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I. INTRODUCTION AND PRELIMINARIES 

 

It is conventional to this work motivated by some 

recent work on Caristi’s fixed point theorem for mappings 
defined on metric spaces with a partial order or a graph. One 

of the most important theorems is the Caristi fixed point 

theorem and it’s related to a complete normed space with 
the Banach fixed point theorem. Here, Banach contraction 

principle and Caristi's fixed point theorem [3] is important 

for nonlinear analysis. It’s a modification of the ε- 

variational principle of Ekeland [1, 2]. Then the different 

directions of the Caristi’s fixed point theorem have been 

investigated by several authors; see, for example, [4–17] and 

references therein. Finally, we study of Caristi’s fixed point 

theorem (Theorem-3) were given as mention above. 

 

In this paper, we will discuss a proof of Caristi’s fixed 

point theorem using mapping results which is introduced in 

the setting of normed spaces. 

 

Normed Spaces 1.1: A normed on X is a real function RX  : defined on X such that for any Xyx ,  and for all 

.K  

i. 0x  

ii. .00  xifonlyandifx  

iii. xx    

iv.  inequalityTriangleyxyx   

 

A norm on X defines a metric d on X which is given by   Xyxyxyxd  ,;,  and is called the metric induced by the 

norm. 

 

The normed space is denoted by  ,X  or simply by X 

 

II. A STUDY OF CARISTI’S FIXED POINT THEOREM ON NORMED SPACE 

 

Here, we present a study of Caristi's fixed point theorem for mapping results which is introduced in setting of normed spaces 

such as. 

 

Theorem 2 .1 (Caristi [3] ).  Suppose that  ,,X  is a complete normed spaces and let XXT : be a mapping such 

that     XaTaaTaa  
 

 i.........  

 

Where   ,0: X  is a lower semi-continuous mapping.  Then T has at least fixed point. 
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Proof:  We consider that XaaTa  . 

A map 
xXaN 2:)(   (Power of X) by  

    )()(: babaXbaN   . 

 

From equation (𝑖) we know that )(aNTa and hence XaaN  )( . 

We observe that for each )(aNb  ,  

Here )()( ab     and )()( aNbN  . 

Let )(aNb be given. 

We have )()( baba   . 

So we have    ab   .Since )(bN  

Let )(bNt  .Then bt   and )()( tbtb    

 

It follows that )()()( abt    and hence )()( tatbbata    

Also we have at  .Indeed if at  . Then )()( at   .Since  

           

ba

ba

ba

aatababa









0

0

0

 

 

This would implies tb  , a contradiction. 

Hence )(aNt  .Therefore we prove )()( aNbN   

We construct a sequence  na .  

The induction for any point Xa 1  

Let Xan  . 

Then for )(1 aNan  such that  
 

  ).......(...........,
1

inf1 iin
n

taN
naNt

n 


   

For any n , since )(1 aNan  , we have  

                )......(..........11 iiiaaaa nnnn     

So,    nn aa  1 ,   n . 

If   is bounded below, then 

           n
n

n
n

aa 


 inflim
 
exist ).........(........... iv  

 

From )(iii  and )(iv  then we get  

              Nnmandnmaaaaa
m

nj

njjnn  




 ,
1

11   

Since    


n
n

alim  we get,   nmaa mn
n




0suplim . 

Therefore  na  is a Cauchy sequence in X . 

Then .. tsXv van    
as n . 

i. e    is a lower semi-continuous.  
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From )(iv
 
then we get  

                    


jaaav jn
n

n
n

 infinflim   ).....(.................... v  

Then we show that    





1n

n va

 
For nm   with nm,  

From )(iii  and )(iv  then we get  

             




 
1

1

1 )....(....................
m

j

njjmn vivaaaaa   

Since vam   as m the inequality )(vi implies 

              vava nn        )...(.................... viin   

By )(vii  we know  





1n

naNv  

Hence  





1n

naN     and      





1n

naNvN  

From )(ii then we have  

     
 

 tawawa
naNt

nnn 


 inf     
n

aa nn

1
1    

   
n

aawa nnn

1
1       n  

Hence, wawawa nnn
n




00lim . 

Then, vw  . 

Therefore,    





1n

n va  

Since )(vN  and    





1

)(
n

n vaNvn . We obtain  vvN )(  

On the contrary, from )(i  we know vTv   

Hence T has a fixed point v  in X .  Q. E. D 

 

Remark 2 .2. 

a)  Although the function   is lowering semi-continuous, it does not deduce that N (a) is a closed subset of X. 

b)  A study of Caristi’s fixed point theorem contains assigning norm in X. 

 

III. CONCLUSION 

 

Our aim is to discuss a study of Caristi's fixed point 

theorem on normed space. We hope that this work will be 

useful for functional analysis related to normed spaces and 

fixed point theory. 
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