ISSN No:-2456-2165

A Study of Caristi's Fixed Point Theorem on Normed Space

Md. Abdul Mannan*, Halima Akter, Nazmun Nahar Department of Mathematics, Uttara University, Dhaka, Bangladesh Samiran Mondal Department of Mathematics Jashore University of Science and Technology, Jashore, Bangladesh * Corresponding author: Md. Abdul Mannan, Department of Mathematics, Uttara University, Dhaka, Bangladesh

Abstract:- This paper aims at treating a study of Caristi's fixed point theorem for mapping results that introduced in the setting of normed space. The classical Caristi's fixed point theorem is a generalization of this work.

Keywords:- Norm Space, Complete Norm Space, Operator, Transfinite induction, Zorn's lemma and Banach Fixed Point Theorem.

I. INTRODUCTION AND PRELIMINARIES

It is conventional to this work motivated by some recent work on Caristi's fixed point theorem for mappings defined on metric spaces with a partial order or a graph. One of the most important theorems is the Caristi fixed point theorem and it's related to a complete normed space with the Banach fixed point theorem. Here, Banach contraction principle and Caristi's fixed point theorem [3] is important for nonlinear analysis. It's a modification of the ε variational principle of Ekeland [1, 2]. Then the different directions of the Caristi's fixed point theorem have been investigated by several authors; see, for example, [4–17] and references therein. Finally, we study of Caristi's fixed point theorem (Theorem-3) were given as mention above.

In this paper, we will discuss a proof of Caristi's fixed point theorem using mapping results which is introduced in the setting of normed spaces.

Normed Spaces 1.1: A normed on X is a real function $\|\bullet\|: X \to R$ defined on X such that for any $x, y \in X$ and for all

 $\lambda \in K.$ i. $||x|| \ge 0$ ii. ||x|| = 0 if and only if x = 0. iii. $||\lambda x|| = |\lambda| ||x||$ iv. $||x + y|| \le ||x|| + ||y||$ (Triangle inequality)

A norm on X defines a metric d on X which is given by d(x, y) = ||x - y||; $x, y \in X$ and is called the metric induced by the norm.

The normed space is denoted by $(X, \|\bullet\|)$ or simply by X

II. A STUDY OF CARISTI'S FIXED POINT THEOREM ON NORMED SPACE

Here, we present a study of Caristi's fixed point theorem for mapping results which is introduced in setting of normed spaces such as.

Theorem 2.1 (Caristi [3]). Suppose that $(X, \|, \|)$ is a complete normed spaces and let $T: X \to X$ be a mapping such that $\|a - Ta\| \le \phi(a) - \phi(Ta) \quad \forall a \in X \dots \dots \dots (i)$

Where $\phi: X \to [0, \infty)$ is a lower semi-continuous mapping. Then T has at least fixed point.

Proof: We consider that $Ta \neq a \quad \forall a \in X$. A map $N(a) : X \to 2^x$ (Power of X) by $N(a) = \{b \in X : ||a - b|| \leq \phi(a) - \phi(b)\}.$ From equation (i) we know that $Ta \in N(a)$ and hence $N(a) \neq \phi \quad \forall \quad a \in X$. We observe that for each $b \in N(a)$, Here $\phi(b) \leq \phi(a)$ and $N(b) \subseteq N(a)$. Let $b \in N(a)$ be given.

We have $||a - b|| \le \phi(a) - \phi(b)$. So we have $\phi(b) \le \phi(a)$.Since $N(b) \ne \phi$ Let $t \in N(b)$.Then $t \ne b$ and $||b - t|| \le \phi(b) - \phi(t)$

It follows that $\phi(t) \le \phi(b) \le \phi(a)$ and hence $||a - t|| \le ||a - b|| + ||b - t|| \le \phi(a) - \phi(t)$ Also we have $t \ne a$. Indeed if t = a. Then $\phi(t) = \phi(a)$. Since $||a - b|| \le \phi(a) - \phi(b) \le \phi(a) - \phi(t) = \phi(a) - \phi(a) = 0$ $\Rightarrow ||a - b|| = 0$ $\Rightarrow a - b = 0$ $\Rightarrow a = b$

This would implies b = t, a contradiction. Hence $t \in N(a)$. Therefore we prove $N(b) \subseteq N(a)$ We construct a sequence $\langle a_n \rangle$. The induction for any point $a_1 \in X$ Let $a_n \in X$. Then for $a_{n+1} \in N(a)$ such that $N(a_{n+1}) \leq \inf_{t \in N(a_n)} \phi(t) + \frac{1}{n}$, $n \in \mathbb{N}$(*ii*) For any $n \in \mathbb{N}$, since $a_{n+1} \in N(a)$, we have $\|a_n - a_{n+1}\| \leq \phi(a_n) - \phi(a_{n+1})$ (*i*)

From (iii) and (iv) then we get

$$\|a_n - a_{n+1}\| \le \sum_{j=n}^{m-1} \|a_j - a_{j+1}\| \le \phi(a_n) - \alpha \qquad [\because m > n \text{ and } m, n \in N]$$

Since $\lim_{n \to \infty} \phi(a_n) = \alpha$ we get, $\lim_{n \to \infty} \sup\{\|a_n - a_m\|\} = 0 \qquad \forall m > n.$

i. e ϕ is a lower semi-continuous.

Therefore $\langle a_n \rangle$ is a Cauchy sequence in X. Then $\exists v \in X \text{ s. t. } a_n \rightarrow v \text{ as } n \rightarrow \infty$. From (iv) then we get

$$\phi(v) \leq \liminf_{n \to \infty} \phi(a_n) = \inf_{n \in \mathbb{N}} \phi(a_n) \leq \phi(a_j) \quad \forall \quad j \in \mathbb{N} \qquad \dots \dots \dots \dots (v)$$

Then we show that $\bigcap_{n=1}^{\infty} \mathbb{N}(a_n) = \{v\}$
For $m > n$ with $m, n \in \mathbb{N}$
From (*iii*) and (*iv*) then we get

Since $a_m \rightarrow v$ as $m \rightarrow \infty$ the inequality (*vi*) implies

$$\|a_n - v\| \le \phi(a_n) - \phi(v) \quad \forall n \in \mathbb{N}$$
By (vii) we know $v \in \bigcap_{n=1}^{\infty} N(a_n)$

)

Hence
$$\bigcap_{n=1}^{\infty} N(a_n) \neq \phi$$
 and $N(v) \subseteq \bigcap_{n=1}^{\infty} N(a_n)$

From (ii) then we have

$$\begin{aligned} \|a_n - w\| &\leq \phi(a_n) - \phi(w) \leq \phi(a_n) - \inf_{t \in N(a_n)} \phi(t) \leq \phi(a_n) - \phi(a_{n+1}) + \frac{1}{n} \\ \Rightarrow \|a_n - w\| \leq \phi(a_n) - \phi(a_{n+1}) + \frac{1}{n} \quad \forall n \in \mathbb{N} \\ \text{Hence,} \quad \lim_{n \to \infty} \|a_n - w\| = 0 \Rightarrow a_n - w = 0 \Rightarrow a_n = w. \\ \text{Then,} \quad w = v. \end{aligned}$$

Therefore, $\bigcap_{n=1}^{\infty} N(a_n) = \{v\}$

Since
$$N(v) \neq \phi$$
 and $n(v) \subseteq \bigcap_{n=1}^{\infty} N(a_n) = \{v\}$. We obtain $N(v) = \{v\}$

On the contrary, from (i) we know Tv = vHence T has a fixed point v in X.

Remark 2.2.

a) Although the function φ is lowering semi-continuous, it does not deduce that N (a) is a closed subset of X.
b) A study of Caristi's fixed point theorem contains assigning norm in X.

III. CONCLUSION

Our aim is to discuss a study of Caristi's fixed point theorem on normed space. We hope that this work will be useful for functional analysis related to normed spaces and fixed point theory.

ACKNOWLEDGEMENT

I would like to thank my respectable teacher Prof. Dr. Moqbul Hossain for guidance throughout the research process.

Author contributions:

Authors have made equal contributions for articles.

REFERENCES

Q. E. D

- [1]. Ekeland, I: On the variational principle. J. Math. Anal. Appl. 47(2), 324-353 (1974)
- [2]. Ekeland, I: Nonconvex minimization problems. Bull. Am. Math. Soc. 1, 443-474 (1979
- [3]. J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241-251. http://dx.doi.org/10.1090/s0002-9947-1976-0394329-4
- [4]. H. Brézis, F.E. Browder, A general principle on ordered sets in nonlinear functional analysis, Adv. Math., 21 (1976), no. 3, 355-364. http://dx.doi.org/10.1016/s0001-8708(76)80004-7

ISSN No:-2456-2165

- [5]. F. E. Browder, On a theorem of Caristi and Kirk, in Proceedings of the Seminar on Fixed Point Theory and Its Applications, June 1975, 23-27, Academic Press, New York, 1976.
- [6]. W.-S. Du, On Caristi type maps and generalized distances with applications, Abstract and Applied Analysis, **2013** (2013), Article ID 407219,1-8. http://dx.doi.org/10.1155/2013/407219
- [7]. W.-S. Du, On Caristi-type mappings without lower semi-continuity assumptions, Journal of Fixed Point Theory and Applications, 17 (2015), no. 4, 733-752. http://dx.doi.org/10.1007/s11784-015-0253-0
- [8]. W.-S. Du, A simple proof of Caristi's fixed point theorem without using Zorn's lemma and transnite induction, submitted.
- [9]. K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. http://dx.doi.org/10.1017/cbo9780511526152
- [10]. D.H. Hyers, G. Isac, T.M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific, Singapore, 1997. http://dx.doi.org/10.1142/9789812830432
- [11]. J. R. Jachymski, Caristi's fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl., 227 (1998), 55-67.http://dx.doi.org/10.1006/jmaa.1998.6074
- [12]. M.A. Khamsi, W.A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics, Wiley-Interscience, New York, 2001. http://dx.doi.org/10.1002/9781118033074
- [13]. W.A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math., **36** (1976), no. 1, 81-86.
- [14]. W.A. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014. http://dx.doi.org/10.1007/978-3-319-10927-5
- [15]. L. Pasicki, A short proof of the Caristi theorem, Ann. Soc. Math. Polon. Series I: Comm. Math., 22 (1978), 427-428.
- [16]. T. Suzuki, Generalized Caristi's fixed point theorems by Bae and others, J. Math. Anal. Appl., **302** (2005), 502-508. http://dx.doi.org/10.1016/j.jmaa.2004.08.019
- [17]. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.