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Abstract:- The purpose of this paper is to present 

different fractional order derivatives and inequalities 

that are commonly used in the literature, especially in 

Riemann-Liouville sense of Fractional inequalities in the 

context of q-calculus. In this current work we have 

presented some new inequalities related to the Riemann-

Liouville Fractional inequalities in the context of q-

calculus. Fractional calculus explores integrals and 

derivatives of functions involving non-integer order(s). 

Its application to Quantum calculus (q-Calculus), on the 

other hand focuses on investigations related to calculus 

without limits. 

 

In recent times, these aspect of mathematics has 

attracted the attention of many researchers due to its 

high demand for solving complex systems in nature with 

anomalous dynamics. We therefore, introduce some new 

inequalities related to Riemann-Liouville fractional 

integral inequalities with limist via q-Calculus 

 

Keywords:- Riemann-Liouville, Fractional calculus, q-

Calculus, limits 2010.  

 

I. INTRODUCTION 

 

Recently, fractional inequality has been used to 

enhance understanding in solving and describing various 

problems in Mathematics, especially rational differential 

equations and inequalities. It is worth stating the that since 
the integer-order integrals and derivatives, do not always 

apply adequately in many cases, in the current mathematical 

models, rational order derivatives come with reasons of 

fixing the identified gap. 

 

Fractional calculus explores integrals and derivatives 

of functions which involve non-integer order(s). Fractional 

calculus is seen as the branch of Mathematics which 
generalizes the integer-order differentiation and integration 

to derivatives and integrals of arbitrary order. So many 

extensions have been attemped on some important formulae 

using fractional calculus. Researcher in these category 

include; Kilbas (2001),Kilbas et al. (2006) Annaby and 

Mansour (2012),Oldham and Spanier. (1974), Usta et al. 

(2017),Yanga (2015), Atangana and Secer (2013), and the 

reference therein. 

 

It is very important to note that all the fractional 

derivative order definitions have their pros and cons. We 
therefore include Caputo derivatives for the purposes of 

comparison. We will then employ Quantum calculus (q-

Calculus) on the in our effort to refocus on investigations 

related to ’calculus without limits’. 

 

II. PRELIMINARIES 

 

In this section we seek to explore some basic 

definitions as well as formulas which are necessary in this 

current work. There exists a vast literature on different 

definitions of fractional derivatives. The most popular ones 

are the RiemannLiouville and the Caputo derivatives. For 
Caputo we have 

 

 

  (1) 

for n − 1 < α ≤ . 

 

and for the case of Riemann-Liouville we use the following definition: 

 

  (2) 

 
We proceed with the rest as follows: 

 

Definition 2.1. Let f ∈ L1(a,b), then the Cauchy formulae is given by 

 

  (3) 
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for n ∈ N and α ∈ R+. 
 

The Riemann-Liouville fractional integrals are defined below. 

 

  (4) 

and 

  (5) 

 

From 3, let n = α, for α ∈ R+, and (n − 1)! = Γ(α) proofs (4) and (5). Oldham and Spanier. (1974) The following are some 

properties of the Riemann-Liouville fractional integrals. 

 

Definition 2.2. Let α,β ∈ R and f ∈ (a,b) then 
 

  (6) 

 

This property is usually called semi-group property. 

 

Definition 2.3. Let α ∈ R+ and f(x) is integrable, then 

 

  (7) 

Lemma 2.1. Annaby and Mansour (2012) Let f ∈ (0,a] and α ∈ R+ for all x ∈ (0,∞]. Then 

 

 . (8) 
 

In the theory of q-calculus, Ernst (2012) for a real parametera q ∈ R+\1, a q-real number[a]q is defined by . 

 
Suppose (a − b)k is a power funtion, then the q-analog of this power function is given by 

 

k−1 

 (a − b)(k) = Y(a − bqi) (9) 

 

i=0 

 

where (k ∈ N;a,b ∈ R) 

 

The natural expansion to reals are define by , and . 

 
From Jackson (1910) we state the following equations. The q-diferential defined as 

 

 dqf(x) = f(qx) − f(x), (10) 

 

and 

The q- derivative is defined as 

 

 . (11) 

 

Dq is a linear operator. Thus 

 , (12) 

 

 , (13) 
 

 . (14) 
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The Function F(x) is q-antiderivative of f(x) provided DqF(x) = f(x) Thus the q-antiderivative is defined as 

Z 
 F(x) = f(x)dqx. (15) 

 

For definate integral, it is defined as 

 

 (16) 

 

where [a,b] are the limits of the integral. Similarlly, the q- analog of the integration by parts is defined as 

 

 (17) 

 

Also see Oney (2007) Hasan et al. (2019),Iddrisu (2018),Nantomah (2017) Nantomah et al. 

 

(2018),Freihet et al. (2019); ?Ajega-Akem et al. (2019). 
 

Definition 2.4. Let α ∈ C the Euler Gamma function define by 

 

 (18) 

 

Definition 2.5. Let z,w,∈ C for all Re(z) >0 and Re(w) >0, then 

 

 (19) 

 

and 

 
 

Definition 2.6. Let f(x,y,z) be a contineous and integrable funtion with respect y and z, then the change of order of integration is 

given by 

 

 (20) 

 

III. RESULTS AND DISCUSSION 

 

We start this section with the following lemma. 

 

Lemma 3.1. Let f ∈ L1(a,b), then 

 

 (21) 

 

for all t 6= ξ and (a,b) ∈ R. 

 

Proof. Adding (4) and (5) yields 

 

 (22) 

 

for ξ < b,ξ > a,R(α) >0. 

 

Taking limit as α → 0+, yields 
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 (24) 

. 

Applying (8) we have 

 

 (25) 

 

Let α = 2n − 1, for n = 1,2,..., then (ξ − t)α−1 = (t − ξ)α−1. 

 

Implies 

 

(26) 
(27) 

Hence 

  (28) 

 
 

Corollary 3.2. Let f be a continuous function on (a,b), then 

 

 (29) 

 

for all tq 6= ξ and (a,b) ∈ R. 

Proof. From (28), put α = 1, then the corollary is proved as required.  

Lemma 3.3. Let f ∈ L1(a,b), then 

 

 (30) 

 

for all t 6= ξ and (a,b) ∈ R. 

Proof. From (25) let α = 2n, for n = 1,2,... 

then (t − ξ)α−1 6= (ξ − t)α−1 but |(t − ξ)| = |(ξ − t)| as required.  

 

Theorem 3.4. Let f be a continuous function on (a,b), then 

 

. (31) 
 

Proof. Applying q-integration by parts to (28) we have 

 
  

 

(33) 

(34) 
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But  and 
 

 (35) 

 

This simplifies to 

 (36) 

 

as required.  

 

Theorem 3.5. Let f be a continuous function on (a,b), then for all α = 2n, 

  (37) 

 

for all t 6= ξ and (a,b) ∈ R. 
 

Proof. Applying q-integration by parts to (30) gives 

 

 
  (38) 

Simplifying this prove the theorem. 

  

IV. CONCLUSIONS 

 

In this write up, some new inequalities involving 

Riemann-Liouville fractional integral inequalities using q-

Calculus, were presented. The research results established 
was realised through a property usually called semi-group 

property coupled with applying q-integration by parts and 

simplifying yielded the desired results. 
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