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Abstract:- Because cloud-based services are becoming 

more and more used in the field of machine learning the 

issue of data confidentiality arises.  In this paper, we 

address the problem of privacy-preserving spam 

classification. One of the most used algorithms for solving 

this problem is logistic regression. In this work, we 

suppose that a remote service has a pre-trained logistic 

regression model about which it does not want to leak any 

information. On the other hand, a user wants to use the 

pre-trained model without revealing anything about his 

mail. To solve this problem, we propose a system that uses 

somewhat homomorphic encryption to encrypt the user 

data and at the same time allows the service to apply the 

model without finding out any information about the user 

mail. The main contribution of this paper is a practical 

tutorial on how to implement the inference of a logistic 

regression model over encrypted data using the EVA 

compiler. 
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I. INTRODUCTION 

 

Given the rapid development of cloud computing, we 

need to raise concerns about data privacy. Many companies 

offer machine learning services directly into the cloud. All the 

user has to do is upload his data to the cloud [1][2][3]. The 
model will be run over the uploaded data and a result will be 

returned to the user almost instantly. The problem of data 

privacy is a two-way problem. The company that provides the 

cloud services does not want to leak any information about the 

model to the user. On the other hand, the user does not want to 

give all its data to the company.  

 

Currently, there are two major solutions for privacy-

preserving machine learning. The first one proposes the use of 

secure multi-party computation. There are two parties 

involved: the user and the cloud service. The input of the user 

is the data, and the input of the service is the model. The goal 
is to use secure multi-party computations algorithms to 

compute the result of the machine learning algorithm without 

the user revealing his data or the service revealing the model. 

The second one proposes the use of homomorphic encryption. 

The main idea is that the user will encrypt his data using a 

homomorphic encryption scheme before sending it to the 

cloud. The service will apply the model over the encrypted 

data and return the encrypted result to the user. The user will 

decrypt and use the result. In this way the company will not 

leak any information about the model and the user will not 

reveal anything about the data.  

 

In this work, we focus on privacy-preserving spam 
classification. The proposed solution is based on somewhat 

homomorphic encryption. We emulate the case in which the 

cloud service owns a pre-trained logistic regression model for 

spam classification and a user wants to use the service to 

classy his mail as spam or ham.  

 

A. The system arhitecture 

Figure 1 shows the proposed architecture. The user 

performs the following series of steps: 

1) Text encoding: Since the classification algorithm does not 

work directly on text documents we need to encode the 

mail as an array of integers. 
2) Encryption: To ensure the confidentially of the mail, the 

user will encrypt the encoded text using his public key. 

3) Classification: The user will send the encrypted mail to a 

remote server from the cloud. The server runs the 

classification algorithm over the encrypted data and will 

return to the user the encrypted result.  

4) Decryption: The user will decrypt the result received from 

the server using his private key. 

 

 
Figure 1: The system architecture 

 

B. Related work and our contribution 

The classification algorithm used in this work is logistic 

regression. Due to its efficiency and simplicity, this algorithm 

is one of the first applications of homomorphic encryption in 

machine learning. In [4] the authors construct three major 

classification algorithms: hyperplane decision, Naïve Byes and 

decision trees from a privacy-preserving manner. The 

protocols that the authors proposed are low level and although 
they are efficient, they are not accessible to a programmer 
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without very thorough mathematical training. In [5] the 

authors show a new privacy-preserving protocol for logistic 
regression training and inference based on homomorphic 

encryption and secure multi-party computation. [6] shows a 

new approach that uses the Residue Number System to ensure 

the confidentiality of the data for the logistic regression 

algorithm. In [7] the authors proposed the use of fully 

homomorphic encryption to encrypt the data from the iDASH 

2017 secure genome analysis competition. In [8] it is proposed 

a privacy-preserving spam filtering algorithm that uses 

functional encryption.  

 

Although there are many solutions for privacy-

preserving logistic regression, none of these shows how these 
solutions can be implemented in real software. We do not 

claim any new scientific novelty, but we contribute through an 

open-source system that emulates a cloud service that provides 

privacy-preserving spam classification. We describe a 

practical tutorial that shows step by step how to implement 

such a system and what are the latest technologies to do this.  

 

II. THE ENCRYPTION SCHEME 

 

A. The CKKS encryption scheme 

The CKKS scheme was first introduced in 2017 during 
ASIACRYPT 2017 [9]. It is the first somewhat homomorphic 

encryption (SWHE) scheme designed especially for working 

with real numbers. Unlike fully homomorphic encryption 

(FHE) schemes, CKKS does not support an arbitrary number 

of computations. Another distinctive property of CKKS is that 

it is an approximate scheme. In general, an FHE or SWHE 

respects (1) and (2): 

 

𝐸𝑛𝑐(𝑚1) + 𝐸𝑛𝑐(𝑚2) = 𝐸𝑛𝑐(𝑚1 + 𝑚1) (1) 

  

𝐸𝑛𝑐(𝑚1) ∗ 𝐸𝑛𝑐(𝑚2) = 𝐸𝑛𝑐(𝑚1 ∗ 𝑚1) (2) 

 

CKKS respects an approximative version of (1) and (2):  

 

𝐸𝑛𝑐(𝑚1) + 𝐸𝑛𝑐(𝑚2) = 𝐸𝑛𝑐(𝑚1 + 𝑚1) + 𝜀 (3) 

  

𝐸𝑛𝑐(𝑚1) ∗ 𝐸𝑛𝑐(𝑚2) = 𝐸𝑛𝑐(𝑚1 ∗ 𝑚1) + 𝜀 (4) 

 

Although (3) and (4) approximates the requirements of 

an SWHE scheme, 𝜀 is a small error that enables the scheme 

to be much more efficient than any other FHE or SWHE for 

computations on real numbers.  

 

The scheme is based on the RLWE problem [10]. The 

plaintext space is the set ℂ𝑁/2. Each plaintext will be encoded 

into a polynomial belonging to the factor ring ℤ𝑞[𝑋]/𝜙𝑀(𝑋) 

where 𝜙𝑀 (𝑋)  is the 𝑀𝑡ℎ  cyclotomic polynomial defined in 

(5), where 𝑀 = 2𝑁 and 𝑁 is a power of 2: 

 

𝜙𝑀(𝑋) = 𝑋𝑁 + 1 (5) 

 
As expected from an RLWE based scheme, the 

ciphertext space is ℤ𝑞[𝑋]/𝜙𝑀(𝑋)2 . After decryption, each 

plaintext will be decoded into ℂ𝑁/2 . The secret key is a 

polynomial 𝑠 ∈ ℤ𝑞[𝑋]/𝜙𝑀(𝑋). The public key, 𝑝 is generated 

in (6) where 𝑎 ∈ ℤ[𝑋]/𝜙𝑀(𝑋) is a sampled uniformly and𝑒 ∈
ℤ𝑞[𝑋]/𝜙𝑀(𝑋) is a small noisy polynomial: 

 

𝑝 = (−𝑎𝑠 + 𝑒, 𝑎) (6) 

 

The encryption of the plaintext 𝑚 ∈ ℤ𝑞[𝑋]/𝜙𝑀 (𝑋) 

generates the ciphertext 𝑐 = (𝑐0, 𝑐1) ∈ ℤ𝑞[𝑋]/𝜙𝑀 (𝑋)2  as in 

(7) where 𝑏 = −𝑎𝑠 + 𝑒: 

 

𝑐 = (𝑚 + 𝑏, 𝑎) (7) 

 

Similarly, the decryption of the ciphertext 𝑐 = (𝑐0, 𝑐1) ∈
ℤ𝑞[𝑋]/𝜙𝑀(𝑋)2 using the secret key 𝑠 produces the plaintext 

𝑚 ∈ ℤ𝑞[𝑋]/𝜙𝑀(𝑋) as in (8): 

 

𝑚 = 𝑐0 + 𝑠𝑐1 (8) 

 

Let 𝑐 = (𝑐0, 𝑐1) and 𝑐′ = (𝑐′0, 𝑐′1) be the ciphertexts of 

𝑚 and 𝑚’. Let 𝑐𝑎𝑑𝑑 be the sum of 𝑐 and 𝑐’ defined in (9): 
 

𝑐𝑎𝑑𝑑 = (𝑐0 + 𝑐′0, 𝑐1 + 𝑐′1) (9) 

  

According to the decryption procedure defined in (8), 

𝑐𝑎𝑑𝑑 is the encryption of the sum of the two plaintexts 𝑚 and 

𝑚’ as it can be observed from (10): 

 

(𝑐0 + 𝑐′0) + 𝑠( 𝑐1 + 𝑐′1) = (𝑐0 + 𝑠𝑐1) + (𝑐′0 + 𝑠𝑐′1)
= 𝑚 + 𝑚′ 

(10) 

 

Let 𝑐𝑐𝑜𝑛𝑠𝑡_𝑚𝑢𝑙  be the ciphertext 𝑐  multiplied by the 

plaintext 𝑚′. This operation is defined in (11): 

 

𝑐𝑐𝑜𝑛𝑠𝑡_𝑚𝑢𝑙 = (𝑐0𝑚′, 𝑐1𝑚′) (11) 

 

Similar to the addition of two ciphertexts, 𝑐𝑐𝑜𝑛𝑠𝑡_𝑚𝑢𝑙 is 

the encryption of the product between 𝑚 and 𝑚’ as proved in 

(12): 

 

𝑐0𝑚′ + 𝑠𝑐1𝑚′ = 𝑚′(𝑐0 + 𝑠𝑐1) = 𝑚′𝑚 (12) 

 

So far, we have proved that the scheme is homomorphic 

with respect to addition and constant multiplication. CKKS is 

also homomorphic with respect to ciphertext multiplication. 

Let 𝑐𝑚𝑢𝑙 be the multiplication of 𝑐 and 𝑐’ defined in (13): 

 

𝑐𝑚𝑢𝑙 = (𝑑0, 𝑑1, 𝑑2) = (𝑐0𝑐′0, 𝑐0𝑐′1 + 𝑐′0𝑐1, 𝑐1𝑐′1) (13) 

 

Obvious, 𝑐𝑚𝑢𝑙  cannot be decrypted using (8). Intuitive, 

the decryption of 𝑐𝑚𝑢𝑙  must be the product between the 

decryption of 𝑐 and the decryption of 𝑐’, that is the product of 

the plaintexts 𝑚 and 𝑚’. This product is defined in (14). 

 

𝑚𝑚′ = (𝑐0 + 𝑠𝑐1)(𝑐′
0 + 𝑠𝑐′

1)
= 𝑐0𝑐′

0 + 𝑠(𝑐0𝑐′1 + 𝑐′0𝑐1)
+ 𝑠2𝑐1𝑐′1 = 𝑑0 + 𝑠𝑑1 + 𝑠2𝑑2 

(14) 
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The key idea to be able to decrypt 𝑐𝑚𝑢𝑙 using (8) is the 
process of relinearization. The scheme defines an evaluation 

key, 𝜀  as in (15) where 𝑝  is a big integer and 𝑎0, 𝑒0 ∈
ℤ𝑝𝑞[𝑋]/𝜙𝑀 (𝑋): 

 

𝜀 = (−𝑎0𝑠 + 𝑒0 + 𝑝𝑠2, 𝑎0) 𝑚𝑜𝑑 𝑝𝑞 (15) 

 

The relinearization rewrites 𝑐𝑚𝑢𝑙 as the sum of two valid 

ciphertexts i.e., ciphertexts that can be decrypted using (8), 

using the evaluation key as in (16) where the pair (𝑓0 , 𝑓1) is 

defined in (17): 

 

𝑐𝑟𝑒𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = (𝑑0, 𝑑1) + (𝑓0, 𝑓1) (16) 

  
(𝑓0, 𝑓1) = (𝑝−1𝑑2(−𝑎0𝑠 + 𝑒0

+ 𝑠2), 𝑝−1𝑑2𝑎0 ) 𝑚𝑜𝑑 𝑞 

(17) 

 

Decrypting the ciphertext 𝑐𝑟𝑒𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 , results in the 

product of the plaintext 𝑚  and 𝑚’ as proved in (18). Since 

𝑓0 + 𝑠𝑓1  is reduced modulo 𝑞  and 𝑝 is a big integer we can 

consider the error term 𝑝−1𝑑2𝑒0 small enough to be ignored. 

 

𝑑0 + 𝑠𝑑1 + 𝑓0 + 𝑠𝑓1

= 𝑑0 + 𝑠𝑑1

+ 𝑝−1𝑑2(−𝑎0𝑠 + 𝑒0 + 𝑠2)
+ 𝑠𝑝−1𝑑2𝑎0

= 𝑑0 + 𝑠𝑑1 + 𝑠2𝑑2 + 𝑝−1𝑑2𝑒0

= 𝑑0 + 𝑠𝑑1+𝑠2𝑑2 = 𝑚𝑚′ 

(18) 

 

So, the scheme is homomorphic with respect to the 

operations of additions, constant multiplication and ciphertext 

multiplication. All these proprieties enable us to implement 

any kind of computation without revealing the actual data that 

is being computed on.  

 

B. EVA Compiler 
The encryption scheme described in Section A, can be 

used in practice through the EVA compiler [11]. It is the first 

compiler for homomorphic encryption developed by 

Microsoft. At the time of writing, the compiler supports only 

the CKKS scheme. Although the CKKS encryption scheme is 

efficient due to the high degree of parallelism, the main 

practical disadvantage consists in the fact that the programmer 

must know many mathematical details which requires a long 

study. Due to this fact, only a limited number of people can 

create efficient software that implements homomorphic 

encryption. The EVA compiler solves this problem by 

allowing the programmer to write code in Python that 
processes encrypted data without directly selecting any 

cryptographic parameters. The programmer must select only 

two parameters: the output ranges and the input scales. Since 

the CKKS is an approximative scheme, these two parameters 

control the approximation error. There are several methods 

frequently used while programming with EVA.  

 

The compile method receives as input an EVA program 

and returns the compiled program, the encryption parameters 

required by the scheme and a signature that specifies how 

inputs and outputs will be encoded and decoded. The 

compiled program can be visualized as a graph using a library 

such as Graphviz. 
 

The generate_key method receives as input the 

encryption parameters returned by the compile. It returns the 

public key and secret key that will be used for data encryption 

and decryption.  

 

The encrypt and decrypt methods receive as inputs the 

data to be encrypted or decrypted and the signature generated 

by the compile. The methods return either a ciphertext or a 

plaintext.  

 

The execute method receives as input the compiled 
program and the encrypted inputs return by encrypt. The 

method run the homomorphic circuit over the encrypted data 

and return the encrypted outputs of that circuit.  

 

The decrypt method receives as input the encrypted 

outputs produced by the execute. The method returns the 

decrypted output. Following the definition of a homomorphic 

encryption scheme, the decrypted outputs should be the same 

as the outputs of the circuit run over the plaintext data.  

 

The evaluate method receives as inputs the compiled 
program and the plaintext inputs. The method returns the 

outputs of the circuit run directly over the plaintext data. This 

method is used together with the valuation_mse method that 

receives as inputs the decrypted outputs and the outputs 

obtained by running the circuit over the plaintext data. The 

method returns the MSE between the two outputs. 

 

III. IMPLEMENTATION 

 

In this section, we provide a practical tutorial on how to 

implement privacy-preserving logistic regression classification 

using the EVA compiler. As far as we know this is the first 
paper proving a concrete implementation in Python of a 

machine learning algorithm over encrypted data. In the code 

we used the following global variables: 

 

1) 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠: The number of samples used to test the 

model. 

2) 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: The number of features of each sample 

3) 𝑋_𝑡𝑒𝑠𝑡 : A matrix with 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠  rows and 

𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1  columns containing all testing 

samples 

4) 𝑦_𝑡𝑒𝑠𝑡 : A binary raw vector of dimension 

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the ground truth labels of each 

test sample 

5) 𝑋_𝑡𝑟𝑎𝑖𝑛 : A matrix with 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠  rows and 

𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 columns containing all training samples 

6) 𝑦_𝑡𝑟𝑎𝑖𝑛 : A binary raw vector of dimension 

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the ground truth labels of each 

training sample 

7) 𝑦_𝑝𝑟𝑜𝑏_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 : A raw vector of dimension 

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠  containing the predicted probability of 

each test sample to be spam  
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8) 𝑦_𝑝𝑟𝑒𝑑 : A raw vector of dimension 

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 containing the predicted class of each test 

sample 

9) 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 : A raw vector of dimension 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

containing the weights produces by training the logistic 

regression model 

 

A. Data preprocessing 

The first step is to train a logistic regression model to 

classify emails as ham or spam. To do this, we use the sklearn 

library. The dataset used is Spambase Data Set from UCI 
Machine Learning Repository [12]. The dataset is split into 

training and testing: 

 

X_train,X_test,y_train,y_test = train_test_split(X, y, test_size 

= 0.2, random_state = 10) 

 

To extract features, we use the bag of words 

representation of a text document. The first step is to tokenize 

the text and assign an integer identifier to each token. The 

second step is to count the frequency of each token. We 

consider a feature to be the frequency of a token and a sample 

to be the vector of the frequencies of all tokens that 
characterize a text. In the code presented in this paper, the 

number of tokens is retained in the variable 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. 

The dataset is represented by a matrix where each row is a 

vector of frequencies. In practice, an email uses very few 

unique tokens resulting in a sparse matrix. We also 

standardize the data by extracting the mean and diving by the 

standard deviation. There are two distinct parameters of the 

logistic regression model resulted from the training process: 

the intercept and the coefficients. Given the fact that both 

types of parameters will be encrypted, the function 

logistic_regression_train_plaintext returns the concatenation 
between the coefficient and the intercept: 

 

def logistic_regression_train_plaintext(X_train, y_train): 

    model = LogisticRegression(random_state=0) 

    model.fit(X_train,y_train) 

    return list(model.intercept_) + list(model.coef_[0]) 

 

Symbolically, the result returned by the function is 

retained in the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 variable: 

weights = logistic_regression_train_plaintext(X_train, 
y_train). 

 

Formally, applying the model over the test data involves 

the multiplication between the 𝑋_𝑡𝑒𝑠𝑡 matrix and the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

vector. Initially, after splitting the data, 𝑋_𝑡𝑒𝑠𝑡  matrix has 

𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 columns. The 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 vector returned by the 

training function has a length of 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1 due to 

the concatenation between the 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  coefficients 
and the intercept. To include the intercept when applying the 

model, we prepend a column of ones to the 𝑋_𝑡𝑒𝑠𝑡 so that the 

matrix has 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1 columns. To test the model by 

classifying both spam and ham emails, we select a balanced 

dataset of 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠  from the 𝑋_𝑡𝑒𝑠𝑡 . The function 

select_balanced_subset implements the selection of 

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 balanced samples:  

def select_balanced_subset(X, y): 

    X_tmp = np.zeros((num_samples, num_features+1)) 

    y_tmp = np.zeros((num_samples, 1)).astype(int) 

    positive_cnt = 0 
    negative_cnt = 0 

    cnt = 0 

    for i in range(len(X)): 

        if y[i] == 1 and positive_cnt < num_samples//2: 

            for j in range(num_features+1): 

                X_tmp[cnt][j] = X[i][j] 

            y_tmp[cnt] = y[i] 

            positive_cnt+=1 

            cnt += 1 

        if y[i] == 0 and negative_cnt < num_samples//2: 

            for j in range(num_features + 1): 

                X_tmp[cnt][j] = X[i][j] 
            y_tmp[cnt] = y[i] 

            negative_cnt+=1 

            cnt += 1 

        if negative_cnt+positive_cnt == num_samples: 

            break 

    return  X_tmp, y_tmp 

 

The function select_balanced_subset is called inside the 

prepare_test_data function right after we append a column of 

ones: 

def prepare_test_data(X_test, y_test): 
    X_test = np.hstack((np.ones((len(X_test), 1)), X_test)) 

    X_test, y_test = select_balanced_subset(X_test, y_test) 

    return X_test, y_test 

 

After all the above procedures, the 𝑋_𝑡𝑒𝑠𝑡 dataset used 

for testing will have 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠  samples each with 

𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1 features: 

X_test, y_test = prepare_test_data(X_test, y_test) 

 
B. EVA programming 

The first step taken when using the compiler is to create 

a dictionary with all inputs that must be encrypted. In our 

system, we only encrypted the test data i.e., the 𝑋_𝑡𝑒𝑠𝑡 matrix 

so we create a dictionary with one key, “data” and one value, 

the test data: 

 

def make_eva_dictionary(X): 

    data = X.flatten() 

    return {'data': data} 

The data to be encrypted is retained in the 𝑖𝑛𝑝𝑢𝑡𝑠 variable: 

inputs = make_eva_dictionary(X_test) 

 

The multiplication between the encrypted 𝑋_𝑡𝑒𝑠𝑡 matrix 

and the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠  vector involves the calculation of 

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 dot products between each encrypted row of 

the 𝑋_𝑡𝑒𝑠𝑡 matrix and the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 vector.  When multiplying 

an encrypted list of data with a plaintext, EVA multiplies each 

element of the list with the plaintext. In other words, we 
cannot control what elements of the list are multiplied with the 

plaintext. To address this problem, we proposed the following 

algorithm for the dot product between an encrypted vector, 

𝑣𝑒𝑐𝑡𝑜𝑟1 and a plaintext vector, 𝑣𝑒𝑐𝑡𝑜𝑟2: 

 

def dot_product(vector1, vector2, vector_len): 

    const_zeros = [0] * vector_len 

    const_zeros[0] = 1 
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    for i in range(vector_len): 

        rotated = vector1 << i 
        partial = rotated * vector2[i] 

        if i == 0 : 

            result = partial 

        else: 

            result += partial 

    result = result * const_zeros 

    return result 

 

After the rotation with 𝑖  positions to the left, the 

element that is in the position 𝑖  in the encrypted vector 
reaches the first positions. We then multiply the whole vector 

with 𝑣𝑒𝑐𝑡𝑜𝑟2[𝑖] and add the result to the variable 𝑟𝑒𝑠𝑢𝑙𝑡. In 

this way, we multiply 𝑣𝑒𝑐𝑡𝑜𝑟1[𝑖]  with 𝑣𝑒𝑐𝑡𝑜𝑟2[𝑖]  and add 

the partial results thus calculating the dot product. The 𝑟𝑒𝑠𝑢𝑙𝑡 

will be a vector of 𝑣𝑒𝑐𝑡𝑜𝑟_𝑙𝑒𝑛 elements in which on the first 

position we find the dot product between 𝑣𝑒𝑐𝑡𝑜𝑟1  and 

𝑣𝑒𝑐𝑡𝑜𝑟2. Although the EVA compiler does not allow us to 

extract the first element from the 𝑟𝑒𝑠𝑢𝑙𝑡, we can make all 

elements except the first equal to zero by multiplying 𝑟𝑒𝑠𝑢𝑙𝑡 

with a const vector, 𝑐𝑜𝑛𝑠𝑡_𝑧𝑒𝑟𝑜𝑠 in which the first element is 

one and the rest are zero.  

 

While using EVA, we cannot store a matrix as a 

bidimensional array but as a raw vector. When multiplying a 

matrix by a raw vector, we must use the same mechanism of 

rotations to calculate the dot products. Suppose the matrix has 

𝑛𝑢𝑚_𝑟𝑜𝑤𝑠 rows and 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 columns. The elements 

belonging to the row number 𝑖 from the matrix will be found 

from position 𝑖 ∗ 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠  to position (𝑖 + 1) ∗
𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠. Since we cannot extract separately each row, 

we will shift by 𝑖 ∗ 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 positions to the left the 

vector that represents the matrix and multiply this vector to a 

constant vector which has the first 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 equal to 

one and the rest of (𝑛𝑢𝑚_𝑟𝑜𝑤𝑠 − 1) ∗ 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 
elements equal to zero. In this way, we make each row in the 

matrix to be found one by one at the beginning of the vector 

that represents the matrix. We then calculate the dot product 

between this vector of encrypted entries and the plaintext 

vector. The resulted dot product will be shifted 𝑖 positions to 

the right and then will be added to the variable 𝑟𝑒𝑠𝑢𝑙𝑡. In this 

way, at the position 𝑖 on the vector 𝑟𝑒𝑠𝑢𝑙𝑡 we found the dot 

product between the row number 𝑖 of the original encrypted 

matrix and the plaintext vector. Since the vector 𝑟𝑒𝑠𝑢𝑙𝑡 will 

be as long as the vector that represents the matrix i.e. 

𝑛𝑢𝑚_𝑟𝑜𝑤𝑠 ∗ 𝑛𝑢𝑚_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 , only the first 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠  will 

be occupied while the rest will be equal to the encryption of 

zero.  

 

def matrix_vector_multiplication(matrix, num_rows, 

num_columns, vector): 

    const_zeros = np.zeros(num_rows * 

num_columns).astype(int) 

    const_zeros[:num_columns] = 1 
    const_zeros = list(const_zeros) 

    for i in range(num_rows): 

        row = matrix << i*num_columns 

        row = row * const_zeros 

        dot = dot_product(row, vector, num_columns) 

        if i == 0: 

            result = dot 
        else: 

            result += dot>>i 

    return result 

 

With the above function, we can compute the product 

between a matrix and a vector thus we can multiply the matrix 

𝑋_𝑡𝑒𝑠𝑡  with the vector 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 . According to the logistic 

regression algorithm, to obtain the probability that a given 

sample email is spam we must apply the sigmoid function to 

the dot product between the feature vector that characterizes 

an email and the vector 𝑤𝑒𝑖𝑔ℎ𝑡𝑠. In our case, we must apply 

the sigmoid function to each element of the vector resulting 

from the multiplication between 𝑋_𝑡𝑒𝑠𝑡 and 𝑤𝑒𝑖𝑔ℎ𝑡𝑠. Since 

the data from 𝑋_𝑡𝑒𝑠𝑡  are encrypted so will the result of 

multiplication with 𝑤𝑒𝑖𝑔ℎ𝑡𝑠. EVA compiler does not allow 

any operations other than multiplications and additions thus 

we must use the Taylor approximation of the sigmoid function 

which is given in (19): 

 

𝜎(𝑥) ≈
1

2
+

𝑥

4
−

𝑥3

48
+

𝑥3

480
 

(19) 

 

Equation (19) is implemented by the function 

apply_aprox_sigmoid which uses the default Python operators 

for exponentiation, multiplication, and addition: 

 

def apply_aprox_sigmoid(x): 

    return 1/2+x*(1/4)-(x**3)*(1/48)+(x**5)*(1/480) 
 

All processing over the encrypted data is done inside an 

EVA program. When instantiating an EVA program, we need 

to specify its name and the size of the encrypted input. In our 

case, the name of the program is 

“encrypted_logistic_regression”. Since the encrypted data 

consist of the matrix of features 𝑋_𝑡𝑒𝑠𝑡, the size of the input is 

the total number of elements from this matrix i.e., 

𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∗ (𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1). Inside the program, 

we identify the encrypted input by the dictionary we have 
created. Given the encrypted features matrix, all the EVA 

program does is to first call the matrix_vector_multiplication 

function to multiply each sample with the vector 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 and 

then call apply_aprox_sigmoid function to apply the 

approximate sigmoid function to each element of vector 

resulted from multiplication: 

 

encrypted_logistic_regression = 

EvaProgram('encrypted_logistic_regression', 

vec_size=num_samples*(num_features+1)) 
with encrypted_logistic_regression: 

    data = Input('data') 

    data = matrix_vector_multiplication(data, num_samples, 

num_features+1, weights) 

    data = apply_aprox_sigmoid(data) 

    Output('data', data) 

To use the program stated above, we need to compile it: 

compiler = CKKSCompiler() 

compiled, params, signature = 

compiler.compile(encrypted_logistic_regression) 
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Following the compilation process results the compiled 

program that will be run, the parameters of the encryption 
scheme and the signature of the program. Based on the 

parameters, we use generate_keys to generate the public and 

the private key: 

 

public_ctx, secret_ctx = generate_keys(params) 

 

Given the public key and the program signature we 

encrypt the inputs: 

 

enc_inputs = public_ctx.encrypt(inputs, signature) 

Once we have the encrypted inputs, we can run the EVA 

program: 
enc_outputs = public_ctx.execute(compiled, enc_inputs) 

 

The EVA program calculates the probability that each 

test mail to be spam. Since the program runs over encrypted 

data, the outputs will also be encrypted. To get the plaintext 

results, we need to decrypt the enc_outputs using the private 

key: 

 

outputs = secret_ctx.decrypt(enc_outputs, signature) 

 

To see the error due to the approximations made in the 
encryption scheme, we run the functions evaluate and 

valuation_mse: 

 

reference = evaluate(compiled, inputs) 

print('MSE', valuation_mse(outputs, reference)) 

 

The outputs variable represents a vector in which each 

element is the probability that a test mail to be spam. To 

classify the mail as spam or ham we compare each probability 

with the standard threshold of 0.5. We use the sklearn function 

accuracy_score to calculate the accuracy of classification 
made over the encrypted data: 

y_pred = [] 

for i in range(num_samples): 

    if outputs['data'][i] < 0.5: 

        y_pred.append(0) 

    else: 

        y_pred.append(1) 

print('Model acc decrypted: ', accuracy_score(y_pred, 

y_test)) 

 

IV. EXPERIMENTS 
 

In this section, we made a series of experiments using 

the implementation described in Section III.  

 

Figure 2 shows the squared difference between the 

decrypted probabilities obtained using EVA programming and 

the probabilities given by the logistic regression algorithm 

applied directly over the plain data. As it can be seen, the 

difference is almost 0  except for a few test samples. This 

means that the error due to the approximations inside the 

encryption scheme does not affect the practical results.  
 

 
Figure 2: Squared difference for each test sample 

 

The most important errors come from the approximation 

of the sigmoid function. Figure 3 present the approximation of 

the sigmoid function. The approximation does not work for 

points that are not in a close neighborhood of 0.  

 

 
Figure 3: The approximation of the sigmoid function 

 

To solve this problem, we can use more terms in the 

Taylor expansion, but this strategy implies a much deeper 
circuit that needs to be homomorphically evaluated. Although 

we cannot recover the exact probabilities returned by the 

logistic regression algorithm over the encrypted data, this does 

not mean that the accuracy of the model is affected. Over 64 

test samples, the algorithm run over plain data has an accuracy 

of 73% which is the same as the accuracy obtained for the 

decrypted results.  

 

V. CONCLUSIONS AND FURTHER DIRECTIONS 

OF RESEARCH 
 

In this paper, we presented the architecture of a cloud-

based service that provides privacy-preserving spam detection. 

The service owns a pre-trained logistic regression model 

which it wants to expose without leaking any information 

about the model parameters. The user, on the other hand, has a 

set of emails that he wants to keep confidential. To meet the 

conditions of both the service and the user we have 

implemented a system based on somewhat homomorphic 

encryption in which the user encrypts his mail, and the server 

processes it in the encrypted form. For encryption, we used the 
CKKS scheme. All computations made over encrypted data 

were implemented using the EVA compiler.  
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The main contribution of this work is a practical tutorial 

on how to implement the inference for logistic regression over 
encrypted data. The core of applying a plain logistic 

regression model over a set of encrypted samples is the 

multiplication between an encrypted matrix and a plain vector. 

Although the EVA compiler allows the implementation of 

operations over encrypted data, they consist only of additions 

and multiplications. Due to this fact, one challenge was to 

compute the sigmoid function by using its Taylor expansion. 

The experiments showed that computing over encrypted data 

does not affect the accuracy of the model.  

 

A further direction of research is to implement the 

training of a logistic regression model over encrypted data. 
This involves implementing the gradient descent algorithm 

over encrypted data which can be done with homomorphic 

encryption since every training iteration consists of an 

addition and a multiplication. 
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