
Volume 5, Issue 11, November – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20NOV497 www.ijisrt.com 734

CSRF- An Insidious Vulnerability

Sahil Vashisht

B.Tech Scholar

Department of IT

MAIT (GGSIPU),Delhi

Abstract:- Ransacking for almost the precise article

is the most preferred and is kind of not easy to search

out supported the existing requirements. As technology

is expanding day by day, hacking is too occurring very

frequently. In these modern times, the realm of

cybersecurity is in alarming need of deterrence from

this. Gone are the times when firewalls were able to

protect your data. We have to equip ourselves to curb

cybercrime. According to Kaspersky Labs, the

conventional cost of a cyber-breach is $1.23 million. This

paper is on the brink to give the easiest apparent ways to

defend and help make secure websites. Protection of

Web application has become a significant challenge

because of widespread vulnerabilities. Once you know

that your website is safe, you will be less intensified.

There are lots of attacks accustomed hack a web site like

CSRF, XSS, Command Execution, Brute Force and

more.I have thoroughly researched the most general

vulnerabilities and created a live environment to attack

similarly to defend using the newest software. During

this paper, I have discussed one such vulnerability

(CSRF) and it’s prevention.

Keywords:- Web Security, Cyber Security, Hacking, CSRF,

Application Security.

I. INTRODUCTION

In today’s world of digitalisation, web applications,

which generally act as public-facing entities for several

businesses and corporations, are often the victim of

malicious attacks by hackers who wish to steal customer

data or whirl their way farther into a corporation’s private

network. There are some web applications available which

are design to be intentionally vulnerable for training

purposes. What I think is that web applications must be

developed by highly skilled developers who knows the

importance of providing security and knows how to handle

these vulnerabilities. Several companies understand the use

of the word security in web applications so they use these
type of developers and have trained individuals who knows

about cyber security. Theseindividuals work to stay an

account on all the kind of vulnerabilities that exist and to

work the way to overcome if any new threat comes. A small

change in code or a little error can cause enormous damage.

Therefore it must be handled carefully to allow the best

possible results. Many researchers try to search out a

praiseworthy solution to unravel these problems.

 What is CSRF?

Cross-Site Request Forgery (CSRF) is an attack which

compels users to perform unwanted actions on sites they are

currently logged on to. [1]Through social engineering, the

attacker sends the user certain links that are specially

framed. Using which an attacker may fool the users of a web
application into fulfilling actions of the attacker’s choosing.

[2]In a successful CSRF attack, the user unknowingly can

do a ton of damage such as transferring money, changing

passwords, and providing sensitive data. If executed on an

administrative account it can provide the attacker access of

the entire network and cause widespread damage. [3]Csrf

attack exploits the property of the web browser of

automatically including cookies used by a given domain for

any web request. In an event where a user unknowingly

submits a request to the browser, which automatically

collects the cookies of the site the user is logged on to hence
as an outcome it creates a facade that the forged request is

true. Thus, the attacker now can falsify the request to

perform any action such as returning data, modifying data

etc.

During this paper, my mission is to assist everyone

who is making a brand new website, learning about

cybersecurity or anyone using some online environment in

day to day life be safe from these pentesters. This paper has

been divide into many sections. Previous Section used to be

the abstract, Section I is that the introduction of the subject.
Section-II is about the methodology of how attack is

performed. Section- III is about the prevention of the attack.

This is the most important part of this research paper.

Section-IV discusses the best prevention that is discussion

on csrf tokens. Section-V dealswith the popular csrf

vulnerabilities. Section-VI is all that says the paper review

and conclusion on my research. Section-VII is of References

II. METHODOLOGY

 How is the csrf attack performed?

[3]The csrf attack is performed as follows:

Presume a user is active on an authentic target site A

through his browser. While traversing through his site the

user comes upon a link provided to him by an attacker

through social engineering (via email, chat etc). The user

immediately clicks on the given link, but it is critical for the

profitable execution of the attack that the user has the target

site Active on another tab.

http://www.ijisrt.com/

Volume 5, Issue 11, November – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20NOV497 www.ijisrt.com 735

The link will now carry the user to the malicious site.

Now here the malicious site is specially crafted by the
attacker to accomplish the specific function he wants the

user to do.

 Crafting of the malicious site

[4]Crafting the site requires thorough knowledge of

the forms and specifics of the target site that the attacker

wants the access from the user.

This site contains a script which can perform an

invalid function on the site A using the sessions of the user

because he is currently active on both the sites. However,

the important part is to dupe the user into clicking the link
through social engineering.

[5]Let's take a scenario where the user is active on site

A and the attacker wants the user to change his password

from a malicious site B.

To achieve this the attacker first needs to get his hands

on the form of site A which changes the password of site A

and create a form of the site B which tricks users on clicking

the link and thus changing the password of site A without

the knowledge of the user.

[6]The form of site looks like this:

<form action="#" method="POST">

<input type="text" name="newpassord" value="">

<input type="text" name="confirmpassword" placeholder =

"newpassword" value="">

<button>Change</button>

</form>

</form>

Notice the action is the address of the page which the

site A takes the user after when he changes the password. If
the attacker manages to put that address and send the user a

link like this:

<form action="https://address_of_changed_password"

method="POST">

 Congratulations You have won a cash prize of

$100000/- click to avail!!!!!</br>

 <input type="hidden" name="newpassword" value="xyz">

 <input type="hidden" name="confirmpassword"

placeholder = "newpassword" value="xyz">

 <button>Change</button>
</form>

If the site manages to change the password then it is

vulnerable to the csrf attack.

 Different Types of CSRF:

1. GET method:

If the website primarily accepts only get requests, the

csrf request can be made by altering only the URLs of the

site. Suppose a bank's site has the following get request to
transfer money:

http://bank.com/transfer.do?acct=User1&amount=100000

The attacker can manipulate the URL to change the

user or the amount of money the person is transferring and

the attacker only has to clickbait the user to click on the

forged user while the user is active on the banks' site.

The forged user could look like this:

<img src="http://bank.com/transfer.do?

acct=User22&amount=1000000000">

2. POST method:

In POST methods the requests cannot be altered in the

URLs. Hence they need to done with the help of forms:
<form action="https://bank.com/after_transfer_page"

method="POST">

 Congratulations You have won a cash prize of

$100000/- click to avail!!!!!</br>

<input type="hidden" name="acc" value="User">

<input type="hidden" name="amount" value="100000">

<button>CLICK TO AVAIL</button>

</form>

III. PREVENTION AGAINST THE ATTACK

For a flawlessly executed CSRF attack, the attacker

should have a thorough knowledge of the varieties of the

methodology used by the site. As a web developer you can

prevent the execution of this attack by using the following

methods:

 Token-Based Authentication

The anti [7] [8] csrf tokens are widely used technology

which is highly recommended and is known to be very

effective against this attack.

By using different hash functionalists the anti csrf code
that you embedded in your page creates a token of certain

fixed length and which always has a different value. Now,

these tokens work on the principle that each page randomly

generates only one token-id at a time and cannot accept two

pages to exist with the same token -id. That is if you refresh

the page a new token will be generated and the previous

token value will be dropped, making it certain that at one

instant only one page with that token value exists on the

internet. Now, when the attacker would try to implement a

phishing link on your site (duplicating the webpage form)

he/she will automatically copy the generated token number
with it. Thus creating a clash on the server which results in

an error suggesting invalid token number because a page of

that token-id value already is in existence.

 Synchronizer token-based:

[9]They are created on a request basis, these are

server-based tokens that are better than session-based tokens

as they furnish a better degree of security. Frequently

session-based tokens are susceptible to browser back refresh

attacks and synchroniser request based tokens prevent such

attacks. On request, the server checks the individualism of
the csrf tokens and upon the validation, with the user

http://www.ijisrt.com/
https://address_of_changed_password/
http://bank.com/transfer.do?acct=User1&amount=100000
http://bank.com/transfer.do?acct=User22&amount=1000000000
http://bank.com/transfer.do?acct=User22&amount=1000000000
https://bank.com/after_transfer_page

Volume 5, Issue 11, November – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20NOV497 www.ijisrt.com 736

sessions tokens, the requests are conducted if the tokens are

deemed not distinct or legal the requests are not passed.

 Encryption Based:

It utilizes [9] encryption rather than token based

comparison. The server uses a unique key to encrypt tokens

comprising session-id and Timestamp of users, and upon

requesting the server to send the tokens to the user where

these tokens are decrypted and if the decrypted tokens don't

match the values of tokens then they are considered too

meddlesome and rescinded.

 Same Site Cookie Attribute:

The same [9] site cookie attribute studies were whether
or to not transmit cookies to another site. It assists the

browser to choose where to send the cross-site requests

together with the cookies. It always checks before sending

cookies even on regular links. Now, for instance, a GitHub-

like website, this may mean that if a logged-in user pursues

a link to a personal GitHub project posted on a company

discussion forum or email, GitHub won't receive the cookie

and therefore the user won't be able to access the project.

 User-based Authentication:

Sometimes, simple user-based interaction also acts as a
powerful tool against CSRF. User interaction such as:

1.)CAPTCHA

2.)OTP

3.)Re-Authentication

However, a powerful line of defense these mitigations

turn out to, they are not supposed to just implement as the

only line of defense against the attack. They should always

be used as an extra measure of security.

 Login Forms:
Developers [9] frequently speculate that login forms

are secure enough and need not be a spur to worry about the

csrf attack, but on the contrary login, forms are also equally

at risk to this attack. An attacker can effortlessly copy forms

and bait users to log in again retrieving passwords and other

sensitive information. Login forms can be prevented using

pre-sessions and adding csrf tokens.

 Don't use method override:

Several applications are presently using [10] method-

override functions to use PUT, PATCH, and DELETE
requests for the usage of forms. This as a result the requests

which weren't vulnerable before now vulnerable hence could

cause vast damage.

IV. DISCUSSION ON CSRF TOKENS

 CSRF Tokens [11]

Alas, the ultimate solution is using CSRF tokens. How do

CSRF tokens work?

The server provides a token to the client. Now the
client with the token submits the form back to the server.

The server checks for the validity of the token with form and

accepts only if it is valid. An attacker would somehow get

the CSRF token from your site, and that they would use
JavaScript to try and do so. Thus, if your site doesn't support

CORS, then there isn't any way for the attacker to urge the

CSRF token, eliminating the threat.

 Make sure CSRF tokens cannot be accessed with

AJAX! Never create a route just to grab a token, and make

sure that you always never support CORS on routes.

The token just must be "unguessable ", making it

difficult for an attacker to successfully guess within a pair of

tries. It mustn't be cryptographically secure.

 BREACH attack [11]

This is where the salt comes along. The BREACH

attack is pretty simple: if the server sends the identical or

verysimilar response over HTTPS+gzip multiple times, an

attacker could guess the contents of the response body

(making HTTPS utterly useless). Solution? Make each

response a small bit different.

Thus, CSRF tokens are generated on a per-request

basis and different on every occasion. But the server has to

know that any token included with asking is valid. Thus:

Cryptographically [11] secure CSRF tokens are now

the CSRF "secret", (supposedly) only known by the server.

The salt doesn't need to be cryptographically secure Because

the client knows the salt!!! The server will deliver; and also

the client will return the identical value to the server on

asking. The server will then check to form sure +=. he salt

must always be sent along with the token, otherwise, the

server would not be able to interpret and as a result validate

the token.

CSRF tokens are now a hash of the key and salt. The
secret doesn't need to be secret, but it is. If you're employing

a database-backed session store, the client will never know

the key as it's stored on your DB. If you're using cookie

sessions, the key is stored as a cookie and sent to the client.

Thus, confirm cookie sessions use httpOnly that the client

can't read the key via client-side JavaScript!

V. POPULAR CSRF VULNERABILITY

DISCOVERIES

1. ING Direct [11] (ingdirect.com)
A vulnerability on lNG's website that allowed

additional accounts to be created on behalf of an arbitrary

user. Some of the people were ready to transfer funds out of

users' bank accounts. This was the primary CSRF

vulnerability to permit the transfer of funds from an

institution.

2. YouTube [12] (youtube.com)

CSRF vulnerabilities were as discovered in nearly

every action a user could perform on YouTube. The attacker

using the csrf vulnerability could easily make changes on
the users account such as making comments on a video,

http://www.ijisrt.com/

Volume 5, Issue 11, November – 2020 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT20NOV497 www.ijisrt.com 737

flagging a video, adding videos to favorites, collecting

contacts information from the user's account.

3. MetaFilter (metafilter.com)

A vulnerability existed on MetaFilter that allowed an

attacker to require control of a user's account. A forged

request could be wont to set a user's email address to the

attacker's address. A second forged request could then be

accustomed activate the "Forgot Password" action, which

might send the user's password to the attacker's email

address.

4. Play Framework [13]

A vulnerability within the Play framework can allow
an entire cross-site request forgery (CSRF) protection

bypass, researchers have warned. The play could be a

framework for building web applications with Java and

Scala. It is utilized by companies including LinkedIn,

Verizon, and Walmart. The open-source framework allows

users to line up a restricted set of content types it'll allow as

a part of its anti-CSRF mechanism. However, researchers

discovered they were able to bypass this optional

functionality by sending malformed Content-Type headers

to a target web app. It was found that an attacker could use a

semicolon within the boundary value which doesn't fit RFC
2046, therefore circumventing the framework’s blocklist

function.

5. The big apple Times [13] (nytimes.com) 512

A vulnerability within the big apple Time's website

allows an attacker to search out the e-mail address of an

arbitrary user. This takes advantage of the NYTimes's.

Email This" feature, which allows a user to send an email a

few stories to an arbitrary user. This email contains the

logged-in user's email address. An attacker can forge a

missive of invitation to activate the "Email This" feature

while setting his email address because of the recipient.
When a user visit's the attacker's page, an email is going to

be sent to the attacker's email address containing the user's

email address. This attack may be used for identification

(e.g., finding the e-mail addresses of all users who visit an

attacker's site) or for spam. This attack is especially

dangerous due to the big number of users who have

NYTimes' accounts and since the NYTimes keeps users

logged over a year. TimesPeople, a social networking site

launched by the big apple Times on September 23, 2008, is

also vulnerable to CSRF attacks.

6. Gmail (www.gmail.com)

A vulnerability in GMail was discovered in January

2007 which allowed an attacker to steal a Gmail user's

contact list. A distinct issue was discovered in Netflix which

allowed an attacker to alter the name and address on the

account, additionally as add movies to the rental queue etc.

VI. CONCLUSION

The CSRF attack is not to be ignored. The csrf attack,

seems simple but can cause a prolific amount of damage to

your systems, resulting in data breaches, frauds etc. The csrf

attack prevail today because most developers are not

concerned with the security of the web application. Another

reason for this attack is the lack of knowledge about

cybercrimes among the users, due to which they are fall prey

to social engineering attacks. Proper mitigation is

unequivocally important for secure use of applications.

REFERENCES

[1]. https://www.netsparker.com/blog/websecurity/csrf-

cross-site-request-forgery/

[2]. “Survey on Cross Site Request Forgery (An Overview

of CSRF)”By Sentamilselvan K, Dr.S.Lakshamana

Pandian

[3]. https://en.wikipedia.org/wiki/Cross-

site_request_forgery

[4]. https://d1wqtxts1xzle7.cloudfront.net/50582893/ICCS

N.

[5]. Hackersploit (YouTube channel)

https://www.youtube.com/channel/UC0ZTPkdxlAKf-
V33tqXwi3Q

[6]. OWASP CSRFhttps://owasp.org/www-

community/attacks/csrf#:~:text=Cross%2DSite%20Re

quest%20Forgery%20(CSRF)%20is%20an%20attack

%20that,response%20to%20the%20forged%20request

[7]. ”Robust Defenses for Cross Site Request Forgery”

Adam Barth, Collin Jackson, John C.

Mitchell(Stanford University).

[8]. “Assessment of vulnerabilities of web applications of

Bangladesh: A case study of XSS and CSRF” By

TanjilaFarah

[9]. https://cheatsheetseries.owasp.org/cheatsheets/Cross-
Site_Request_Forgery_Prevention_Cheat_Sheet.html

[10]. “A study of effectiveness of CSRF Guard” By Boyan

Chen, PavolZavarsky, Ron Duhl and Dane Lindskog

[11]. “Evaluation of Static Web Vulnerability Analysis

Tools” By ShobhaTyagi, and KrishanKumar.

[12]. https://news.hitb.org/

[13]. https://portswigger.net/

[14]. “Testing and comparing web vulnerability scanning

tools for SQL injection and XSS attacks” By José

Fonseca, Marco Vieira and Henrique Madeira

[15]. “SWAP: Mitigating XSS Attacks using a Reverse
Proxy” By Peter Wurzinger, Christian Platzer,

Christian Ludl, EnginKirda , and Christopher Kruegel.

[16]. “Cross-Site Scripting (XSS) attacks and defense

mechanisms: classification and state-of-the-art” By

Shashank Gupta, B. B. Gupta

http://www.ijisrt.com/
http://nytimes.com/
http://www.gmail.com/
https://www.netsparker.com/blog/websecurity/csrf-cross-site-request-forgery/
https://www.netsparker.com/blog/websecurity/csrf-cross-site-request-forgery/
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://d1wqtxts1xzle7.cloudfront.net/50582893/ICCSN
https://d1wqtxts1xzle7.cloudfront.net/50582893/ICCSN
https://www.youtube.com/channel/UC0ZTPkdxlAKf-V33tqXwi3Q
https://www.youtube.com/channel/UC0ZTPkdxlAKf-V33tqXwi3Q
https://owasp.org/www-community/attacks/csrf#:~:text=Cross%2DSite%20Request%20Forgery%20(CSRF)%20is%20an%20attack%20that,response%20to%20the%20forged%20request
https://owasp.org/www-community/attacks/csrf#:~:text=Cross%2DSite%20Request%20Forgery%20(CSRF)%20is%20an%20attack%20that,response%20to%20the%20forged%20request
https://owasp.org/www-community/attacks/csrf#:~:text=Cross%2DSite%20Request%20Forgery%20(CSRF)%20is%20an%20attack%20that,response%20to%20the%20forged%20request
https://owasp.org/www-community/attacks/csrf#:~:text=Cross%2DSite%20Request%20Forgery%20(CSRF)%20is%20an%20attack%20that,response%20to%20the%20forged%20request
https://seclab.stanford.edu/websec/csrf/csrf.pdf:Adam
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://news.hitb.org/
https://portswigger.net/

	[14]. “Testing and comparing web vulnerability scanning tools for SQL injection and XSS attacks” By José Fonseca, Marco Vieira and Henrique Madeira

