
Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY796 www.ijisrt.com 1513

Enhanced Class Normalization Rules for

Refactoring Large Class Smell

Marwan Ahmed Lardhi
Department of Information Technology

Faculty of Engineering & Information Technology

Al-Rayan University

Hadhramout, Yemen

Saeed Mohammed Baneamoon1,2

Department of Computer Engineering
1College of Engineering & Petroleum

2College of Computers & Information Technology

Hadhramout University

Hadhramout, Yemen

Abstract:- This paper proposes an effective method for

optimizing extraction large class smell using enhanced

class normalization rules in order to ease maintenance

and improve the quality of software by creating new

classes with strongly and similarity attributes and

shared behavior. The proposed method introduced a

technique to extraction a class with many

responsibilities that is chosen by the developer or

automatically, where is produced an access-set table of

attributes, then is calculated the Jaccard similarity

measure to create a similarity matrix for attributes.

After that is designed the structural similarity matrix of

each extracted class to calculate the cohesion of each

class. Experimental results show that applying the

proposed method for dividing the large class into many

cohesive classes provides better performance in

software evolution compared to existing methods.

Keywords:- Extract Class Refactoring, Large Class smell,

Class normalization, Cohesion.

I. INTRODUCTION

Maintenance of software is a component of the life

cycle of software development that the primary aim is to
modify and update software application after delivery to

correct faults and enhance system efficiency where could

be easy modifications to correct coding mistakes, more

comprehensive modifications to correct design mistakes, or

to accommodate new requirements [1]. They're things that

impair software quality and make them hard to maintain

and evolve like code smells. Code smell is signs inside the

code that indicate that there is a design flaw and is not in a

software error, where may find codes full of these odors but

they work just fine without any problems.

To improve software maintainability, there several

refactoring techniques that may apply to source code.

Refactoring is a change made to the software's inner

structure to make it simpler to comprehend and cheaper to

change without altering its behavior such as Move Field,

Move Method, Extract Method, Pull Up Field and Extract

Class. First, refactoring improves software design where

changes to realize short-term goals or changes made

without a full understanding of the code's design the code

loses its structure, making it more difficult to see the design

by reading the code and the poorly designed code which

usually requires more code to do the same things. Second,
it makes software easier to understand, programming is a

write code conversation with a computer that informs the

computer what to do, and it reacts by doing precisely what

you say and programming in this mode is all about stating

precisely what you want, but somebody will attempt to read

this code. But there's another user of this source code which

in a few months' time someone will attempt to read code to

create some changes, which means that additional code user

can readily be forgotten. Third thing, refactoring helps to

find bugs, since understanding the code can help identify

bugs that some can read a bunch of code and see bugs.
Lastly, it helps with programming quicker where the whole

point of getting a good design is to enable fast development

and without a good design can the progress rapidly for a

while, but soon the bad design starts slowing down the

developer and thus spend time finding and fixing bugs

instead of adding a new feature where modifications take

longer as an attempt to comprehend the system and

discover the duplicate code [2].

Classes usually start small, but over time they become

larger as the software expands. As is the case for long

methods, programmers usually find it less exhausting
mentally to put a new feature in an existing class than to

create a new class for the feature and important to improve

any program's structure, maintenance and improve

performance where refactoring is key to improving both the

quality of the code. The extract class refactoring method

will help maintain adherence to the single responsibility

principle and classes are more reliable and tolerant of

changes.

Class normalization techniques are not yet as popular

as refactoring or pattern application. Class normalization is
a process through which object schema structure is

reorganized in such a way that class cohesion is increased

with coupling is minimized between classes. The Repeating

data structures are refactored into their own class to place a

class in the first object normal form (1ONF). When

encapsulating the shared behavior required by multiple

entities within its own class, a class is in the second object

normal form (2ONF). A class is in the third object normal

form (3ONF) when implementing a single, cohesive set of

behaviors [3].

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY796 www.ijisrt.com 1514

II. RELATED WORKS

Marcus et al. [4] proposed a new Object-Oriented

(OO) software class cohesion measure based on the

analysis of unstructured information embedded in the

source code, which called the Class Conceptual Cohesion

(C3) such as comments and identifiers, where structural and

conceptual metrics are combined to provide better models

for classes faults prediction than combinations of structural

metrics alone. In this approach was noted that does not take

into account polymorphism and inheritance, and its reliance

on the existence of naming's conventions for the relevant

identifiers and comments, and when these are missing, the

effect on measuring the coherence of the class appears.

Bavota et al. [5] proposed a method based on graph

theory that exploits structural and semantic relationships

between methods in a class to be refactored that to build

two new classes having higher coherent than the original

class. Bavota et al. [6] came back to update of the previous

work, where they presented a method chains used to define

new classes with a higher coherent than the original class,

while preserving the overall coupling between the new

classes and the classes that interact with the original

classes. This study distinguished its ability to increase the
strength of cohesion of classes without a significant

increase in coupling, but relying on generalized results

from master's sample experience poses a threat.

Al Dallal [7] proposed a model that was applied to

automatically predict the classes that need ESR and present

them as suggestions for developers working to improve the

system during the maintenance phase, as the models created

using studied quality metrics showed high capabilities to

separate the classes in those that were in need and those

that did not need to resell housing. This model was slow

and time consuming, because does a complete scan of the
code and analyzed the relationships between the layers to

determine the classes.

Fokaefs et al. [8] introduced a method accompanied

by tool-based for identifying source code chunks which

collaborate to provide a particular job and propose

extraction as detach methods. The proposed work identified

the design defects with the Eclipse plug-in which affected

coupling and cohesion. Suggestions could have been better

and more complete if the clustering algorithm was

combined with other methods, like code duplication
detection techniques.

Dexun et al. [9] suggested that classes that were not

functionally related could generate software maintenance

problems, hence the detection and refactoring of such

classes was necessary. The basic process is to gather the

dependence relationships between classes, calculate the

invoking rates and compare them with dynamic threshold.

But the thresholds in FRC bad smell detection that are

preset thresholds decrease the veracity of detection results.

Bavota et al. [10] presented an experiment aimed at

investigating the characteristics of code components
increasing their changes of being subject to refactoring

operations where was verified whether refactoring activities

occur on classes for which indicators might indicate to be

needed for refactoring, such as quality metrics or the

presence of smells as detected by the tools-suggest. Quality

metrics have not demonstrated a clear relationship with

refactoring in some cases, where metrics may not be per se

indicators of smells.

Kaur & Kaur [11] used Eclipse tool to refactor the bad

smells and make an easy source code to understand. The

complexity of the project was then calculated and
compared with the initial complexity, and the results were

checked. This study confirmed the importance of

refactoring that makes a code easier to understand and

improve the quality and reduce the maintenance cost.

Zafeiris et al. [12] proposed a method for automated

refactoring to the template method design pattern of certain

design flaws related to concrete method overriding, where

an overriding method includes in its body an invocation to

the overridden method through the super keyword (super-

invocation), then applied the Template Method design
pattern for the elimination of appropriate Call Super

instances from a code base, which introduced an algorithm

for the discovery of refactoring opportunities based on a

broad set of preconditions for the refactoring.

Consequently, the results of this study cannot be

generalized to a project or projects written in another

programming language other than java.

Morales et al. [13] presented a novel approach for

automatically scheduling refactoring operations for

correcting anti-patterns in software systems where

conducted a case study with five open-source software
systems and compared the performance of RePOR with the

performance of two well-known metheuristics (GA and

ACO), one conflicting-aware refactoring approach (LIU),

and a recent metaheuristic based on sampling (Sway).

Results showed that RePOR can correct more anti-patterns

than the techniques in just a fraction of the time, and with

less effort. But was compared with genetic algorithm which

is known computationally expensive i.e. time-consuming,

so this poses a threat for results of the approach.

Turkistani and Liu [14] designed a method for dealing
with the Large Class problem by classifying the causes of

the code smell and applying different design patterns to

refactor the code to improve the quality of the software,

analyzing the causes of the Large Class code smell and

classifying them into corresponding types and proposing a

design pattern to address each type to refactor the code.

Mooij et al. [15] presented an exploratory case study

that aimed to rejuvenate an industrial embedded software

component implementing a nested state machine. Where

develop and apply a series of small, automated, case-
specific code refactorings that ensure the code uses well

known programming idioms, then perform model-based

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY796 www.ijisrt.com 1515

rejuvenation focusing on the high-level structure of the

code. And therefore gives ample opportunity to be
validated early in the form of code reviews and testing,

since each refactoring is carried out directly on the existing

code. Moreover, aligning the code with the type of model

simplifies the extraction, making the process less error-

prone.

III. METHOD

A. The Proposed Extract Class Approach

The proposed method for extracting large class by

simulating the three rules for normalizing classes. A class is

in 1ONF when specific behavior required by an attribute

that is a collection of similar attributes, and when shared

behavior required by more than one instance of the class is
encapsulated to be 2ONF, lastly in 3ONF when it

encapsulates one set of coherent behavior.

The method boils down to take a class with many

responsibilities that is nominated for extracting by the

developer or automatically, where the parser to produce an

access-set table of attributes, then calculating the Jaccard

similarity index to create a similarity matrix for attributes

as shown in Fig 1. The structural similarity matrix is

created to compute the cohesion of each class, thus

achieving the third rule for normalization. In the case of a

high cohesion ratio, the class is behaviorally coherent.

Fig 1:- Process of Extract Class

 Attribute Similarity Matrix

The attributes similarity matrix is calculated by

computing the Jaccard similarity ratio [16] that measures

the similarity between two sample sets; it represents a ratio

between the sets intersection size and the sets union size.

Where access-set is a sample set; hence, computing Jaccard

similarity between each access-sets of two attributes until

form a similarity matrix for all attributes.

J(A,B)=
|A∩B|

|A∪B|
 if |A∪B|≠0 (1)

Similarity matrix has values in [0, 1]; where the value

of 1 for a number of attributes indicates that is in the same

class with the methods that related to. Consequently, a

number of proposed classes are consisted as a result of the

original class extraction.

 Structural Similarity between Methods Matrix

The structural similarity matrix of constituent classes

is formed using the structural similarity calculation between

methods (SSM) [5]:

SSM(mi,mj)= {
|Ii∩Ij|

|Ii∪Ij|
 if |Ii∪Ij|≠0 and i≠j

0 otherwise.

 (2)

Candidate Class

Compute

Access-set

Set

Jaccard similarity

computation

Attribute Acccess_set Attributes similarity

matrix

C
rea

te n
ew

 cla
sses

Proposed Classes SSM matrix

SSM

computation

ClassCoh

computation

Extracted Classes

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY796 www.ijisrt.com 1516

The SSM of mi and mj is calculated as the ratio

between the number of reference attributes that are shared
by mi and mj methods and the total number of attributes

that are referenced by both methods.

 Compute & Assessment Class Cohesion

SSM a measure exploited to compute the cohesion

metric ClassCoh, by summing the similarities of all method

pairs and dividing by the total number of such pairs [17]:

ClassCoh=
∑ SSM(mi,mj)m

i,j=1

m2-m
 (3)

where m is the number of class methods. According to

results of calculating this metric, extracted classes is

evaluated so that the value between [0.50-1.00] indicates

the coherence of classes and less than that mean its

incoherent and requires re-extraction.

B. Test of Proposed Approach

Fig. 2 shows part of the UserManagement class and

from its name and set of methods, this class was probably
originally responsible for implementing a set of operations

that would allow the user entity to be manipulated in the

database. However, this class has had two new

responsibilities added, i.e., the Teaching Entity

management and the Role Entity management. The task is

to separate this class so that each entity becomes in a

separate class and with a specific responsibility by defining

single responsibility methods in the class. The question

here, do proposed approach able that?. The names of

methods in the class have been have been abbreviated, as

follows: inserUser (IU), updateUser (UU), deleteUser
(DU), existsUser (EU), checkMandatoryFieldsUser (CU),

inserTeaching (IT), updateTeaching (UT), deleteTeaching

(DT), checkMandatoryFieldsTeaching (CT), inserRole

(IR), updateRole (UR), deleteRole (DR) and

checkMandatoryFieldsRole (CR).

Fig 2:- User Management Class

 Step 1. Create Access-set table for all attribute in the

class

Attribute Access-set

pUser IU, UU,DU, EU, CU

PTeaching IT, UT, DT, CT

pRole IR, UR, DR, CR

Table 1:- Attributes Access-Sets

public class UserManagement
 {
 public void insertUser(User pUser)
 {
 bool check = checkMandatoryFieldsUser(pUser);
 string sql = "INSERT INTO tblUser ...";
 ...
 }
 public void updateUser(User pUser)
 {
 bool check = checkMandatoryFieldsUser(pUser);
 string sql = "UPDATE tblUser ...";
 ...
 }
 public void deleteUser(User pUser)
 {
 string sql = "DELETE FROM tblUser ...";
 ...
 }
 public void existsUser(User pUser)
 {
 string sql = "SELECT FROM tblUser ...";
 ...
 }
 public bool checkMandatoryFieldsUser(User pUser)
 { ... }

 public void insertTeaching(Teaching pTeaching)
 {
 bool check = checkMandatoryFieldsTeaching(pTeaching);
 string sql = "INSERT INTO tblTeaching ...";
 ...
 }
 public void updateTeaching(Teaching pTeaching)
 {
 bool check = checkMandatoryFieldsTeaching(pTeaching);
 string sql = "UPDATE tblTeaching ...";
 ...
 }
 public void deleteTeaching(Teaching pTeaching)
 {
 string sql = "DELETE FROM tblTeaching ...";
 ...
 }
 public bool checkMandatoryFieldsTeaching(Teaching pTeaching)
 { ... }

 public void insertRole(Role pRole)
 {
 bool check = checkMandatoryFieldsRole(pRole);
 string sql = "INSERT INTO tblRole ...";
 ...
 }
 public void updateTeaching(Role pRole)
 {
 bool check = checkMandatoryFieldsTeaching(pRole);
 string sql = "UPDATE tblRole ...";
 ...
 }
 public void deleteTeaching(Role pRole)
 {
 string sql = "DELETE FROM tblRole ...";
 ...
 }
 public bool checkMandatoryFieldsRole(Role pRole)
 { ... }
 }

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY796 www.ijisrt.com 1517

 Step 2. Calculate the Jaccard Similarity Index of

attributes to build similarity matrix

 pUser pTeaching pRole

pUser 1 0 0

pTeaching 0 1 0

pRole 0 0 1

Table 2:- Attributes Smilarity Matrix (Jaccard)

 Step 3. According to the values in Table 4.2, there are

three proposed classes, where each class contains

attributes and methods belonging to.

Fig 3:- Proposed Extracted Classes

 Step 4. Compute SSM for each proposed class

 IU UU DU EU CU

IU 1 1 1 1

UU 1 1 1 1

DU 1 1 1 1

EU 1 1 1 1

CU 1 1 1 1

Table 3:- SSM Similarity of Class C1

 IT UT DT CT

IT 1 1 1

UT 1 1 1

DT 1 1 1

CT 1 1 1

Table 4:- SSM Similarity of Class C2

 IR UR DR CR

IR 1 1 1

UR 1 1 1

DR 1 1 1

CR 1 1 1

Table 5:- SSM Similarity of Class C3

 Step 5. Compute the cohesion of each class by calculate

the ClassCoh metric.

Class cohesion of class C1, ClassCoh=
20

25-5
=

20

20
=1.00

Class cohesion of class C2, ClassCoh=
12

16-4
=

12

12
=1.00

Class cohesion of class C3, ClassCoh=
12

16-4
=

12

12
=1.00

The results indicate each class is completely coherent.

The candidate class extracted into 3 classes as the

following:

Fig 4:- Extracted Class C1 (UserManagement)

Fig 5:- Extracted Classe C2 (TeachingManagement)

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY796 www.ijisrt.com 1518

Fig 6:- Extracted Classe C3 (RoleManagement)

IV. RESULTS AND DISCUSSION

Based on the results of proposed approach in the

preceding example. In Table I, An analysis of the class

elements is shown, showing each class attribute or variable

and the methods belonging to. By calculating the similarity

of attributes by the Jaccard metric to be shown the results in

Table II and by taking the attributes that intersection

between them and have a similarity value equal to 1,

noticed that the pUser variable was the result of similarity

with itself only and there is no relationship with other

variables as well as the rest of the pTeaching and pRole
attributes, so that each attribute in a class with the methods

belong to, Fig. 3 shows the three proposed classes arising

from the original class division. To measure the cohesion of

the one class, the calculation of the measure of the cohesion

of the class is applied, so was needful to calculate the

structural similarity between methods metric and the result

is appeared in Tables III, IV and V. The results of

calculating the classCoh metric showed the extent of

cohesion of each class where assumed a threshold value 0.5

to be any value less than this, indicates weak the cohesive

of class and needs to be refactored. Fig. 4, 5 and 6 show
the extracted classes, and the keyword partial was used to

maintain class coupling, in the case of inheritance or a

recall, with other classes in the system.

A comparison of what was achieved using the

proposed approach with previous literature in obtaining

extracted classes with single responsibility and more

coherent elements, and with differing the used mechanisms.

The approach by Bavota et al. [5] creates a weighted graph

for each class under evaluation. Class methods are treated

as nodes, and cohesion is assigned as edge-weights between

methods. While the presented methodology by Fokaefs et al
[18], [8] that computes entity sets for each attribute and

method in the target class. All an entity set elements are

computed with a distance matrix, and then a threshold

value on distance is applied to get the cohesive sets of

attributes and methods. However, considering method-calls

as a primary means to establish cohesion might not hold

good in many cases and hence that may result in

inappropriate grouping. Proposed that forming cohesive
attribute-set first and then considering method-similarity as

a mechanism to establish cohesion.

V. CONCLUSION

This study proposed an approach to extraction large

class and improve its cohesion, the approach splits the class

to new classes with high cohesion without affecting in the

coupling with other classes. The method produces an

access-set table of attributes of the class to be needed

refactoring, then calculating the Jaccard similarity measure

to create a similarity matrix for attributes and by taking by
the highest similarity value of intersect attributes new class

are created with the methods that related to, then design the

structural similarity matrix of each extracted class to

calculate the cohesion of each class. Class cohesion

metrics, i.e. structural similarity between methods and class

cohesion is applied to class normalization rules on source

code. The method shows importance of refactoring to

enhanced quality of class and simplest the maintenance,

where improves the structure of class and makes more

organizing, and from the limitation of this increase the size

of software to increase the number of classes.

REFERENCES

[1]. I. Sommerville, Software engineering, Tenth edition.

Boston: Pearson, 2016.

[2]. M. Fowler and K. Beck, Refactoring: improving the

design of existing code. Reading, MA: Addison-

Wesley, 1999.

[3]. S. W. Ambler, Agile database techniques: effective

strategies for the agile software developer.

Indianapolis, IN: Wiley, 2003.

[4]. A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the
Conceptual Cohesion of Classes for Fault Prediction

in Object-Oriented Systems,” IEEE Trans. Softw.

Eng., vol. 34, no. 2, pp. 287–300, Mar. 2008, doi:

10.1109/TSE.2007.70768.

[5]. G. Bavota, A. De Lucia, and R. Oliveto, “Identifying

Extract Class refactoring opportunities using structural

and semantic cohesion measures,” J. Syst. Softw., vol.

84, no. 3, pp. 397–414, Mar. 2011, doi:

10.1016/j.jss.2010.11.918.

[6]. G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto,

“Automating extract class refactoring: an improved
method and its evaluation,” Empir. Softw. Eng., vol.

19, no. 6, pp. 1617–1664, Dec. 2014, doi:

10.1007/s10664-013-9256-x.

[7]. J. Al Dallal, “Constructing models for predicting

extract subclass refactoring opportunities using object-

oriented quality metrics,” Inf. Softw. Technol., vol. 54,

no. 10, pp. 1125–1141, Oct. 2012, doi:

10.1016/j.infsof.2012.04.004.

[8]. M. Fokaefs, N. Tsantalis, E. Stroulia, and A.

Chatzigeorgiou, “Identification and application of

Extract Class refactorings in object-oriented systems,”
J. Syst. Softw., vol. 85, no. 10, pp. 2241–2260, Oct.

2012, doi: 10.1016/j.jss.2012.04.013.

http://www.ijisrt.com/

Volume 5, Issue 5, May – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20MAY796 www.ijisrt.com 1519

[9]. J. Dexun, M. Peijun, S. Xiaohong, and W. Tiantian,

“Functional Over-Related Classes Bad Smell
Detection and Refactoring Suggestions,” Int. J. Softw.

Eng. Appl., vol. 5, no. 2, pp. 29–47, Mar. 2014, doi:

10.5121/ijsea.2014.5203.

[10]. G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and

F. Palomba, “An experimental investigation on the

innate relationship between quality and refactoring,”

J. Syst. Softw., vol. 107, pp. 1–14, Sep. 2015, doi:

10.1016/j.jss.2015.05.024.

[11]. A. Kaur and M. Kaur, “Analysis of Code Refactoring

Impact on Software Quality,” MATEC Web Conf., vol.

57, p. 02012, 2016, doi:

10.1051/matecconf/20165702012.
[12]. V. E. Zafeiris, S. H. Poulias, N. A. Diamantidis, and

E. A. Giakoumakis, “Automated refactoring of super-

class method invocations to the Template Method

design pattern,” Inf. Softw. Technol., vol. 82, pp. 19–

35, Feb. 2017, doi: 10.1016/j.infsof.2016.09.008.

[13]. R. Morales, F. Chicano, F. Khomh, and G. Antoniol,

“Efficient refactoring scheduling based on partial

order reduction,” J. Syst. Softw., vol. 145, pp. 25–51,

Nov. 2018, doi: 10.1016/j.jss.2018.07.076.

[14]. B. Turkistani and Y. Liu, “Reducing the Large Class

Code Smell by Applying Design Patterns,” in 2019
IEEE International Conference on Electro

Information Technology (EIT), Brookings, SD, USA,

May 2019, pp. 590–595, doi:

10.1109/EIT.2019.8833851.

[15]. A. J. Mooij, J. Ketema, S. Klusener, and M. Schuts,

“Reducing Code Complexity through Code

Refactoring and Model-Based Rejuvenation,” in 2020

IEEE 27th International Conference on Software

Analysis, Evolution and Reengineering (SANER),

London, ON, Canada, Feb. 2020, pp. 617–621, doi:

10.1109/SANER48275.2020.9054823.

[16]. T. Sharma and P. Murthy, “ESA: the exclusive-
similarity algorithm for identifying extract-class

refactoring candidates automatically,” in Proceedings

of the 7th India Software Engineering Conference on -

ISEC ’14, Chennai, India, 2014, pp. 1–6, doi:

10.1145/2590748.2590763.

[17]. G. Gui and P. D. Scott, “New Coupling and Cohesion

Metrics for Evaluation of Software Component

Reusability,” in 2008 The 9th International

Conference for Young Computer Scientists, Hunan,

China, Nov. 2008, pp. 1181–1186, doi:

10.1109/ICYCS.2008.270.
[18]. M. Fokaefs, N. Tsantalis, E. Stroulia, and A.

Chatzigeorgiou, “JDeodorant: identification and

application of extract class refactorings,” in

Proceeding of the 33rd international conference on

Software engineering - ICSE ’11, Waikiki, Honolulu,

HI, USA, 2011, p. 1037, doi:

10.1145/1985793.1985989.

http://www.ijisrt.com/

