, the best score is 

the one with the least numerical value. How much an 

alternative is better than other alternatives in a criterion is 

called as its positive support.   For an alternative  𝐴𝑖  in a 

criterion 𝐶𝑗, we denote its belief as 𝐵𝑒𝑙𝑗(𝐴𝑖) and its positive 

support as 𝑆𝑢𝑝𝑗(𝐴𝑖). 

 

𝐵𝑒𝑙𝑗(𝐴𝑖) ≜
𝑆𝑢𝑝𝑗(𝐴𝑖)

𝐴
𝑚𝑖𝑛
𝑗                                              (7) 

 

𝑆𝑢𝑝𝑗(𝐴𝑖) ≜ ∑ |𝑆𝑗(𝑌) − 𝑆𝑗(𝐴𝑖)|𝑌∈𝐴 ∶ 𝑆𝑗(𝑌)≥ 𝑆𝑗(𝐴𝑖) (8) 

 
As the score values in all criteria were made uniform 

by making lesser to be better, the positive support for any 

alternative in any criterion would be calculated on how 

numerically lesser it is than other alternatives in the same 

criterion. For the same reason the alternative with the best 

score for any criterion is the one with the lowest numerical 

score value, denoted here by 𝐴𝑚𝑖𝑛
𝑗

.  

 

As there is no evidence regarding the missing scores, 

the belief for the same will be zero. As we do not know the 

missing score, it could take any value, including the worst in 

the criterion which would make the probability of the 

alternative being better than another to be zero. Hence the 

minimum chance that a missing score is better than another 

score in the same criterion is zero  

 

i.e.   𝐵𝑒𝑙 (𝜃) = 0                                                         (9) 

 

S
tu

d
e
n

ts
 Performance 

Discipline Issues 

Reported 

Participation in Extra-

curricular Activities Physics Chemistry Mathematics 

Belief Assignments from Positive Support 

1 0.41 0.03 1.00 0.03 0.09 

2 0.26 0.38 0.00 0.03 0.00 

3 0.34 0.15 1.00 0.03 0.02 

4 0.08 0.00 0.04 0.18 0.22 

5 0.02 0.19 0.04 0.18 0.19 

6 0.00 0.24 0.31 0.03 0.06 

7 0.05 0.49 0.15 0.03 0.00 

Table 2:- Belief Values 
 

IV. PLAUSIBILITY FROM ‘NEGATIVE SUPPORT’ 

 

The plausibility of a score for an alternative in a 

particular criterion is the maximum chance of that 

alternative being better than another alternative in the same 

criterion. The plausibility value is a representation of the 

maximum evidence we have regarding the performance of 

an alternative in a criterion. It is the maximum probability of 

the alternative being better than another alternative in the 

same criterion. The Plausibility is derived from the disbelief 

of that alternative in a particular criterion. Disbelief is 
representative of the minimum evidence against an 

alternative.   

 

The Disbelief of an alternative  𝐴𝑖  is the negative 

support of that alternative for that category divided by the 

score value of the worst alternative for that criterion, which 

is the maximum of all the score values here. By negative 

support, we mean how much  𝐴𝑖  is worse than all other 

alternatives for criterion 𝐶𝑗. The Disbelief value represents 

the minimum value that could be taken by the probability 

that  𝐴𝑖 is worse than another alternative in criterion 𝐶𝑗. For 

an alternative  𝐴𝑖 in a criterion 𝐶𝑗, we denote its Disbelief as 

𝐷𝑖𝑠𝑗(𝐴𝑖) and its negative support as 𝐼𝑛𝑓𝑗(𝐴𝑖).  

. 

𝐷𝑖𝑠𝑗(𝐴𝑖) ≜
𝐼𝑛𝑓𝑗(𝐴𝑖)

𝐴𝑚𝑎𝑥
𝑗                                                    (10) 

𝐼𝑛𝑓𝑗(𝐴𝑖) ≜ ∑ |𝑆𝑗(𝑌) − 𝑆𝑗(𝐴𝑖)|𝑌∈𝐴 ∶ 𝑆𝑗(𝑌)≤ 𝑆𝑗(𝐴𝑖)       (11) 

 

As the score values in all criteria were made uniform 

by making lesser to be better, the negative support for any 

alternative in any criterion would be calculated on how 

numerically greater it is than other alternatives in the same 
criterion. For the same reason the alternative with the worst 

score for any criterion is the one with the highest numerical 

score value, denoted here by 𝐴𝑚𝑎𝑥
𝑗

.  

 

The plausibility of an alternative for a particular 

criterion is defined as the maximum value that could be 

taken by the probability that the alternative is better another 
alternative for that criterion. Hence, it is one minus the 

doubt (Disbelief) about the alternative. We denote 

plausibility of an alternative  𝐴𝑖 in a criterion 𝐶𝑗 as 𝑃𝑙𝑠𝑗(𝐴𝑖). 
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𝑃𝑙𝑠𝑗(𝐴𝑖) = 1 − 𝐷𝑖𝑠𝑗(𝐴𝑖)                                           (12) 

 

The Plausibility of an alternative represents the 

maximum possible evidence we have for it directly and 

hence the probability of the alternative being better than 

another alternative cannot be higher than this. As there is no 

evidence on the score value, it might even be the best 

alternative in that criterion. So the maximum value that the 

probability of it being better than others is 1, which is when 

it is actually the best alternative. Hence, the plausibility of a 

missing score value is ‘one’, i.e. 𝑃𝑙𝑠 (𝜃) = 1 

 

𝐷𝑖𝑠𝑗(𝐴𝑖), 𝐵𝑒𝑙𝑗(𝐴𝑖), 𝑃𝑙𝑠𝑗(𝐴𝑖) ∈ [0,1], ∀ 𝑖, 𝑗𝜖𝑁       (13) 

 

𝐵𝑒𝑙𝑗(𝐴𝑖) ≤ 𝑃𝑙𝑠𝑗(𝐴𝑖) , ∀ 𝑖, 𝑗 ∈ 𝑁                                (14) 

 

The belief and plausibility measures represent the 
lower and upper bounds which surround the belief value. 

Hence, the interval between the Belief and Plausibility of a 

score value 𝑆𝑖𝑗  represents the exact range in which the belief 

of the score resides. The smaller the interval, the higher is 

the certainty of the score value. For instance, if 𝐵𝑒𝑙𝑗(𝐴𝑖) =

𝑃𝑙𝑠𝑗(𝐴𝑖)  , there is absolute certainty regarding the 

probability of  𝐴𝑖 is being better than another alternative in 

criterion 𝐶𝑗. We must reinforce that the certainty is not about 

the score being better than another but about the probability 

of the same. In the literature, these intervals are often 

expressed as the Belief Intervals (Khatibi, 2010).  This leads 

us to the third crucial element to be derived using this theory 

for each of our score values, which is Uncertainty. 

 

S
tu

d
e
n

ts
 Performance 

Discipline Issues 

Reported 

Participation in Extra-

curricular Activities Physics Chemistry Mathematics 

Plausibility Assignments from Negative Support 

1 0.86 0.15 1.00 0.53 0.46 

2 0.74 0.84 0.68 0.53 1.00 

3 0.82 0.56 1.00 0.53 0.15 

4 0.43 0.00 0.29 0.73 0.67 

5 0.19 0.65 0.29 0.73 0.64 

6 1.00 0.72 0.68 0.53 0.38 

7 0.37 0.89 0.50 0.53 0.03 

Table 3:- Plausibility Values 

 

V. UNCERTAINTY FROM PLAUSIBILITY AND BELIEF VALUES 

 

Uncertainty of a score value is defined as its belief interval or the difference between its plausibility and belief values. We 

denote the uncertainty of score value 𝑆𝑖𝑗  as 𝑈𝑛𝑐𝑗(𝐴𝑖) .  As we gather more evidence, the uncertainty value diminishes.    The score 

value of the best alternative for any criterion will have a ‘zero’ uncertainty. 

 𝑈𝑛𝑐𝑗(𝐴𝑖) = 𝑃𝑙𝑠𝑗(𝐴𝑖) − 𝐵𝑒𝑙𝑗(𝐴𝑖)                            (15) 

 

By both mathematical construction and intuitive sense, the uncertainty value of missing score value is 1. It means there is no 

certainty or absolute uncertainty regarding the probability of the score value being better than another in the same criterion, i.e. 

𝑈𝑛𝑐(𝜃) = 1                                                     (16) 

 

S
tu

d
e
n

ts
 

Performance 

Discipline Issues 

Reported 

Participation in Extra-

curricular Activities Physics Chemistry Mathematics 

Uncertainty Assignments from Belief and Plausibility Values 

1 0.45 0.13 0.00 0.51 0.37 

2 0.48 0.46 0.37 0.51 1.00 

3 0.48 0.42 0.00 0.51 0.14 

4 0.36 0.00 0.25 0.55 0.45 

5 0.17 0.46 0.25 0.55 0.45 

6 1.00 0.48 0.37 0.51 0.32 

7 0.31 0.41 0.35 0.51 0.03 

Table 4:- Uncertainty Values 

 

 

. 

http://www.ijisrt.com/


Volume 5, Issue 5, May – 2020                                             International Journal of  Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 
IJISRT20MAY019                                                   www.ijisrt.com                     201 

VI. DETERMINING A GLOBAL SCORE 

 

For each score value 𝑆𝑖𝑗  (numerical and ‘θ’) we have 

derived 3 corresponding values from the Dempster Shafer 

Theory of evidence; Belief, Plausibility and Uncertainty. 

Hence for each pair of alternatives  𝐴𝑖 in a criterion 𝐶𝑗  we 

have a triplet of Belief, Plausibility and Uncertainty. We 

denote the set of all such triplets as BBA (Basic Belief 

Assignment).  

 

𝑆 → 𝐵𝐵𝐴 ≜ 𝐵𝐵𝐴𝑖𝑗 ∀𝑖, 𝑗 𝜖 𝑁                                       (17) 

 

𝑆𝑖𝑗 → 𝐵𝐵𝐴𝑖𝑗 = {𝐵𝑒𝑙𝑖𝑗 , 𝑃𝑙𝑠𝑖𝑗 , 𝑈𝑛𝑐𝑖𝑗}                         (18) 

 

 

Unlike the score matrix, the BBA matrix has no 

missing value; hence TOPSIS could be applied at this stage. 

For each criterion, TOPSIS principally measures the 

distance of each alternative from the best and worst 

alternatives [3]. For distances between belief intervals we 

refer to the measure provided by Khatibi (2010). This 

distance measure has the properties of non-negativity, non-

degeneracy, symmetry and triangular inequality, which 

makes this a true distance metric (Khatibi, 2010). Khatibi 

denoted 𝐵𝐼𝐷(𝐴, 𝐵) as the Belief Interval Distance between 

two belief intervals A and B.  

 

𝐵𝐼𝐷(𝐴, 𝐵) ≜
1

2
 (|𝐵𝑒𝑙(𝐴) − 𝐵𝑒𝑙(𝐵)| + |𝑃𝑙𝑠(𝐴) −

𝑃𝑙𝑠(𝐵)| + |𝑈𝑛𝑐(𝐴) − 𝑈𝑛𝑐(𝐵)|)(20) 

 

Using Khatibi’s distance measure, for each triplet in 

the BBA matrix, we estimate its distance from the best and 

worst alternatives in the same criterion. We denote the new 

matrix as the BID matrix consisting of 𝑑𝑖𝑗
𝑏𝑒𝑠𝑡and 𝑑𝑖𝑗

𝑤𝑜𝑟𝑠𝑡  for 

each 𝐵𝐵𝐴𝑖𝑗. 

 

𝑑𝑖𝑗
𝑏𝑒𝑠𝑡 = 𝐵𝐼𝐷(𝐵𝐵𝐴𝑖𝑗 , 𝐵𝐵𝐴𝑗

𝑏𝑒𝑠𝑡)                                  (21) 

 

Here, 𝐵𝐵𝐴𝑗
𝑏𝑒𝑠𝑡  is the BBA triplet of the alternative 

with best score in the criterion 𝐶𝑗. Similarly, for each 𝐵𝐵𝐴𝑖𝑗  

we estimate the distance from the BBA triplet with the worst 

score value in that criterion. 

𝑑𝑖𝑗
𝑤𝑜𝑟𝑠𝑡 = 𝐵𝐼𝐷(𝐵𝐵𝐴𝑖𝑗 , 𝐵𝐵𝐴𝑗

𝑤𝑜𝑟𝑠𝑡)                             (22) 

 

Here, 𝐵𝐵𝐴𝑗
𝑤𝑜𝑟𝑠𝑡  is the BBA triplet of the alternative 

with worst score in the criterion 𝐶𝑗. Following the principles 

of TOPSIS, we have derived 2 corresponding values for 

each BBA triplet.  

.  

𝐵𝐵𝐴𝑖𝑗 → 𝐵𝐼𝐷𝑖𝑗 ≜ (𝑑𝑖𝑗
𝑏𝑒𝑠𝑡 , 𝑑𝑖𝑗

𝑤𝑜𝑟𝑠𝑡)                            (22) 

 

From the BID matrix, for each alternative  𝐴𝑖  we 

compute weighted average of 𝑑𝑖𝑗
𝑏𝑒𝑠𝑡  values with relative 

importance weightages  𝑤𝑗 . Similarly, for each 

alternative 𝐴𝑖 we compute the weighted average of 𝑑𝑖𝑗
𝑤𝑜𝑟𝑠𝑡  

values across all criteria. We denote the best and worst 

weighted averages for each alternative  𝐴𝑖 as 𝐷𝑏𝑒𝑠𝑡( 𝐴𝑖) and 

𝐷𝑤𝑜𝑟𝑠𝑡( 𝐴𝑖) respectively.  

 

𝐷𝑏𝑒𝑠𝑡( 𝐴𝑖) ≜ ∑ 𝑤𝑗 ×18
𝑗=1 𝑑𝑖𝑗

𝑏𝑒𝑠𝑡                                        (23) 

𝐷𝑤𝑜𝑟𝑠𝑡( 𝐴𝑖) ≜ ∑ 𝑤𝑗 ×18
𝑗=1 𝑑𝑖𝑗

𝑤𝑜𝑟𝑠𝑡                                   (24) 

 

After this step, we have arrived at 2 global scores, 

𝐷𝑏𝑒𝑠𝑡( 𝐴𝑖)  and 𝐷𝑤𝑜𝑟𝑠𝑡( 𝐴𝑖)  for each alternative  𝐴𝑖 . From 

here, we calculate the relative closeness  (𝑅)  of the 

alternative 𝐴𝑖  with respect to the ideal best solution 𝐴𝑏𝑒𝑠𝑡  

defined by 

𝑅( 𝐴𝑖 , 𝐴𝑏𝑒𝑠𝑡) ≜  
𝐷𝑤𝑜𝑟𝑠𝑡( 𝐴𝑖)

𝐷𝑤𝑜𝑟𝑠𝑡( 𝐴𝑖)+𝐷𝑏𝑒𝑠𝑡( 𝐴𝑖)
   (25) 

 

A higher 𝑅( 𝐴𝑖 , 𝐴𝑏𝑒𝑠𝑡) means a better alternative  𝐴𝑖 . 

Hence, the preference ordering of the alternatives is made 

according to the descending order of the  𝑅( 𝐴𝑖 , 𝐴𝑏𝑒𝑠𝑡) ∈
[0,1]. 

 

Student 
Weighted Average 

Relative Closeness 
Best Worst 

1 137.99 162.01 0.54 

3 138.88 161.12 0.54 

2 160.98 139.02 0.46 

7 171.25 128.75 0.43 

6 174.63 125.37 0.42 

5 175.52 124.48 0.41 

4 179.56 120.44 0.40 

Table 5 

 

To solve the above MCDM problem, the authors have 

anchored the maximum and minimum values for each 

criterion. The maximum and minimum score values for the 

quantitative criteria lies between 0 and 100. Therefore, the 
minimum and maximum possible score would be 0 and 100 

respectively. Similarly, in the case of the qualitative 

criterion, the minimum possible score would be ‘Low’ and 

the maximum would be ‘High’. This would help in 

eliminating the issues of possible rank reversal in case of the 

addition of more alternatives in the problem. 
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VII. CONCLUSION 

 
In this paper, we attempted to detail out the process 

involved in aiding the decision making in ranking of 7 

students based on qualitative, quantitative and missing 

scores across 5 criteria. The method demonstrated is 

relatively easy to use and does not require normalization of 

the data at the initial stage. It also deals with the missing 

score values in the initial MCDM problem. The non-

uniformity of the weights has no effect on the model. This 

provides a potential decision maker with an option to choose 

the criteria that must be evaluated for estimation of the final 

R matrix. The weights of the deselected criteria in the model 

will be redistributed to the selected criteria in their relative 
proportions.   

 

ACKNOWLEDGMENT 

 

We would like to thank the United Nations 

Environment’s Sustainable Buildings and Construction  

Programme of the 10 Year Framework  Programme  

(10YFP)  for  financially  supporting  this research. We 

would also like to acknowledge the support and effort of the 

Mainstreaming Sustainable Social Housing in India project 

(MaS-SHIP) consortium partners – the Low Carbon 
Building Research Group at Oxford Brookes University 

(UK), Development Alternatives and the United Nations 

Human Settlements Programme (UN-Habitat). 

 

Lastly, we thank Mr. Sanjay Seth, Senior Director, The 

Energy and Resources Institute (TERI) for his guidance. 

 

REFERENCES 

 

[1]. Dezert, J., Han, D., & Yin, H. (2016, July). A new 

belief function based approach for multi-criteria 

decision-making support. In 2016 19th International 
Conference on Information Fusion (FUSION) (pp. 

782-789). IEEE. 

[2]. Gupta, R., Tuteja, S., Seth, S., Behal, M., Niazi, Z., 

Caleb, P., ... & Banerjee, A. (2019). Evaluating the 

Sustainability Performance of Building Systems and 

Technologies for Mainstreaming Sustainable Social 

Housing in India. 

[3]. Roszkowska, E. (2011). Multi-criteria decision 

making models by applying the TOPSIS method to 

crisp and interval data. Multiple Criteria Decision 

Making/University of Economics in Katowice, 6, 200-
230. 

[4]. Shafer, G. (1976). A mathematical theory of evidence 

(Vol. 42). Princeton university press. 

[5]. Khatibi, V., & Montazer, G. A. (2010). A new 

evidential distance measure based on belief intervals. 

http://www.ijisrt.com/

	I. INTRODUCTION
	A. Context
	B. Structure of the paper

	II. FORMULATING THE MCDM
	III. BELIEF VALUES FROM ‘POSITIVE SUPPORT’
	IV. PLAUSIBILITY FROM ‘NEGATIVE SUPPORT’
	V. UNCERTAINTY FROM PLAUSIBILITY AND BELIEF VALUES
	VI. DETERMINING A GLOBAL SCORE
	VII. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES


