
Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR375 www.ijisrt.com 654

Anonymous Spam Detection Service Based on

Somewhat Homomorphic Encryption

1st Ion Badoi

Department of Applied Computer Science

Military Technical Academy “Ferdinand I”

Bucharest, Romania

2nd Mihail-Iulian Plesa

Department of Applied Computer Science

Military Technical Academy “Ferdinand I”

Bucharest, Romania

Abstract:- Because cloud-based services are becoming

more and more used in the field of machine learning the

issue of data confidentiality arises. In this paper, we

address the problem of privacy-preserving spam

classification. One of the most used algorithms for solving

this problem is logistic regression. In this work, we

suppose that a remote service has a pre-trained logistic

regression model about which it does not want to leak any

information. On the other hand, a user wants to use the

pre-trained model without revealing anything about his

mail. To solve this problem, we propose a system that uses

somewhat homomorphic encryption to encrypt the user

data and at the same time allows the service to apply the

model without finding out any information about the user

mail. The main contribution of this paper is a practical

tutorial on how to implement the inference of a logistic

regression model over encrypted data using the EVA

compiler.

Keywords:- Logistic Regression, Homomorphic Encryption,

Privacy-Preserving, Spam Classification.

I. INTRODUCTION

Given the rapid development of cloud computing, we

need to raise concerns about data privacy. Many companies

offer machine learning services directly into the cloud. All the

user has to do is upload his data to the cloud [1][2][3]. The
model will be run over the uploaded data and a result will be

returned to the user almost instantly. The problem of data

privacy is a two-way problem. The company that provides the

cloud services does not want to leak any information about the

model to the user. On the other hand, the user does not want to

give all its data to the company.

Currently, there are two major solutions for privacy-

preserving machine learning. The first one proposes the use of

secure multi-party computation. There are two parties

involved: the user and the cloud service. The input of the user

is the data, and the input of the service is the model. The goal
is to use secure multi-party computations algorithms to

compute the result of the machine learning algorithm without

the user revealing his data or the service revealing the model.

The second one proposes the use of homomorphic encryption.

The main idea is that the user will encrypt his data using a

homomorphic encryption scheme before sending it to the

cloud. The service will apply the model over the encrypted

data and return the encrypted result to the user. The user will

decrypt and use the result. In this way the company will not

leak any information about the model and the user will not

reveal anything about the data.

In this work, we focus on privacy-preserving spam
classification. The proposed solution is based on somewhat

homomorphic encryption. We emulate the case in which the

cloud service owns a pre-trained logistic regression model for

spam classification and a user wants to use the service to

classy his mail as spam or ham.

A. The system arhitecture

Figure 1 shows the proposed architecture. The user

performs the following series of steps:

1) Text encoding: Since the classification algorithm does not

work directly on text documents we need to encode the

mail as an array of integers.
2) Encryption: To ensure the confidentially of the mail, the

user will encrypt the encoded text using his public key.

3) Classification: The user will send the encrypted mail to a

remote server from the cloud. The server runs the

classification algorithm over the encrypted data and will

return to the user the encrypted result.

4) Decryption: The user will decrypt the result received from

the server using his private key.

Figure 1: The system architecture

B. Related work and our contribution

The classification algorithm used in this work is logistic

regression. Due to its efficiency and simplicity, this algorithm

is one of the first applications of homomorphic encryption in

machine learning. In [4] the authors construct three major

classification algorithms: hyperplane decision, Naïve Byes and

decision trees from a privacy-preserving manner. The

protocols that the authors proposed are low level and although
they are efficient, they are not accessible to a programmer

http://www.ijisrt.com/

Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR375 www.ijisrt.com 655

without very thorough mathematical training. In [5] the

authors show a new privacy-preserving protocol for logistic
regression training and inference based on homomorphic

encryption and secure multi-party computation. [6] shows a

new approach that uses the Residue Number System to ensure

the confidentiality of the data for the logistic regression

algorithm. In [7] the authors proposed the use of fully

homomorphic encryption to encrypt the data from the iDASH

2017 secure genome analysis competition. In [8] it is proposed

a privacy-preserving spam filtering algorithm that uses

functional encryption.

Although there are many solutions for privacy-

preserving logistic regression, none of these shows how these
solutions can be implemented in real software. We do not

claim any new scientific novelty, but we contribute through an

open-source system that emulates a cloud service that provides

privacy-preserving spam classification. We describe a

practical tutorial that shows step by step how to implement

such a system and what are the latest technologies to do this.

II. THE ENCRYPTION SCHEME

A. The CKKS encryption scheme

The CKKS scheme was first introduced in 2017 during
ASIACRYPT 2017 [9]. It is the first somewhat homomorphic

encryption (SWHE) scheme designed especially for working

with real numbers. Unlike fully homomorphic encryption

(FHE) schemes, CKKS does not support an arbitrary number

of computations. Another distinctive property of CKKS is that

it is an approximate scheme. In general, an FHE or SWHE

respects (1) and (2):

𝐸𝑛𝑐(𝑚1) + 𝐸𝑛𝑐(𝑚2) = 𝐸𝑛𝑐(𝑚1 + 𝑚1) (1)

𝐸𝑛𝑐(𝑚1) ∗ 𝐸𝑛𝑐(𝑚2) = 𝐸𝑛𝑐(𝑚1 ∗ 𝑚1) (2)

CKKS respects an approximative version of (1) and (2):

𝐸𝑛𝑐(𝑚1) + 𝐸𝑛𝑐(𝑚2) = 𝐸𝑛𝑐(𝑚1 + 𝑚1) + 𝜀 (3)

𝐸𝑛𝑐(𝑚1) ∗ 𝐸𝑛𝑐(𝑚2) = 𝐸𝑛𝑐(𝑚1 ∗ 𝑚1) + 𝜀 (4)

Although (3) and (4) approximates the requirements of

an SWHE scheme, 𝜀 is a small error that enables the scheme

to be much more efficient than any other FHE or SWHE for

computations on real numbers.

The scheme is based on the RLWE problem [10]. The

plaintext space is the set ℂ𝑁/2. Each plaintext will be encoded

into a polynomial belonging to the factor ring ℤ𝑞[𝑋]/𝜙𝑀(𝑋)

where 𝜙𝑀 (𝑋) is the 𝑀𝑡ℎ cyclotomic polynomial defined in

(5), where 𝑀 = 2𝑁 and 𝑁 is a power of 2:

𝜙𝑀(𝑋) = 𝑋𝑁 + 1 (5)

As expected from an RLWE based scheme, the

ciphertext space is ℤ𝑞[𝑋]/𝜙𝑀(𝑋)2 . After decryption, each

plaintext will be decoded into ℂ𝑁/2 . The secret key is a

polynomial 𝑠 ∈ ℤ𝑞[𝑋]/𝜙𝑀(𝑋). The public key, 𝑝 is generated

in (6) where 𝑎 ∈ ℤ[𝑋]/𝜙𝑀(𝑋) is a sampled uniformly and𝑒 ∈
ℤ𝑞[𝑋]/𝜙𝑀(𝑋) is a small noisy polynomial:

𝑝 = (−𝑎𝑠 + 𝑒, 𝑎) (6)

The encryption of the plaintext 𝑚 ∈ ℤ𝑞[𝑋]/𝜙𝑀 (𝑋)

generates the ciphertext 𝑐 = (𝑐0, 𝑐1) ∈ ℤ𝑞[𝑋]/𝜙𝑀 (𝑋)2 as in

(7) where 𝑏 = −𝑎𝑠 + 𝑒:

𝑐 = (𝑚 + 𝑏, 𝑎) (7)

Similarly, the decryption of the ciphertext 𝑐 = (𝑐0, 𝑐1) ∈
ℤ𝑞[𝑋]/𝜙𝑀(𝑋)2 using the secret key 𝑠 produces the plaintext

𝑚 ∈ ℤ𝑞[𝑋]/𝜙𝑀(𝑋) as in (8):

𝑚 = 𝑐0 + 𝑠𝑐1 (8)

Let 𝑐 = (𝑐0, 𝑐1) and 𝑐′ = (𝑐′0, 𝑐′1) be the ciphertexts of

𝑚 and 𝑚’. Let 𝑐𝑎𝑑𝑑 be the sum of 𝑐 and 𝑐’ defined in (9):

𝑐𝑎𝑑𝑑 = (𝑐0 + 𝑐′0, 𝑐1 + 𝑐′1) (9)

According to the decryption procedure defined in (8),

𝑐𝑎𝑑𝑑 is the encryption of the sum of the two plaintexts 𝑚 and

𝑚’ as it can be observed from (10):

(𝑐0 + 𝑐′0) + 𝑠(𝑐1 + 𝑐′1) = (𝑐0 + 𝑠𝑐1) + (𝑐′0 + 𝑠𝑐′1)
= 𝑚 + 𝑚′

(10)

Let 𝑐𝑐𝑜𝑛𝑠𝑡_𝑚𝑢𝑙 be the ciphertext 𝑐 multiplied by the

plaintext 𝑚′. This operation is defined in (11):

𝑐𝑐𝑜𝑛𝑠𝑡_𝑚𝑢𝑙 = (𝑐0𝑚′, 𝑐1𝑚′) (11)

Similar to the addition of two ciphertexts, 𝑐𝑐𝑜𝑛𝑠𝑡_𝑚𝑢𝑙 is

the encryption of the product between 𝑚 and 𝑚’ as proved in

(12):

𝑐0𝑚′ + 𝑠𝑐1𝑚′ = 𝑚′(𝑐0 + 𝑠𝑐1) = 𝑚′𝑚 (12)

So far, we have proved that the scheme is homomorphic

with respect to addition and constant multiplication. CKKS is

also homomorphic with respect to ciphertext multiplication.

Let 𝑐𝑚𝑢𝑙 be the multiplication of 𝑐 and 𝑐’ defined in (13):

𝑐𝑚𝑢𝑙 = (𝑑0, 𝑑1, 𝑑2) = (𝑐0𝑐′0, 𝑐0𝑐′1 + 𝑐′0𝑐1, 𝑐1𝑐′1) (13)

Obvious, 𝑐𝑚𝑢𝑙 cannot be decrypted using (8). Intuitive,

the decryption of 𝑐𝑚𝑢𝑙 must be the product between the

decryption of 𝑐 and the decryption of 𝑐’, that is the product of

the plaintexts 𝑚 and 𝑚’. This product is defined in (14).

𝑚𝑚′ = (𝑐0 + 𝑠𝑐1)(𝑐′
0 + 𝑠𝑐′

1)
= 𝑐0𝑐′

0 + 𝑠(𝑐0𝑐′1 + 𝑐′0𝑐1)
+ 𝑠2𝑐1𝑐′1 = 𝑑0 + 𝑠𝑑1 + 𝑠2𝑑2

(14)

http://www.ijisrt.com/

Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR375 www.ijisrt.com 656

The key idea to be able to decrypt 𝑐𝑚𝑢𝑙 using (8) is the
process of relinearization. The scheme defines an evaluation

key, 𝜀 as in (15) where 𝑝 is a big integer and 𝑎0, 𝑒0 ∈
ℤ𝑝𝑞[𝑋]/𝜙𝑀 (𝑋):

𝜀 = (−𝑎0𝑠 + 𝑒0 + 𝑝𝑠2, 𝑎0) 𝑚𝑜𝑑 𝑝𝑞 (15)

The relinearization rewrites 𝑐𝑚𝑢𝑙 as the sum of two valid

ciphertexts i.e., ciphertexts that can be decrypted using (8),

using the evaluation key as in (16) where the pair (𝑓0 , 𝑓1) is

defined in (17):

𝑐𝑟𝑒𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = (𝑑0, 𝑑1) + (𝑓0, 𝑓1) (16)

(𝑓0, 𝑓1) = (𝑝−1𝑑2(−𝑎0𝑠 + 𝑒0

+ 𝑠2), 𝑝−1𝑑2𝑎0) 𝑚𝑜𝑑 𝑞

(17)

Decrypting the ciphertext 𝑐𝑟𝑒𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 , results in the

product of the plaintext 𝑚 and 𝑚’ as proved in (18). Since

𝑓0 + 𝑠𝑓1 is reduced modulo 𝑞 and 𝑝 is a big integer we can

consider the error term 𝑝−1𝑑2𝑒0 small enough to be ignored.

𝑑0 + 𝑠𝑑1 + 𝑓0 + 𝑠𝑓1

= 𝑑0 + 𝑠𝑑1

+ 𝑝−1𝑑2(−𝑎0𝑠 + 𝑒0 + 𝑠2)
+ 𝑠𝑝−1𝑑2𝑎0

= 𝑑0 + 𝑠𝑑1 + 𝑠2𝑑2 + 𝑝−1𝑑2𝑒0

= 𝑑0 + 𝑠𝑑1+𝑠2𝑑2 = 𝑚𝑚′

(18)

So, the scheme is homomorphic with respect to the

operations of additions, constant multiplication and ciphertext

multiplication. All these proprieties enable us to implement

any kind of computation without revealing the actual data that

is being computed on.

B. EVA Compiler
The encryption scheme described in Section A, can be

used in practice through the EVA compiler [11]. It is the first

compiler for homomorphic encryption developed by

Microsoft. At the time of writing, the compiler supports only

the CKKS scheme. Although the CKKS encryption scheme is

efficient due to the high degree of parallelism, the main

practical disadvantage consists in the fact that the programmer

must know many mathematical details which requires a long

study. Due to this fact, only a limited number of people can

create efficient software that implements homomorphic

encryption. The EVA compiler solves this problem by

allowing the programmer to write code in Python that
processes encrypted data without directly selecting any

cryptographic parameters. The programmer must select only

two parameters: the output ranges and the input scales. Since

the CKKS is an approximative scheme, these two parameters

control the approximation error. There are several methods

frequently used while programming with EVA.

The compile method receives as input an EVA program

and returns the compiled program, the encryption parameters

required by the scheme and a signature that specifies how

inputs and outputs will be encoded and decoded. The

compiled program can be visualized as a graph using a library

such as Graphviz.

The generate_key method receives as input the

encryption parameters returned by the compile. It returns the

public key and secret key that will be used for data encryption

and decryption.

The encrypt and decrypt methods receive as inputs the

data to be encrypted or decrypted and the signature generated

by the compile. The methods return either a ciphertext or a

plaintext.

The execute method receives as input the compiled
program and the encrypted inputs return by encrypt. The

method run the homomorphic circuit over the encrypted data

and return the encrypted outputs of that circuit.

The decrypt method receives as input the encrypted

outputs produced by the execute. The method returns the

decrypted output. Following the definition of a homomorphic

encryption scheme, the decrypted outputs should be the same

as the outputs of the circuit run over the plaintext data.

The evaluate method receives as inputs the compiled
program and the plaintext inputs. The method returns the

outputs of the circuit run directly over the plaintext data. This

method is used together with the valuation_mse method that

receives as inputs the decrypted outputs and the outputs

obtained by running the circuit over the plaintext data. The

method returns the MSE between the two outputs.

III. IMPLEMENTATION

In this section, we provide a practical tutorial on how to

implement privacy-preserving logistic regression classification

using the EVA compiler. As far as we know this is the first
paper proving a concrete implementation in Python of a

machine learning algorithm over encrypted data. In the code

we used the following global variables:

1) 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠: The number of samples used to test the

model.

2) 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: The number of features of each sample

3) 𝑋_𝑡𝑒𝑠𝑡 : A matrix with 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 rows and

𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1 columns containing all testing

samples

4) 𝑦_𝑡𝑒𝑠𝑡 : A binary raw vector of dimension

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the ground truth labels of each

test sample

5) 𝑋_𝑡𝑟𝑎𝑖𝑛 : A matrix with 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 rows and

𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 columns containing all training samples

6) 𝑦_𝑡𝑟𝑎𝑖𝑛 : A binary raw vector of dimension

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the ground truth labels of each

training sample

7) 𝑦_𝑝𝑟𝑜𝑏_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 : A raw vector of dimension

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the predicted probability of

each test sample to be spam

http://www.ijisrt.com/

Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR375 www.ijisrt.com 657

8) 𝑦_𝑝𝑟𝑒𝑑 : A raw vector of dimension

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the predicted class of each test

sample

9) 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 : A raw vector of dimension 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠

containing the weights produces by training the logistic

regression model

A. Data preprocessing

The first step is to train a logistic regression model to

classify emails as ham or spam. To do this, we use the sklearn

library. The dataset used is Spambase Data Set from UCI
Machine Learning Repository [12]. The dataset is split into

training and testing:

X_train,X_test,y_train,y_test = train_test_split(X, y, test_size

= 0.2, random_state = 10)

To extract features, we use the bag of words

representation of a text document. The first step is to tokenize

the text and assign an integer identifier to each token. The

second step is to count the frequency of each token. We

consider a feature to be the frequency of a token and a sample

to be the vector of the frequencies of all tokens that
characterize a text. In the code presented in this paper, the

number of tokens is retained in the variable 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠.

The dataset is represented by a matrix where each row is a

vector of frequencies. In practice, an email uses very few

unique tokens resulting in a sparse matrix. We also

standardize the data by extracting the mean and diving by the

standard deviation. There are two distinct parameters of the

logistic regression model resulted from the training process:

the intercept and the coefficients. Given the fact that both

types of parameters will be encrypted, the function

logistic_regression_train_plaintext returns the concatenation
between the coefficient and the intercept:

def logistic_regression_train_plaintext(X_train, y_train):

 model = LogisticRegression(random_state=0)

 model.fit(X_train,y_train)

 return list(model.intercept_) + list(model.coef_[0])

Symbolically, the result returned by the function is

retained in the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 variable:

weights = logistic_regression_train_plaintext(X_train,
y_train).

Formally, applying the model over the test data involves

the multiplication between the 𝑋_𝑡𝑒𝑠𝑡 matrix and the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠

vector. Initially, after splitting the data, 𝑋_𝑡𝑒𝑠𝑡 matrix has

𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 columns. The 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 vector returned by the

training function has a length of 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1 due to

the concatenation between the 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 coefficients
and the intercept. To include the intercept when applying the

model, we prepend a column of ones to the 𝑋_𝑡𝑒𝑠𝑡 so that the

matrix has 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1 columns. To test the model by

classifying both spam and ham emails, we select a balanced

dataset of 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 from the 𝑋_𝑡𝑒𝑠𝑡 . The function

select_balanced_subset implements the selection of

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 balanced samples:

def select_balanced_subset(X, y):

 X_tmp = np.zeros((num_samples, num_features+1))

 y_tmp = np.zeros((num_samples, 1)).astype(int)

 positive_cnt = 0
 negative_cnt = 0

 cnt = 0

 for i in range(len(X)):

 if y[i] == 1 and positive_cnt < num_samples//2:

 for j in range(num_features+1):

 X_tmp[cnt][j] = X[i][j]

 y_tmp[cnt] = y[i]

 positive_cnt+=1

 cnt += 1

 if y[i] == 0 and negative_cnt < num_samples//2:

 for j in range(num_features + 1):

 X_tmp[cnt][j] = X[i][j]
 y_tmp[cnt] = y[i]

 negative_cnt+=1

 cnt += 1

 if negative_cnt+positive_cnt == num_samples:

 break

 return X_tmp, y_tmp

The function select_balanced_subset is called inside the

prepare_test_data function right after we append a column of

ones:

def prepare_test_data(X_test, y_test):
 X_test = np.hstack((np.ones((len(X_test), 1)), X_test))

 X_test, y_test = select_balanced_subset(X_test, y_test)

 return X_test, y_test

After all the above procedures, the 𝑋_𝑡𝑒𝑠𝑡 dataset used

for testing will have 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 samples each with

𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1 features:

X_test, y_test = prepare_test_data(X_test, y_test)

B. EVA programming

The first step taken when using the compiler is to create

a dictionary with all inputs that must be encrypted. In our

system, we only encrypted the test data i.e., the 𝑋_𝑡𝑒𝑠𝑡 matrix

so we create a dictionary with one key, “data” and one value,

the test data:

def make_eva_dictionary(X):

 data = X.flatten()

 return {'data': data}

The data to be encrypted is retained in the 𝑖𝑛𝑝𝑢𝑡𝑠 variable:

inputs = make_eva_dictionary(X_test)

The multiplication between the encrypted 𝑋_𝑡𝑒𝑠𝑡 matrix

and the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 vector involves the calculation of

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 dot products between each encrypted row of

the 𝑋_𝑡𝑒𝑠𝑡 matrix and the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 vector. When multiplying

an encrypted list of data with a plaintext, EVA multiplies each

element of the list with the plaintext. In other words, we
cannot control what elements of the list are multiplied with the

plaintext. To address this problem, we proposed the following

algorithm for the dot product between an encrypted vector,

𝑣𝑒𝑐𝑡𝑜𝑟1 and a plaintext vector, 𝑣𝑒𝑐𝑡𝑜𝑟2:

def dot_product(vector1, vector2, vector_len):

 const_zeros = [0] * vector_len

 const_zeros[0] = 1

http://www.ijisrt.com/

Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR375 www.ijisrt.com 658

 for i in range(vector_len):

 rotated = vector1 << i
 partial = rotated * vector2[i]

 if i == 0 :

 result = partial

 else:

 result += partial

 result = result * const_zeros

 return result

After the rotation with 𝑖 positions to the left, the

element that is in the position 𝑖 in the encrypted vector
reaches the first positions. We then multiply the whole vector

with 𝑣𝑒𝑐𝑡𝑜𝑟2[𝑖] and add the result to the variable 𝑟𝑒𝑠𝑢𝑙𝑡. In

this way, we multiply 𝑣𝑒𝑐𝑡𝑜𝑟1[𝑖] with 𝑣𝑒𝑐𝑡𝑜𝑟2[𝑖] and add

the partial results thus calculating the dot product. The 𝑟𝑒𝑠𝑢𝑙𝑡

will be a vector of 𝑣𝑒𝑐𝑡𝑜𝑟_𝑙𝑒𝑛 elements in which on the first

position we find the dot product between 𝑣𝑒𝑐𝑡𝑜𝑟1 and

𝑣𝑒𝑐𝑡𝑜𝑟2. Although the EVA compiler does not allow us to

extract the first element from the 𝑟𝑒𝑠𝑢𝑙𝑡, we can make all

elements except the first equal to zero by multiplying 𝑟𝑒𝑠𝑢𝑙𝑡

with a const vector, 𝑐𝑜𝑛𝑠𝑡_𝑧𝑒𝑟𝑜𝑠 in which the first element is

one and the rest are zero.

While using EVA, we cannot store a matrix as a

bidimensional array but as a raw vector. When multiplying a

matrix by a raw vector, we must use the same mechanism of

rotations to calculate the dot products. Suppose the matrix has

𝑛𝑢𝑚_𝑟𝑜𝑤𝑠 rows and 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 columns. The elements

belonging to the row number 𝑖 from the matrix will be found

from position 𝑖 ∗ 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 to position (𝑖 + 1) ∗
𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠. Since we cannot extract separately each row,

we will shift by 𝑖 ∗ 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 positions to the left the

vector that represents the matrix and multiply this vector to a

constant vector which has the first 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 equal to

one and the rest of (𝑛𝑢𝑚_𝑟𝑜𝑤𝑠 − 1) ∗ 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠
elements equal to zero. In this way, we make each row in the

matrix to be found one by one at the beginning of the vector

that represents the matrix. We then calculate the dot product

between this vector of encrypted entries and the plaintext

vector. The resulted dot product will be shifted 𝑖 positions to

the right and then will be added to the variable 𝑟𝑒𝑠𝑢𝑙𝑡. In this

way, at the position 𝑖 on the vector 𝑟𝑒𝑠𝑢𝑙𝑡 we found the dot

product between the row number 𝑖 of the original encrypted

matrix and the plaintext vector. Since the vector 𝑟𝑒𝑠𝑢𝑙𝑡 will

be as long as the vector that represents the matrix i.e.

𝑛𝑢𝑚_𝑟𝑜𝑤𝑠 ∗ 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 , only the first 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠 will

be occupied while the rest will be equal to the encryption of

zero.

def matrix_vector_multiplication(matrix, num_rows,

num_columns, vector):

 const_zeros = np.zeros(num_rows *

num_columns).astype(int)

 const_zeros[:num_columns] = 1
 const_zeros = list(const_zeros)

 for i in range(num_rows):

 row = matrix << i*num_columns

 row = row * const_zeros

 dot = dot_product(row, vector, num_columns)

 if i == 0:

 result = dot
 else:

 result += dot>>i

 return result

With the above function, we can compute the product

between a matrix and a vector thus we can multiply the matrix

𝑋_𝑡𝑒𝑠𝑡 with the vector 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 . According to the logistic

regression algorithm, to obtain the probability that a given

sample email is spam we must apply the sigmoid function to

the dot product between the feature vector that characterizes

an email and the vector 𝑤𝑒𝑖𝑔ℎ𝑡𝑠. In our case, we must apply

the sigmoid function to each element of the vector resulting

from the multiplication between 𝑋_𝑡𝑒𝑠𝑡 and 𝑤𝑒𝑖𝑔ℎ𝑡𝑠. Since

the data from 𝑋_𝑡𝑒𝑠𝑡 are encrypted so will the result of

multiplication with 𝑤𝑒𝑖𝑔ℎ𝑡𝑠. EVA compiler does not allow

any operations other than multiplications and additions thus

we must use the Taylor approximation of the sigmoid function

which is given in (19):

𝜎(𝑥) ≈
1

2
+

𝑥

4
−

𝑥3

48
+

𝑥3

480

(19)

Equation (19) is implemented by the function

apply_aprox_sigmoid which uses the default Python operators

for exponentiation, multiplication, and addition:

def apply_aprox_sigmoid(x):

 return 1/2+x*(1/4)-(x**3)*(1/48)+(x**5)*(1/480)

All processing over the encrypted data is done inside an

EVA program. When instantiating an EVA program, we need

to specify its name and the size of the encrypted input. In our

case, the name of the program is

“encrypted_logistic_regression”. Since the encrypted data

consist of the matrix of features 𝑋_𝑡𝑒𝑠𝑡, the size of the input is

the total number of elements from this matrix i.e.,

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∗ (𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1). Inside the program,

we identify the encrypted input by the dictionary we have
created. Given the encrypted features matrix, all the EVA

program does is to first call the matrix_vector_multiplication

function to multiply each sample with the vector 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 and

then call apply_aprox_sigmoid function to apply the

approximate sigmoid function to each element of vector

resulted from multiplication:

encrypted_logistic_regression =

EvaProgram('encrypted_logistic_regression',

vec_size=num_samples*(num_features+1))
with encrypted_logistic_regression:

 data = Input('data')

 data = matrix_vector_multiplication(data, num_samples,

num_features+1, weights)

 data = apply_aprox_sigmoid(data)

 Output('data', data)

To use the program stated above, we need to compile it:

compiler = CKKSCompiler()

compiled, params, signature =

compiler.compile(encrypted_logistic_regression)

http://www.ijisrt.com/

Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR375 www.ijisrt.com 659

Following the compilation process results the compiled

program that will be run, the parameters of the encryption
scheme and the signature of the program. Based on the

parameters, we use generate_keys to generate the public and

the private key:

public_ctx, secret_ctx = generate_keys(params)

Given the public key and the program signature we

encrypt the inputs:

enc_inputs = public_ctx.encrypt(inputs, signature)

Once we have the encrypted inputs, we can run the EVA

program:
enc_outputs = public_ctx.execute(compiled, enc_inputs)

The EVA program calculates the probability that each

test mail to be spam. Since the program runs over encrypted

data, the outputs will also be encrypted. To get the plaintext

results, we need to decrypt the enc_outputs using the private

key:

outputs = secret_ctx.decrypt(enc_outputs, signature)

To see the error due to the approximations made in the
encryption scheme, we run the functions evaluate and

valuation_mse:

reference = evaluate(compiled, inputs)

print('MSE', valuation_mse(outputs, reference))

The outputs variable represents a vector in which each

element is the probability that a test mail to be spam. To

classify the mail as spam or ham we compare each probability

with the standard threshold of 0.5. We use the sklearn function

accuracy_score to calculate the accuracy of classification
made over the encrypted data:

y_pred = []

for i in range(num_samples):

 if outputs['data'][i] < 0.5:

 y_pred.append(0)

 else:

 y_pred.append(1)

print('Model acc decrypted: ', accuracy_score(y_pred,

y_test))

IV. EXPERIMENTS

In this section, we made a series of experiments using

the implementation described in Section III.

Figure 2 shows the squared difference between the

decrypted probabilities obtained using EVA programming and

the probabilities given by the logistic regression algorithm

applied directly over the plain data. As it can be seen, the

difference is almost 0 except for a few test samples. This

means that the error due to the approximations inside the

encryption scheme does not affect the practical results.

Figure 2: Squared difference for each test sample

The most important errors come from the approximation

of the sigmoid function. Figure 3 present the approximation of

the sigmoid function. The approximation does not work for

points that are not in a close neighborhood of 0.

Figure 3: The approximation of the sigmoid function

To solve this problem, we can use more terms in the

Taylor expansion, but this strategy implies a much deeper
circuit that needs to be homomorphically evaluated. Although

we cannot recover the exact probabilities returned by the

logistic regression algorithm over the encrypted data, this does

not mean that the accuracy of the model is affected. Over 64

test samples, the algorithm run over plain data has an accuracy

of 73% which is the same as the accuracy obtained for the

decrypted results.

V. CONCLUSIONS AND FURTHER DIRECTIONS

OF RESEARCH

In this paper, we presented the architecture of a cloud-

based service that provides privacy-preserving spam detection.

The service owns a pre-trained logistic regression model

which it wants to expose without leaking any information

about the model parameters. The user, on the other hand, has a

set of emails that he wants to keep confidential. To meet the

conditions of both the service and the user we have

implemented a system based on somewhat homomorphic

encryption in which the user encrypts his mail, and the server

processes it in the encrypted form. For encryption, we used the
CKKS scheme. All computations made over encrypted data

were implemented using the EVA compiler.

http://www.ijisrt.com/

Volume 6, Issue 4, April – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21APR375 www.ijisrt.com 660

The main contribution of this work is a practical tutorial

on how to implement the inference for logistic regression over
encrypted data. The core of applying a plain logistic

regression model over a set of encrypted samples is the

multiplication between an encrypted matrix and a plain vector.

Although the EVA compiler allows the implementation of

operations over encrypted data, they consist only of additions

and multiplications. Due to this fact, one challenge was to

compute the sigmoid function by using its Taylor expansion.

The experiments showed that computing over encrypted data

does not affect the accuracy of the model.

A further direction of research is to implement the

training of a logistic regression model over encrypted data.
This involves implementing the gradient descent algorithm

over encrypted data which can be done with homomorphic

encryption since every training iteration consists of an

addition and a multiplication.

REFERENCES

[1]. “Azure Machine Learning - ML as a Service: Microsoft

Azure,” ML as a Service | Microsoft Azure. [Online].

Available: https://azure.microsoft.com/en-

us/services/machine-learning/. [Accessed: 01-Mar-2021].
[2]. “AI Platform | Google Cloud,” Google. [Online].

Available: https://cloud.google.com/ai-platform.

[Accessed: 01-Mar-2021].

[3]. T. M. Mitchell, “Machine learning,” Amazon, 2017.

[Online]. Available: https://aws.amazon.com/machine-

learning/. [Accessed: 01-Mar-2021].

[4]. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine

Learning Classification over Encrypted Data,”

Proceedings 2015 Network and Distributed System

Security Symposium, 2015.

[5]. H. Kikuchi, H. Yasunaga, H. Matsui, and C.-I. Fan,

“Efficient Privacy-Preserving Logistic Regression with
Iteratively Re-weighted Least Squares,” 2016 11th Asia

Joint Conference on Information Security (AsiaJCIS),

2016.

[6]. J. M. Cortés-Mendoza, A. Tchernykh, M. Babenko, L. B.

Pulido-Gaytán, G. Radchenko, F. Leprevost, X. Wang,

and A. Avetisyan, “Privacy-Preserving Logistic

Regression as a Cloud Service Based on Residue

Number System,” Communications in Computer and

Information Science, pp. 598–610, 2020.

[7]. H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali,

K. Laine, and K. Lauter, “Logistic regression over
encrypted data from fully homomorphic encryption,”

BMC Medical Genomics, vol. 11, no. S4, 2018.

[8]. S. Jaiswal, S. C. Patel, and R. S. Singh, “Privacy

Preserving Spam Email Filtering Based on Somewhat

Homomorphic Using Functional Encryption,” Advances

in Intelligent Systems and Computing, pp. 579–585,

2015.

[9]. J. H. Cheon, A. Kim, M. Kim, and Y. Song,

“Homomorphic Encryption for Arithmetic of

Approximate Numbers,” Advances in Cryptology –

ASIACRYPT 2017, pp. 409–437, 2017.

[10]. V. Lyubashevsky, C. Peikert, and O. Regev, “A Toolkit

for Ring-LWE Cryptography,” Advances in Cryptology –
EUROCRYPT 2013, pp. 35–54, 2013.

[11]. R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine,

and M. Musuvathi, “EVA: an encrypted vector arithmetic

language and compiler for efficient homomorphic

computation,” Proceedings of the 41st ACM SIGPLAN

Conference on Programming Language Design and

Implementation, 2020.

[12]. UCI Machine Learning Repository: Spambase Data Set.

[Online]. Available:

http://archive.ics.uci.edu/ml/datasets/Spambase.

[Accessed: 20-Feb-2021].

http://www.ijisrt.com/

	I. INTRODUCTION
	A. The system arhitecture
	1) Text encoding: Since the classification algorithm does not work directly on text documents we need to encode the mail as an array of integers.
	2) Encryption: To ensure the confidentially of the mail, the user will encrypt the encoded text using his public key.
	3) Classification: The user will send the encrypted mail to a remote server from the cloud. The server runs the classification algorithm over the encrypted data and will return to the user the encrypted result.
	4) Decryption: The user will decrypt the result received from the server using his private key.

	B. Related work and our contribution

	II. THE ENCRYPTION SCHEME
	A. The CKKS encryption scheme
	B. EVA Compiler

	III. IMPLEMENTATION
	1) 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠: The number of samples used to test the model.
	2) 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: The number of features of each sample
	3) 𝑋_𝑡𝑒𝑠𝑡: A matrix with 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 rows and 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠+1 columns containing all testing samples
	4) 𝑦_𝑡𝑒𝑠𝑡: A binary raw vector of dimension 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the ground truth labels of each test sample
	5) 𝑋_𝑡𝑟𝑎𝑖𝑛: A matrix with 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 rows and 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 columns containing all training samples
	6) 𝑦_𝑡𝑟𝑎𝑖𝑛: A binary raw vector of dimension 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the ground truth labels of each training sample
	7) 𝑦_𝑝𝑟𝑜𝑏_𝑝𝑟𝑒𝑑𝑖𝑐𝑡: A raw vector of dimension 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the predicted probability of each test sample to be spam
	8) 𝑦_𝑝𝑟𝑒𝑑: A raw vector of dimension 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the predicted class of each test sample
	9) 𝑤𝑒𝑖𝑔ℎ𝑡𝑠: A raw vector of dimension 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the weights produces by training the logistic regression model
	A. Data preprocessing
	B. EVA programming

	IV. EXPERIMENTS
	V. CONCLUSIONS AND FURTHER DIRECTIONS OF RESEARCH
	REFERENCES

