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Abstract:- This paper described and compare between 

two object detection model for face mask detection. 

Using object detection we can predicts if the person on 

the picture wearing the mask correctly/incorrectly or 

not, in the current situation this model is extremely 

useful as this simple precaution will help to stop the 

spreading of deadly Coronavirus. In this paper, a 

comprehensive description of two operational and 

functional model was discussed how the data flows in 

the model and the type of operation performed on that. 

Additionally how the input data annotated and the 

result. The result was described using the mAP metric. 
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I. INTRODUCTION 
 

The COVID-19 pandemic also widely known as 

coronavirus pandemic caused by Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-Co-2). The World Health 

Organization instantly declared the outbreak on 30 January, 

and a pandemic on 11 March[1], It completely affected 

social and economi- cally and cost more than 1 million of 

lives[9]. On the other hand, by following some simple rules 

(mentioned below) the spreading of this virus can be 

stopped: 

• Face masks and respiratory hygiene. 
• Social distancing. 

• Self-isolation. 

 

The goal of this work is to compare two object 

detection model and train the best neural network to 

discriminate between peoples who follow sanitary rules like 

wearing the face mask properly from those people who are 

violating them by following this simple rule this virus can 

be stopped from spreading, until the vaccine was created 

these are our only option to be safe. As till October 321 

vaccine candidates are developing vaccine but none of them 

are able to complete clinical trials to prove it’s safety and 
efficiency[10]. Described model should able to perform 

below task’s: 

• Identify the position of the person. 

• Identify person with correct mask, no mask or 

incorrect mask. 

• A boundary region with the probability/confidence of 

the model’s prediction (varies from 0-1). 

• A segmentation mask on the confident region.  

 

 

 

II. MMDETECTION 

 

A. What is MMdetection 

As per the paper published by K.Chen in 2019 

”MMdetec- tion is an object detection toolbox that contains 

a rich set of object detection and instance segmentation 
methods as well as related components and modules[2]”. 

Major features of MMdetection are: 

• Modular design: Because of it’s design the detection 

framework can be easily changed and a 

flexible/customize version can be created as per the 

requirement, it can be done by combining different kind 

of modules like backbone, neck and RIO extractor. 

• Support of multiple frameworks: The toolbox and it’s 

simple architecture made it very easy to use 

additionally it provides a large variety of detection 

frameworks like Fast R-CNN, Faster R-CNN, Mask R-
CNN, RetinaNet, DCN etc. 

• High efficiency: All operations (masking, boundary box 

Creation, prediction) run on GPUs, hence the training 

speed is faster than or comparable to other code–bases 

in- cluding Detectron, mask rcnn-benchmark and 

SimpleDet. It also provides vides weight of more than 

200 network model. 

 

B. Architecture 

Although the model architectures of different 

detectors are different, they have common components, 
which can be roughly summarized into the following 

classes: 

• Backbone: Backbone is the part that transforms an 

image to feature maps, such as a ResNet-50[8] without 

the last fully connected layer. 

• Neck: Neck is the part that connects the backbone and 

heads. It performs some refinements or re configurations 

on the raw feature maps produced by the backbone. An 

example is Feature Pyramid Network (FPN). 

• Dense Head (Anchor Head/ Anchor Free Head): 

Dense Head is the part that operates on dense locations of 

feature maps, including Anchor Head and Anchor Free 
Head, e.g., RPNHead, RetinaHead, FCOSHead. 

• RoIExtractor:RoIExtractor is the part that extracts fea- 

tures as per the region of interest from a single or 

multiple feature maps. An example that extracts RoI 

features from 
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Fig. 1. Framework of single-stage and two stage detector. 

 

 
Fig. 2. Feature Pyramid Network. 

 

The corresponding level of feature pyramids is single 

RoIExtractor. 

• RoIHead (BBoxHead/ MaskHead): RoIHead is the part 

that takes RoI features as input and makes RoI-wise task 

specific predictions, such as bounding box classification/ 

regression, mask prediction. 
 

C. Resnet50 with FPN 

In this section, the architecture of the object detector 

ex- plained With Feature Pyramid Network (FPN). In the 

Fig. 2 the working of FPN is shown. 

 

Identifying components of different scale and 

complexity is a difficult task which we overcome by using 

the same picture of the different size /scale, however this 

approach has some disadvantages, including high memory 

demand and high time consumption. [3]. 
 

For the above issue, FPN has a fantastic approach, it 

con- structs a feature pyramid and uses this for object 

recognition. The Feature Pyramid Network (FPN) is a 

feature extractor programmed with accuracy and speed in 

mind. 

 

It substitutes the feature extractor of detectors such as 

Faster R-CNN and generates various feature map layers 

(multi-scale feature maps) with higher quality information 

as compare to the standard feature pyramid for object 

detection. A bottom- up and a top-down pathway are 
constructed of FPN as shown in Fig. 2. The image quality 

reduces as we go up. The semantic meaning for every layer 

increases with more high- level structures detected. 

 
FPN extracts feature maps and later feeds into a 

detector, says RPN, for object detection. RPN applies a 

sliding window over the feature maps to make predictions on 

the object (has an object or not) and the object boundary box 

at each location[3]. In the FPN framework, for each scale 

level a 3 × 3 convolution filter is applied over the feature 

maps followed by separate 1 × 1 convolution for object 

predictions and boundary box regression. These 3 × 3 and 1 

× 1 convolutional layers are called the RPN head. The same 

head is applied to all different scale levels of feature maps. 

 

D. Formula to pick feature map 
The equation for determining the characteristic maps is 

dependent on the ROI’s width w and height h. 

k = ko + log2  
√

wh/224) (1) 

 

Where, ko = 4 
k is the Pk layer in the FPN used to generate the feature 

patch. if the model has assigned k = 2, it made P2 as 

model’s feature maps and ROI pooling will be done and 

it will feed the result to the framework used like Fast R-

CNN head (Fast R-CNN and Faster R-CNN have the same 

head) to finish the prediction. 

 

E. Comparison 

The comparison of different feature with and without FPN 

is mentioned in the table 1. 

AR (Average recall): The ability to capture Object. 

Inference time: Time taken for prediction. 
 

Table 1:- Comparison  of  Feature  with  and  Without  

FPN 

Feature Without FPN With FPN 

Training Time Normal Increased 

Dataset requirement Big Small 

Test/validation time High Low 

Accuracy Normal Increased 

AR 44.9 56.3 

Inference time 0.32 sec. 0.148 sec. 

 

III. MODEL 

 

A. Model composition 

In this section, a detail description of the model used 

for mask detection is explained. The model described part 

by part in every section it’s corresponding architecture was 

explained in dictionary format for ease of understanding. 

• Backbone: The backbone of this model was created 
using Resnet50[8] with batch normalization it is used for 

the feature extraction from the image, this can easily be 

replaced by some other feature extracting network. 

• Neck: The neck used in this model is FPN and the full 

description is below: 

 

Neck = dict (type = ‘FPN’, 

In channels = [256, 512, 1024, 2048], 

Out channels = 256, Num outs = 5) 
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• Dense head: For the dense head architecture had used 

RPNHead it extract feature from the dense part of the 
image: 

Rpn head = dict (type = ‘RPNHead’, In channels = 256, 

Feat channels = 256) 

 

• ROI head:ROI head is a very interesting part of the 

model in this model CascadeROIHead was used, the main 

work of RIO head is to propose the region of interest from 

where the model should detect the object. The description 

is below: 

Roi head = dict ( type = CascadeRoIHead’, numstages = 

3) 

 
Table 2 Model Comparison Detectron2 And  

Mmdetection 

Module MMdetection Detectron2 

Base Model Resnet50 Resnet50 

Neck(FPN) Yes Yes 

Training time more less 

RIO Yes Yes 

Learning rate 0.02 0.02 

mAP 0.139 0.158 

 

• Optimizer: The Stochastic gradient descent ( SGD) 

optimizer was used in this model. SGD is an iterative 

method for max- imizing an objective function with 

adequate and appropriate (e.g. differentiable or 

subdifferentiable) smoothness properties. It can be 

described as a stochastic gradient descent optimiza- tion 

approximation, since it replaces the actual gradient (cal- 

culated out of the whole data set) with a gradient 

optimization approximation (calculated from a 
randomly selected subset of data). In high-dimensional 

optimization problems, this approach is very usefull as it 

decrease the computational stress and achive faster 

iteration in exchange of low convergence rate. 

• Process of Training: In this section we will see the flow 

of data during training cycle. We can see all the main 

operation and transformation performed on the data. 

 

train pipeline = [ 

dict(type = ‘LoadImageFromFile’), 

dict(type = ‘LoadAnnotations’, withbbox = True), 
dict(type = ‘Resize′, imgscale = (1333, 800), keepratio 

= True, 

dict(type = ‘RandomFlip′, flipratio = 0.5), dict(type 

= ‘Normalize′, imgnormcfg), 

dict(type = ‘Pad′, sizedivisor = 32), dict(type = 

‘DefaultFormatBundle′), dict(type = ‘Collect′, 

keys = [‘img′,′ gtbboxes′,′ gtlabels′]) 

] 

 

 
Fig. 3. Log loss 

 

• Process of Testing: Below is all the operation 

performed on the data during testing. 

 

test pipeline = [ 

dict(type = ‘LoadImageFromFile’), dict(type = 

‘MultiScaleFlipAug, imgscale = (1333, 800), flip = 

False, transform = [ 
dict(type = ‘Resize′, keepratio = True), dict(type = 

‘RandomFlip′), 

dict(type = ‘Normalize′ imgnormcfg), dict(type = 

‘Pad′, sizedivisor = 32), 

dict(type = ‘ImageT oT ensor′, keys = [‘img′]), 

dict(type = ‘Collect′, keys = [‘img′])] 

] 

 

B. Model loss during training 

To fine tuning our model, we used Cross Entropy 

Loss. Cross-entropy loss, or log loss, measures the 

efficiency of a model of classification whose output is a zero 
to one probability value. As the expected probability 

diverges from the real mark, cross-entropy loss increases. 

But it will be wrong to estimate a chance of .015 where the 

real observation label is 1 and result in a high loss value. A 

great model will have a 0[5] log loss Fig.3. 

 

The graph in Fig.3 shows the range of possible loss 

values given a true observation (Masked = 1). As the 

expected likelihood reaches 1, log loss decreases 

steadily. However, the log loss increases significantly as the 

expected likelihood decreases. Log loss penalizes both types 
of errors, however especially those predictions that are 

confident and wrong! 

 

Cross-entropy and log loss are slightly different 

depending on context, however in prediction when 

calculating error rates/probability between 0 and 1 they 

resolve to the same thing. 

 

Fig. 4 showing epochs versus loss value graph for our 

model, 
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Fig. 4. Loss during training 

 

 
Fig. 5. Detectron2 Archetecture 

 

We trained our model for 200 epochs. The loss value 

was taken on every 25 epochs to draw. 

 

IV. DETECTRON2 

 

A. What is Detectron2 
Detectron2 is Facebook AI research’s next generation 

soft- ware system, it is a ground-up reconstructed on the 

previ- ous version of Detectron and it originated from 

maskrcnn- benchmark [11]. 

 

Major feature of Detectron2 are: 

• It is based on PyTorch. 

• It has more feature like panoptic segmentation, 

Densepose, Cascade R-CNN, rotated bounding boxes, 

PointRend, DeepLab, etc. 

• It can be easily integrated with different project’s 

because it’s usability as a library. 
• Less training time. 

• Models can be exported to TorchScript format or Caffe2 

format for deployment. 

 

The main component of Detectron2 is shown in figure 

5. 

 

Both model Detectron2 and MMdetection share some 

common module like FPN, RPN, ROI pool and backend 

network (Neck), all these are explained in MMdetection 

section. 
 

We used ResNet50 for feature extraction with a 

learning rate of 0.02 

 

V. DATASET 

 
To train the model it need’s annotated images so 

the model can extract features from the images and 

distinguish between masked and unmasked faces. We used 

total 8982 annotated images to train and validate the 

model, we used LabelImg software to annotate all 

images (figure 6). It creates an individual json file for 

each image file according to the annotation, these json 

files contain the information like file/image name, 

category(one or more than one), bounded region information 

in image, height of the bounded region, width of the 

bounded region and total area enclosed within labelled 

region. 
 

All the individual json files converted into one single 

COCO file using the labelme2coco converter package in 

python. We need the images to be in Common Objects in 

Context (COCO) formats, it stores the annotation details for 

the bounding box in JSON format. The main component of 

the coco file are: 

– Info:Contains high-level information about the data set. 

– Licenses: Contains a list of image licenses that apply to 

images in the data set. 

– Categories: Contains a list of categories. Categories can 
belong to a super category. 

– Images: Contains all the image information in the data 

set without bounding box or segmentation information. 

image id’s need to be unique. 

– Annotations: List of every individual object annotation 

from every image in the data set. 

 

Example of a coco format(file and image) is below. “info”: 

info, 

“licenses”: [licenses], “categories”: [categories], “images”: 

[images], “annotations”: [annotations] 

 

VI. RESULT 

 

The final output is displayed in figure 7, the model is 

successfully able to predict and discriminate between 

Masked and unmasked faces. Mask face is further classified 

as Correct(Mask) and Incorrect. 

 

As per the mAP vale in table III, we used 

MMdetection for our facemask detection model. 

 

 
Fig. 6. Example of Annotated Image 
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Fig. 7. Final output of the model. 

 

To measure the accuracy of our model we used mAP 

(mean Average Precision), it is a popular metric to measure 

object detector like faster R-CNN, SSD, etc. It gives a 

calculated value between 0 and 1. 

 
Calculating accuracy for an object detector is a little 

complicated as we have to detect the object or class and also 

the area where the object was detected. 

– Precision: It calculates the Accuracy of the predict ton. 

– Recall: It measures how good model find all the 

positives. 

 

Precision = TP/ (TP + FP ) (2) 

Recall = TP/ (TP  + FN ) (3)  

Where, TP = True Positive TN = True Negative 

FP = False Positive FN = False Negative 
 

Another important term we have to understand is IoU 

(Intersection over Union) [6], To check the correctness of 

our model’s we first have to judge the correctness of each of 

these detection’s. The metric that tells us the correctness of 

a given bounding box is the IoU. 

 

A visual representation of IoU is shown in Fig.8. 

subcap- tion 

 

 
Fig. 8. Visual representation of IoU. 

 
Fig. 9. Calculation of IOU 

 

To get TP and FP we use IoU, we now have to identify 

if the detection (a Positive) is correct (True) or not (False). 

The most commonly used threshold is 0.5 - i.e. if the 

IoU is ¿ 0.5, it is considered a True Positive, else it is 

considered a false positive. 

 

Table 3:- Comparison  Of  Different  Map Between  

Mmdetection  And Detectron2 

Metric IoU MMdetection Detectron2 

mAP @[IoU= 0.50:0.95] 0.158 0.139 

mAP @[IoU= 0.50] 0.238 0.277 

mAP @[IoU= 0.75] 0.181 0.109 

 

VII. FUTURE WORK 

 

We are trying to create a pipeline of 2 model which 

should be able to do facemask detection and person re- 

identification. For that purpose we are using the facemask. 

 

 
Fig. 10. Final pipeline of the model 
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Detection models output and using the boundary box 

information to create a database of all person who entered the 
premises. Then we used torchreid a python library and 

pre-trained person re-identification model available on our 

collected data. 

 

Initially our gallery size is 21127 images and we used 

top- 10 search result to calculate accuracy. if we choose 10 

images randomly we get 2% accuracy but with torchreid we 

are able to get 67% accuracy. Currently we are working to 

improve our person re-identification model and complete 

pipeline. 
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