Influence of Gypsum Application in Disease Management of Onion (*Allium cepa* L.)

M.S.W. Fernando¹, S.H.S.A. De Silva², S. Kanchana³
¹ Horticultural Crops Research and Development Institute, Department of Agriculture, Sri Lanka
² Department of Agriculture, Sri Lanka
³ Regional Agriculture Research and Development Centre, Department of Agriculture, Karadiyanaru, Sri Lanka

Abstract:- In Asian cuisines, the onion (*Allium cepa* L.) is an essential ingredient. However, one of the most significant challenges for onion cultivation is pest and disease control. The major constraints are fungal bulb rot by *Fusarium* spp., *Pythium* spp. *Sclerotium* spp., and *Rhizoctonia solani*, anthracnose disease or twister diseases by *Colletotrichum* spp., purple blotch disease by *Alternaria poori*, and bacterial bulb rot. There's also the issue of tip burning and secondary microbial infections to consider. The onion is water and fertilizer-sensitive crop. As a result, farmers follow a variety of fertilizer and water management schedules based on their climatic conditions. The use of gypsum as a fertilizer in terms of disease management and tip-burning issues was highlighted in this study. Mineral nutrition plays an important role in the control of several plant diseases. According to the findings of the study, gypsum plays a dominant role in enhancing growth and total bulb yield from the 50 kg/ha gypsum application as the basal fertilizer is followed by the 50 kg/ha application two weeks after planting is superior to all other treatments with the lowest disease conditions and no tip-burning problem. Although 50 kg/ha gypsum application has some tip-burning conditions, it also has no significant difference with the best treatment in terms of total yield and diseases conditions.

I. INTRODUCTION

Onion (*Allium cepa* L.) is a major cash crop that is cultivated all over the world. Many countries use onions as a condiment. Plant diseases are a major constraint in agricultural development. Fungal diseases such as bulb rot, twister disease or anthracnose, purple blotch, and bacterial diseases such as bulb rot are common in onion cultivation in Sri Lankan climatic conditions. When it comes to controlling the major onion diseases that have been identified in Sri Lanka, integrated disease management is critical, and it involves a combination of genetic, agronomic, chemical, and biological resources. Mainly, genetic, and agronomic agents are important as a rule for preventing disease; they manifest themselves in resistant varieties, crop rotation, and crop residue disposal [1],[2].

Soil nutrients are one of the most important aspects of agronomic practices. Plants and microorganisms require nutrients for growth and development, and mineral nutrition plays an important role in the control of several plant diseases [3]. Mineral nutrients have an impact on plant health. A healthy plant will have increased vigor and resistance to diseases, resulting in lower disease incidence. Plants that are stressed by nutrient deficiencies are more susceptible to disease, whereas adequate crop nutrition makes plants more tolerant or resistant to disease. Each important nutrient seems to have a measurable impact on disease severity [4]. However, since a specific nutrient can reduce the severity of the disease, there is no generally accepted practice. The nutrient should be supplied to increase onion yields and to obtain optimum yield with the lowest possible cost and proper fertilizer use efficiency while maintaining the least amount of pest and disease damage that causes severe yield loss. According to reference [5], nutrients may influence disease resistance or tolerance. In addition, nutrient deficiencies and toxicities influence plant diseases [6], [7]. Minerals can influence primary resistance mechanisms through the formation of mechanical barriers, such as cell wall thickness, or the synthesis of natural defense barriers, including antioxidants, phytoalexins, and flavonoids [8]. According to some findings, it is essential to control diseases with proper nutrient management to improve yield [4] [6]. However, some plant nutrients have demonstrated their ability to control certain diseases. These effects, however, differ from one disease to the other in a different environment. That nutrient may reduce the occurrence of one disease while increasing the occurrence of another [8].

Gypsum is generally recognized as an important nutrient for enhancing onion bulb production and quality [9], [10]. One of the major sulfur supplements is gypsum. It is a sulfate mineral with the chemical formula CaSO₄·2H₂O and is an important source of calcium and sulfur for the plant [11]. According to reference [12]; gypsum is essential not only as a source of sulfur and calcium but could also enhance changes in soil structure that support water management and plant growth. By reducing soil dispersion and promoting flocculation, gypsum can improve soil physical properties. It facilitates the reduction of soil crust forming, which helps in seed emergence and plant establishment. It increases the rate of surface penetration and movement of water through the soil. Gypsum promotes deep rooting, which improves water and nutrient uptake in corn, wheat, and soybeans. The application of CaCl₂ decreases bulb pungency for several reasons, including chloride competing with nitrate or sulfate for plant uptake [13]. Calcium sulfate, which is much less soluble than other
also noted - pread within plant tissues is dependent .

2
3
ul
or the extremely broad
athogenic
f
-
Allium cepa
1
f
, plant height was collected.

and leaves to
ck cell

helps to maintain the structure of cell walls and stabilizes

The third most important nutrient required by onions is sulfur
used is one of the primary reasons f
sulfur in gypsum is
decrease in quality parameters such as pungency
yield quality
sul

Some of the
by onion plants and increases the strength of bulb flavor.

and sul

Calcium

important in nutrient value, flavor, and
control of pests and
diseases
[26]. Sulfur is a necessary plant nutrient that
contributes to the distinctive flavor of onions. Increasing
plant growing temperatures [27] improves sulfur absorption
by onion plants and increases the strength of bulb flavor.

Some of the sulfur compounds responsible for pungency can
inhibit the growth of fungi and bacteria and reduce onion
storage loss [28], [29], [30], [31], [32]; but high sulfur
content in the soil does not affect pungency [30]. Severe
sulfur deficiency during onion bulb growth harms onion
yield quality [26]. Furthermore, a lack of sulfur causes a
decrease in quality parameters such as pungency [18]. The
sulfur in gypsum is already in the sulfate form, which crops
can easily utilize [12].

Onion is commonly thought to be a sulfur-loving crop
because sulfur uptake by a high-yielding onion can reach as
high as 100 kg ha⁻¹ [33]. High N levels, on the other hand,
can reduce sulfur absorption by onion plants and reduce
bulb pungency. In most cases, field studies have revealed
that applied sulfur has a positive effect on onion harvest. As
documented in various countries, the ideal range of applied
sulfur ranges from 30 to 60 kg ha⁻¹. The type of fertilizer
used is one of the primary reasons for the extremely broad
sulfur ranges [11], [34], [35].

Calcium imbalance is also a cause of a variety of plant
diseases. Pathogens normally secrete enzymes to melt the
middle lamella, which is strongly inhibited by calcium [6].
The third most important nutrient required by onions is
calcium. Calcium is an important component of cells, as it
helps to maintain the structure of cell walls and stabilizes

cell membranes. It also affects the salt balance within plant
cells. Pathogens have a difficult time infiltrating and
establishing themselves in plant cells due to the thick cell
walls. Because calcium promotes pollen germination, it will
help onions to produce true seeds. It also influences growth
and regulates some enzyme systems. The presence of calcium
reduces onion bulb storage quality. Furthermore, a
lack of calcium promotes the leakage of metabolic products,
which promotes pathogen infections [36]. Plants
secrete several compounds. When certain nutrients are
depleted, the released compounds contain higher levels of
sugars and amino acids, promoting fungus growth. Plant
antifungal compound production is also influenced by
mineral nutrition [8]. And also, enzymes are released by the
pathogenic bacteria, which dissolve the plant tissue. Calcium
is well-known for its ability to inhibit enzymes of this
type. Bacterial spread within plant tissues is dependent
on the strength of the internal cells, which is greatly
influenced by mineral nutrition. And also pathogenic
bacteria spread throughout the plant by forming slime within
the vessels and blocking them, causing stems and leaves to
wilt and die. Certain plant nutrients inhibit the ability of
bacteria to produce this slime by promoting the synthesis of
natural defense compounds. Sucking insects and fungi
spread viruses to plants. Even though silicon is not a nutrient
for plants, it has been found to reduce the risk of virus
infection due to inhibiting the feeding ability of some
sucking pests such as aphids.

II. METHODOLOGY

The experiment was carried out at the Regional
Agricultural Research and Development Centre,
Aralaganwila, Sri Lanka. The experiment was conducted in
a field that belongs to Non-Calsic Brown (NCB) soil in Sri
Lanka's DL-25 agro-ecological zone. A field experiment was
conducted to investigate the effect of gypsum on cluster
onions (Allium cepa L.). Treatments comprised of four
levels of gypsum (T1- 50 kg/ha, T2- 75 kg/ha, T3- 100
kg/ha, T4- 50 kg/ha as the basal fertilizer and 50 kg/ha two
weeks after planting, T5- no gypsum as a control). In a
Randomized Complete Block Design (RCBD), all
treatments were replicated three times. Individual plots were
3m² in size, with plant spacing of 10cm * 10cm. Cow dung
was applied to the field at the current recommended rate of
10 t/ha. The variety 'Vethalan,' which is the most widely
used in the country, was used for the study. Crop
management practices were implemented by the
recommendations given by the department of agriculture. At
weekly intervals, plant height and disease data were
collected in the field. The plot yield was used to calculate
the total bulb yield per hectare.

III. RESULTS AND DISCUSSION

Plant growth and total bulb yield
As growth data in Fig 01, plant height was collected.
T4 has the highest plant height in both the Yala and Maha
seasons (Yala season 39.6 cm and Maha season 41.6 cm).
Plant height increased with gypsum application due to its
role in chlorophyll synthesis, and sulfur application
increases nutrient uptake, which influences stored materials synthesis and translocation [14]. Tip-burn is one of the main problems in onion cultivation. Onion leaf tip-burn is a symptom of a variety of biotic and abiotic stresses. Leaf tip burn may be considered a general stress symptom in onion due to the long list of biotic and abiotic stresses that can cause it. Leaf tip-burn in onion nursery transplants or seedlings may be the first sign of several diseases, including botrytis leaf blight (*Botrytis squamosa*), purple blotch (*Alternaria porri*), stemphylium leaf blight (*Stemphylium vesicarium*), basal rot (*Fusarium oxysporum*), and/or downy mildew (*Peronospora destructor*) [37], [38]. This can also be due to nitrogen deficiency, sulfur deficiency [39], and boron deficiency [40] as well as exposure to ozone [41], and salinity [42]. These findings will show that nutrients influence onion tip-burning. In T4 the effect of tip burn was not reported. It shows with the length of the leaves. The hard cell walls could be formed because of the continuous supply of Ca from the split application of gypsum.

Plant diseases

Infection mechanisms differ between pathogens [8]. Fungi enter the surface cells (epidermis) by passing between or through the cells. Stronger cell walls can prevent infection by acting as a physical barrier to the fungus. Certain nutrients, such as calcium, play an important role in the plant's ability to create stronger cell walls and tissues. And also; sulfur acts as a strong fungicide in vegetable cultivation. In cluster onion cultivation, anthracnose disease commonly occurs as twister disease or disco disease in the early crop stages and as anthracnose leaf spots in the mature crop.

The percentages of anthracnose disease severity are shown in Fig 03 throughout the cultivation period. In this study, T4 had the lowest disease severity index for anthracnose disease in both seasons (0% Yala and 3.67% Maha), while controls had 3% and 9.67% in the Yala and Maha seasons, respectively. It may be due to the creation of comparatively hard cell walls with the split gypsum application.
Anthracnose disease severity index percentage of Yala and Maha seasons

In wet weather conditions, bulb rot disease is common. This disease is divided into two types: fungal bulb rot and bacterial bulb rot. In cluster onion cultivation, fungal bulb rot usually appears during the early crop stages and coincides with unfavorable climatic conditions at the mature crop. Furthermore, bacterial bulb rot is caused by unfavorable weather conditions.

Bacterial bulb rot was not present in either season. The cumulative percentages of bulb rot disease incidence in both seasons are shown in Fig 04. With the tested treatments, 50 kg/ha gypsum application at the basal dressing with 50 kg/ha gypsum application two weeks after planting (T4) resulted in the least bulb rot disease (1 % Yala and 2 % Maha), followed by 50 kg/ha gypsum application at the basal dressing (T1) with no significant difference. In both seasons, the control treatment has a bulb rot disease incidence of more than 5%. Pathogens can also cause nutrient deficiency or toxicity by altering membrane permeability or mobilization to infected sites. Fusarium oxysporum f. vasinfectum can increase P levels in leaves while decreasing N, K, Ca, and Mg levels [4].

According to reference; Ca is required for plant membrane stability and function, and Ca deficiency causes membrane leakage of low-molecular-weight compounds such as sugars and amino acids from the cytoplasm to the apoplast, which promotes pathogen infection [6]. Not only that but the disease can be inhibited in naturally alkaline soil [43]. The application of gypsum into the soil is usually recommended for changing the pH of the soil. As a result, it facilitates disease management.

IV. CONCLUSIONS

The current study concluded that gypsum plays a dominant role in enhancing growth and total bulb yield from the 50 kg/ha gypsum application as the basal fertilizer is followed by the 50 kg/ha application two weeks after planting is superior to all other treatments with the lowest disease conditions and no tip-burning problem. Although 50 kg/ha gypsum application has some tip-burning conditions, it also has no significant difference with the best treatment in terms of total yield and diseases conditions.
REFERENCES

vegetables/lime-and-gypsum-effects-spring-planted-onions-1986

