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Abstract:- In this paper, we introduce the upper and lower 

approximations on the invers set-valued mapping and the 

approximations an established on a powerful set valued 

homomorphism from a ring R1 to power sets of a ring R2. 

Moreover, the properties of lower and upper 

approximations of a powerful set valued are studies. In 

addition, we will give a proof of the theorem of 

isomorphism over approximations F-rough ring as new 

result.  However, we will prove the kernel of the powerful 

set-valued homomorphism is a subring of R1. Our result is 

introduce the first isomorphism theorem of ring as 

generalized the concept of the set valued mappings. 
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I. INTRODUCTION 

 

The rough set theory has been introduced by Pawlak 

1982[1], as the new tool to incomplete information system. 

Many researchers develop this theory in many areas. 

Substantively, the rough set an established on two concepts of 

approximations (lower and upper). [2],R. Biswas and S. 

Nanda  Show  rough groups and subgroups. N. Kuroki [3] 

consider the rough the notation of ideal in a semi-grousp. B. 

Davvaz have studied roughness in ring [4]. The concepts of 

rough prime ideals and rough primary ideals in a ring has 

introduced by O. Kazanci and B. Davvaz [5],. V. Selvan and 
G. Senthil Kumar [6] consider notation of the roughness ideals 

on a semi-ring. In [7], B. Davvaz given the set valued 

homomorphism and study the T-rough sets in a group. In [8], 

B. Davvaz and others has generalized the concepts of upper 

and lower approximations established on a ring by the set 

valued homomorphism of rings. The properties of T- rough 

sets in commutative rings has studied by.S. B. Hosseini, N. 

Jafarzadeh, and A. Gholami[9]. However, other researchers 

have been interested of the Set-valued maps [10],[11]. Set-

valued maps have used in many areas such as Economics [12]. 

In [13], G. SenthilKumarthis gives the proof the fundamental 

set-valued homomorphism group theorem. Our work, we 
study the powerful set-valued homomorphism established on 

ring and some their propertiess. Moreover, we will show that 

the kernel of the powerful set-valued homomorphism is a 

subring of R1. Our result is introducethe fundamental 

isomorphismtheorem of ring as generalized the concept of the 

set valued mappings. 

 

 

II. PRELIMINARIES 
 

We will recall the concept of the approximation (lower, 

lower) based on a set valued mapping for more information 

and proofs we can see [7]. Ina addition, we introduce the set 

valued homomorphism.  

 

Definition 2-1: Suppose U ≠. Let ~ be an equivalence 

relation on U. Let R: 2U→ 2U ×2U where 2U is the set of all 

non-empty subsets of U. A pair (U, ~) is called an 

approximation space and  the upper rough approximation of X 

is  𝑅(𝑋) = {x ∈U:[x]~⊆ X} and  𝑅(𝑋) ={x∈U:[x]~∩X≠∅} is th 

lower rough approximation of X. 

 

Definition 2-2: Suppose that X,Y any two nonempty sets. A 

set-valued map or multivalued map F:X → 2Y from X to Y is a 

map that related to any xX a subset of F of Y. The set called 

the image of x under F by F(x) and we define the domain of F 

by DF ={xX:F(x)≠}. The image of F is a subset of Y 

defined by Im(F)= . 

 
Definition 2.3: Suppose that X;  Y any non-empty sets. Let M 
⊆Y and F:X →2Ybe a set-valued mapping. We called the 

𝐹(𝑀) = {x∈X:F(x)⊆M}; 𝐹(𝑀)= {x∈X:F(x)∩M≠∅} 

respectively and  (𝐹(𝑀), 𝐹(𝑀)) is called F- rough set of F. 

Example 2-1: let X = {1, 2, 3, 4, 5, 6} and let F : X →2X 

where ∀x∈ X, F(1) = {1}, F(2) = {1, 3}, F(3) = {3,4}, F(4) = 

{4}, F(5) ={1,6}, F(6) = {1, 5, 6}.  Let A = {1, 3, 5}, 

then𝐹(𝑀)) = {1, 2}, and 𝐹(𝐴)= = {1, 2, 3, 5, 6}, B(A)≠, is 

rough. Im(F)=  Now, Let B={2,4,6}= 

then𝐹(𝐵) = {4}, and 𝐹(𝐵)= { 3,4, 5, 6}, B(B)≠, is rough. 

 

Preposition 2-1: Suppose that X, Y are non-empty sets. Let 

A,B⊆Y. If F:X→2Ybe a set-valued mapping , then: 

1)-   F(A) ∩ F(B)=𝐹(𝐴)𝐹(𝐵); 

2)𝐹(∅)=; 

3)- 𝐹(𝐴) ∪ 𝐹(𝐵)= 𝐹(𝐴)𝐹(𝐵); 
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4)- F(A) ∪ F(B)= 𝐹(𝐴)𝐹(𝐵); 

5)- 𝐹(𝐴)𝐹(𝐵) 

 

Proof:  By using the definitions upper and lower 

approximations   

 

Example 2-2: let X = {a, b, c, d, e, f} and let F : X →2X.If 

F1(a) = {a}, F1(b) = {a, c}, F1(c)= {c,d}, F1(d) = {a,d}, F1(e) 
={a,f}, F1(f) = {a, e, f}. And F2(a) = {a}, F2(b) = {a, b}, F2(c) 

= {c}, F2(d) = {d}, F2(e) = F2(f) ={a,e,f} and A = {a, c, e}, 

then𝐹1(𝐴) = {a, b}, and 𝐹1(𝐴) = {a, b, c, e, f}, 𝐹2(𝐴) = {a, c}, 

𝐹2(𝐴) = {a, b, c, e,d, f}, 

 

Theorem 2-1 Let F1;F2: X →2X be set-valued map such 

that(F1 F2)x≠ ; ∀xX and AX. Then 

1- F1(A) ∪ F2(A) = 𝐹1(𝐴)𝐹2(𝐴); 

2- F1(A) ∩ F2(A))F1(A)𝐹2(𝐴); 
3- 𝐹1(𝐴) ∩ 𝐹2(𝐴)  = F1(A)𝐹2(𝐴); 

4- F1(A) ∪ F2(A)= 𝐹1(𝐴)𝐹2(𝐴). 

Proof: By using, the definitions 2-3. 

 

Definition 2.4. Let 2X be the set of all subsets of a non-empty 

X. If S1, S2∈2X, then we define S1+S2 ={x∈X; eitherX∈S1 or 

x∈S2, but not in both} and S1*S2 = S1∩S2 are called sum and 

product of S1 and S2 respectively. 

 

Preposition 2-2 Let 2X be the power of all subsets of a non-

empty X with sum and product of S1 and S2. Then (2X
*,+) is a 

commutative ring. 
 

Note that, the empty set ∅ is the identity of + and the set X is 

the identity of *. Therefore, we called 2X is Ring of Subsets of 

X. 

 

III. MAIN RESULTS 

 

We introduce the concepts of the invers set-valued map. 

Suppose X and Y are two nonempty sets. 

 

Definition 3-1: Supposethat F is a set-valued map from X to Y, 

we call F-1 the inverse of F and we write as: F-1(y)= { xX: y 

F(x)}, ∀yY. If BY, then the upper inverse image is  

={xX:F(x)B≠}and lower inverse image is  

={xX: F(x)B} and the boundary is B( )= ) -

. If B( )≠ is called roughly invers a set-valued 

map. 

 

Example 3-1: Consider the example 1-1, let X = {a, b, c, d, e, 

f}. Suppose F : X →2X is set value map where ∀x∈X, F(a)= 

{a}, F(b)={a, c}, F(c) = {c,d}, F(d)={d}, F(e)={a,f}, F(f) = 

{a, e, f}.  Let B1 = {a, d, e}, then𝐹−1(𝐵1) = {a, d}, and 

𝐹−1(𝐵1) = {a, b, c, d, e, f}, B(B1)≠, is rough. Let 

B2={b,e,f}= then𝐹−1(𝐵2) = {d}, and 𝐹−1(𝐵2) = { c, d, e,f},  

B(B2)≠, is rough. 

 

Proposition 3-1: Let X, Y be non-empty sets and B1,B2⊆ Y.  If 
F:X → 2Y be a set-valued mapping , then: 

1)-  F-1(B1) ∩ F
-1(B2)=𝐹

−1(𝐵1)𝐹
−1(𝐵2); 

2)- F-1(B1) ∪ F-1(B2)=F
-1(B1)F

-1(B2); 
3)-F-1(B1) ∪ F

-1(B2)= 𝐹−1(𝐵1)𝐹
−1(𝐵2) 

Proof: it is explicit. 

 

Proposition 3-2: Let F1; F2 : X →2Ybe set-valued map such 

that (F1 F2)(x)≠ ; ∀ xX and B Y. Then 

1)- (B) = (B) (B); 

2)- (B) (B); 

3)- )-1= -1 -1 ; 

4)- -1(𝐹2(𝐵))
−1. 

Proof: it is explicit 

 

Example 3-2: Suppose that U = {1, 2, 3, 4, 5, 6}.  let F : U 

→2U where ⩝x ∈X, F(1) = {1}, F(2) = {1, 3}, F(3) = {3,4}, 

F(4) = {4}, F(5) ={1,6}, F(6) = {1, 5, 6}. (1) If A = {1, 3, 5}, 

then𝐹(𝐴) = {1, 2, 3}, and 𝐹(𝐴) = {1, 2, 3,4 5, 6}, B(A)≠, is 

rough. 

 

IV. ISOMORPHISM THEOREM FOR F-ROUGH 

RINGS. 

 

Definition 4.1:  suppose that R is a ring. Let ~ be a conformity 

of R, that is, ~ is an equivalence relation on R such that ( x, y ) 

∈~ implies (xa, ya) ∈~ and (ax, ay)∈ ~ for all a∈R . We denote 

by [x]~ the ~ conformity class containing the element x∈R . 

 

Remark 4-1: Let ~ be a conformity on a ring R. Define F:R→ 

2Rby F(x)=[x]~, ∀x∈R . Then F is a set-valued 

homomorphism. 

 

Definition 4.2: Suppose that R1 and R2 are two rings. Let F:R1 

→2R2 be a set-valued homomorphism and S be subring of R2 . 

If is subring of R1, then S is called the lower F-rough 

subring of R2 and if ,  is subring of R1 then S is called the 

upper F-rough subring of R2 . If , and  are subring of 

R1 , then we call ( ,  ) a F-rough subring. 

 

Definition 4.3: Suppose that R1 , R2 are rings. A powerful set–

valued set-valued homomorphism is a mapping from R1 into 

2R2 that preserves the ring operations (*, +), that is, ∀ l x and 

yR1 such that: 

1) F(x*y)= {ab:aF(x1),bF(x2); and 

2) F(x+y) = F(x)+F(y); 

3) (F(x))-1= { a-1:aF(x)}=F(a-1); 

4)- F(x*y)=F(x)F(y). 
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Remark 4-2:  If the powerful set–valued set-valued 

homomorphism is one to one, then we called an epimorphism. 
If it is onto and one-to-one, then we called an isomorphism. 

 

Proposition 4.2:  Let ~ be a conformity on a ring R . If x,y∈R 

then: 

1)- [ x*y]~ = [ x]~*[ y]~ ; 

2)-[ x+y]~= [x]~+[y]~ ; 

3)- ([x]~)-1={ a-1:a[x]~)}={[x]~}-1. 

Proof: from definition 4-1 

 

Proposition 4.2: Suppose that R1 and R2 are two rings. Let 

F:R1→R2 powerful set–valued set-valued homomorphism 

from then: 
 1. F(e(R1) = e(R2); 

 2. For any r∈R1, F(−r)=−F(r). If r is a unit, then F(r −1)= 

F(r)−1. 

 3. F(R1) is a subring of R2. 

 

Theorem 4.1 Suppose that R1 , R2 are rings. Suppose 

F(e(R1)S  where S is a subring of R2 . If F(e(R1) and F:R1 

→2R2 be a powerful set-valued homomorphism, then is a 

subring of R1. 

 

Proof: Suppose that S is a subring of R2. We need verify that 

the conditions of subring are satisfied by . We have (S,+) 

is commutative subgroup and (S, * ) is semi-group. Suppose 

that S be a subring of R2 containing F(e(R1). Suppose that e(R2) 

be the identity  of the ring R2. The ker(F) = F−1 {e(R1)} = 

{r∈R1 ; F(r) = e(R2)}is the preimage of e(R2). We have -1 

={e(R1)R1:F(e(R1))S}, then e(R1) . So,  is 

nonempty. Let x1 and y2 be arbitrary elements of . Then 

there exist elements x, y such that F(x)= x1 and F(y)=y1. Since 

S is a subring of R2, then x+y and x*y are in S. Therefore, 

F(x+y)=F(x)+F(y)= x1+y2and F(x*y)=F(x)*F(y)=x1*y1 are 

. Now, Since -x in S,  F(-x)=-F(x)(from Proposition 4.2). 

So,   is closed under + and *. Then   is a subring of 

R1.  

 

Theorem 4.2: Let S and R be two rings, Let ρ: S →R be 

subjective homomorphism and F2: S→2R be a set-valued 

homomorphism. If F1(x)={s1∈ S: ρ(s1) ∈F2(ρ(x))}, ∀x∈S and 

AR , then   ρ( ) = .  

 

Proof: suppose y∈ ρ( ) . We have x∈  such that y= 

ρ(x). Since x∈ , then we get the exits element in F1(x) 

and A that mean F1(x)∩A ≠ ∅ . Hence, there exists a ∈ A with 

a∈F1(x) . Thus ρ(a)∈F2(ρ(x)) and 

ρ(a)∈ρ(A)F2(ρ(x))∩ρ(A)≠∅. Therefore, y= ρ(x)∈  . 

Conversely, if y∈ , then since ρ is onto. We give us 

there exists x∈R1 such that y= ρ(x)∈  . That is, 

F2(ρ(x))∩ ρ(A) ≠ ∅ .  So, there exists z∈F2(ρ(x))∩ ρ(A). Thus, 

z= ρ(a) for some a ∈ A . So, z= ρ (a) ∈F2(ρ(x)). If a∈F1(x)∩A, 

then F1(x)∩A≠∅. Therefore, we get x∈  . Also, 

y∈ρ(x)ρ ( ). So, ⊆ then ρ ( ). We 

conclude that ρ( )=  as we required.  

 

Theorem 4.3: Let R1, R2 be rings. Suppose ρ:R1→R2 be an 

epimorphismF2:R1→2R2 be a powerful set-valued 

homomorphism. If ρ is injective mapping and F1(x)={r1∈R1: 

ρ(r1)F2(ρ(x))} for all xR1, then F1:R1→2R1 is a powerful set 

valued homomorphism.  

 

Proof: Suppose s∈F1(xy). We have ρ (s) ∈F2 (ρ(xy))=F2(ρ(x) 

ρ(y)) =F2(ρ(x))*F2(ρ(y)). So, we get ρ(s)=ab , for some a∈ 

F2(ρ(x)), b∈F2(ρ(y)) . Because, ρ is subjective then there 

existsc,d∈R1 with ρ(c)=a, ρ(d)=b.  We get, ρ(s)= ρ(c) ρ(d) 

,c∈F1(x) and d∈F1(y) . Therefore, s= cds∈ F1(x)F2(y) . We  

get, F1(xy)⊆F1(x)F2(y) .  

 

On the other side, we suppose that z∈F1(x)F1(y). Then we get 

z=cd for some c∈F1(x) and d∈F1(y) and therefore, (c)∈F2(ρ(x), 

ρ(d)∈F2(ρ (y)).  So, we get ρ(cd) = ρ(c) ρ(d)F2 

(ρ(x))F2(ρ(y))= F2 (ρ(x)( ρ(y))= F2(ρ(xy))z=cd∈F1(xy). So, 

,F1(x)F2(y) ⊆F1(xy). So we get, F1(xy)=F1(x)F1(y).  

 

Now, we assume that  s∈F1(x+y). Then 

ρ(u)∈F2(ρ(x+y))=F2(ρ(x)+ ρ(y)) =F2(ρ(x))+F2(ρ(y)). We get 

ρ(s)= a+b , for some a∈ F2(ρ(x)) and b∈F2(ρ (y)). We know 

that ρ is surjective, then we have c,d∈ R1 such that ρ(c)=a and 

ρ(d)=b. subsequently, we have ρ(s)= ρ(c)+ρ(d) , c∈ F1(x), and 

d∈F1(y) . Therefore, s= c+d, u∈ F1(x)+F2 (y). So, F1(x+y) 

⊆ F1(x)+F2(y).  

 

On the other side, assume that z∈F1(x)+F1(y). Then z=c+d for 

some c∈F1(x) and d∈F1(y) and so, ρ(c)∈F2(ρ(x), ρ(d) ∈ 

F2(ρ(y)). So, ρ(c+d) = ρ(c)+ 

ρ(d)F2(ρ(x))+F2(ρ(y))=F2(ρ(x)+ (ρ(y))=F2(ρ(x+y)), 

z=c+d∈F1(xy). We get F1(x)+F2(y) ⊆F1(xy) . So, we conclude 

that F1(x+y)=F1(x)+F1(y).  

 

Finally, we have xF1(x-1)⇔ ρ(c)∈F2(ρ(x-1))⇔f(c)∈F2(ρ(x))-

1)⇔ ρ(c)∈F2(ρ(x)))-1⇔( ρ(c))e∈F2(ρ(x))⇔ ρ(c-1)⇔∈F2(ρ(x)) 

⇔c-1F1(x)⇔ c(F1(x))-1. Therefore, F1(x-1)= (F1(x))-1, for all 

xR1. We get F1is a powerful set-valued homomorphism as 

we required.  

 

Definition4-4: Suppose that R1,R2 are rings. Let F: R1→2R2be 

a powerful set-valued homomorphism. a kernel of F is 

Ker(F)={x∈R1: F(x)=F(e1) }, where e1 is the identity element 

of R1. 

 
Theorem 4.4 Suppose that R1and R2 are two rings. If F: 

R1→2R2 be a powerful set-valued homomorphism, then Ker(F) 

is a subring of R1. 

 

Proof:  we assume that x, y∈Ker(F) . From definition of ker(F) 

, F(x)=F(e1) and F(y) = F(e1). We have F(xy)=F(x)F(y)= 
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F(e1)F(e1)=F(e1) (Since F is a powerful  set valued 

homomorphism).  
 

Therefore, xy∈Ker(F) and  F(x-1)=(F(x))-1= (F(e1))-1=F(e1
-

1)=F(e1)x-1∈Ker(F). 

 

Now, suppose x+y∈Ker(F). Then  F(x+y) =F(x)+F(y) 

=F(e1)+F(e1) ∈ Ker(F). Therefore, x+y∈Ker(F) . we get , 

Ker(F) is a subring of R1 as we required. 

 

 

V. THE FUNDAMENTAL THEOREM OF RING 

HOMOMORPHISM. 

 
Here if we have a ring R is a ring and the ideal I and S 

subring of R, then the quotient of R by I is the set R/I of 

equivalence classes a+I={a+i:i∈I} with the two 

operations(+,*) . We define (a+I), (b+I)∈R/I by: 

(a+I)+(b+I)=(a+b)+I; and (a+I)∗(b+I)=(a∗b)+I ∀ (a+I), 

(b+I)∈R/I.  If F: R→2S2 is a powerful set-valued 

homomorphism from a ring to 2S, then ker(F) is a subring 

of R (Theorem 4.4). We would ultimately like ker(F) to be an 

ideal of R to define the quotient R/ker(F). 
 

Now, suppose that e∈R with a∗e=a and e∗a=a ∀ a∈R, 

we need to find identity of operation +. By definition of 

ker(F) in general cannot be a subring of R because if e is the 

identity of R, then by definition of a ring 

homomorphism, F(e) is mapped to the multiplicative identity 

of S and not to the additive identity of S. To establish a 

fundamental theorem of ring homomorphisms, we make a 

small exception in not requiring that ker(F) is an ideal for the 

quotient R/ker(F) to be defined. 
 

Theorem5-1:(The Fundamental Theorem of Ring 

Homomorphisms): Let R and S be two rings with ring. Let F: 

R1→2R2 be a powerful set-valued homomorphism.. 

Then R/ker(F)≅F(R). 

Proof:  Let ker(F) be the kernel of F . 

let ϕ:R/Ker(F)→F(R) and ∀ (a+Ker(F))∈R is 

ϕ(a+Ker(F))=F(a). We show that  ϕ is well-defined. 

For a+Ker(F)= 

b+Ker(F)  a=b+ker(F) for some k∈Ker(F). So, 

ϕ(a+Ker(F))=ϕ((b+k)+Ker(F))=ϕ 

((b+Ker(F))+Ker(F))=ϕ(b+Ker(F)). Now, If (a+Ker(F)) and 

(b+Ker(F))∈R/Ker(F), then ϕ((a+Ker(F))+(b+Ker(F)))= ϕ 

((a+b)+Ker(F)) 

=F(a+b)=F(a)+F(b)=ϕ(a+Ker(F))+ϕ(b+Ker(F)); 

ϕ((a+Ker(F))∗(b+Ker(F)))=ϕ((a∗b)+Ker(F))=F(a∗b)=F(a)∗ϕ(b

)= ϕ (a+Ker(F))∗ϕ (b+Ker(F)). 

 Finally, we need to show ϕ is bijective. 

Let (a+Ker(F)),(b+Ker(F))∈R/Ker(F) and suppose that ϕ 

(a+Ker(F))= ϕ (b+Ker(F)). Then F(a)=F(b). So F(a−b)=e. 

So a−b∈Ker(F). So a+Ker(F)=b+Ker(F). Hence ϕ is 

injective. Now,∀ a∈F(R) we have that (a+I)∈R/Ker(F) is such 

that ϕ (a+Ker(F))=a. So ϕ is surjective. That mean ϕ is 

bijective. So,  ϕ is an isomorphism from R/Ker(F) to F(R), that 

is: R/ker(F)≅F(R) as required. 

 

VI. CONCLUSION 

 

Theoretically, rough set based on the upper and lower 

approximations as an equivalence relation. In this paper, we 

introduce the upper and lower approximations on the invers 

set-valued mapping and the approximations an established on 

a powerful set valued homomorphism from a ring R1 to the 

power sets of a ring R2. Moreover, the properties of lower and 

upper approximations of a powerful set valued are studies. In 

addition, we will give a proof of the isomorphism theorem for 
lower and upper F-rough ring as new result.  However, we will 

prove the kernel of the powerful set-valued homomorphism is 

a subring of R1. Our result is introduce the first isomorphism 

theorem of ring as generalized the concept of the set valued 

mappings. We hope that it will be useful in some applications 

in the future. 
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