
Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No: 2456-2165

IJISRT21FEB537 www.ijisrt.com 758

Shallow Convolution Neural Network for an

Industrial Robot Real Time Vision System

Dumindu Eranda Jayakody,
Department of Mechanical Engineering,

The Open University of Sri Lanka, Sri Lanka.

J.A.K.S. Jayasinghe,

Prof., Department of Electronics and Telecommunication Engineering,

Faculty of Engineering,

University of Moratuwa, Sri Lanka.

D. C. Wijewardene,

Eng., Department of Mechanical Engineering,

The Open University of Sri Lanka, Sri Lanka.

Abstract:- Recent advancement in the deep learning-

based object detection techniques have significantly

improved the detection speed and accuracy. Now, it is

possible to execute a complex deep neural network having

a large number of layers in real time using desktop

computers equipped with graphic processing units

(GPU’s). Further, shallow neural network architectures

are also developed for embedded systems with less

processing power. This paper proposes shallow neural

network architecture capable of real-time object

detection as a vision system of an industrial robot. The

proposed shallow neural network is executed on

Raspberry Pi 3B+ having limited resources compared to a

desktop computer equipped with GPU’s.

Keywords:- Computer Vision, Object Detetion, Yolo.

I. INTRODUCTION

Computer vision is a branch of computer science,

which enables machines not only to see but also to process
and analyze images and videos. One of the key areas of

computer vision is object detection. It gives capability to

computers to locate and identify objects in an image.

Application of Deep Learning and Convolution Neural

Network (CNN) techniques to computer vision has created an

important milestone [1]. Using these techniques, computers

can learn from large training image data sets to recognize and

track objects.

A vision system capable of real-time object

detection and tracking plays a crucial role in an

intelligent robot. Such a robot can interact with the
environment using visual data captured by a camera. With

a real-time vision system [2][3], robot can execute tasks

automatically by tracking objects while estimating

orientation and velocity of the objects. With such features,

vision system can guide the robot manipulator to interact

with the object within a very short time period. Further, robot

will be able to manage unpredictable events such as a human

coming close to the danger zone of the robot.

In this paper, we present implementation of a real-time

vision system using a resource limited Single Board

Computer (SBC) having a very small footprint. The small

footprint of the SBC makes it feasible to incorporate with an

industrial robot.

II. SYSTEM ARCHITECTURE

There are three subsystems in our architecture as shown

in Fig.1. Camera captures the image and Image Processor
implements the object detection while the Robot Controller

controls the robot based on the information received from the

Image Processor. The Image Processor carries out the object

detection and sends the location and orientation of the

detected object to the Robot Controller. Logitech C270 web

camera is used as the camera and Raspberry Pi 3B+ is used

as Image Processor in our system.

Figure 1: System Block Diagram

Following two methods were considered for improving

the processing speed of the Image Processor implemented on

the selected SBC:

 Customized YOLO Algorithm based on YOLO-Lite [3]

 Bare-metal Programming [4]

Bare-metal Programming
CNNs are usually programmed using scripting

languages like Python, which have more support libraries and

more community forums. In such implementations, the CNN

can be slowed down due to operating system overheads. If

the program is executed without an operating system,

performance can be improved. Bare-metal programming is

used in such cases. Bare-metal programming interacts with

the processor system at the hardware level without the

underling layers of the operating system. Unfortunately, the

necessary datasheets of the new powerful versions of

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No: 2456-2165

IJISRT21FEB537 www.ijisrt.com 759

Raspberry Pi (such as 3B+) are not available to implement

the CNN using the bear-metal programming method.

Customized Yolo Algorithm based on Yolo-Lite

The architecture of a Yolo algorithm is specified by the

configuration file (.cfg file) [2],[3],[5],[6]. It contains

information such as number of convolution layers, number of

filters in each layer, type of activation function used in each

layer and how image size is reduced from a given

convolution layer to next convolution layer. This file is a

human-readable file and can be customized to implement

modified CNN algorithms.

Following fields in the Yolo configuration file are
considered for customization:

 Input layer size

 Batch normalization

 Number of Convolutions layers

 Lowering the number of objects to be identified

1) Input layer size

The Yolo-Tiny [6] is a well-known algorithm which

processes a 416*416 input image. As the calculations are

done on floating-point numbers, which is slow compared to

fixed-point or integer computations, the speed of the
convolution neural network heavily depend on the input

image size. The amount of calculation can be reduced by

using a low-resolution image which tends to increase the

error rate.

2) Batch Normalization

Batch normalization is a technique for training very

deep neural networks that standardizes the inputs to a layer

for each mini-batch. This has the effect of stabilizing the

learning process and reducing the number of training epochs

required to train deep networks.

3) Number of Convolution layers

Convolution layers are the major building blocks used

in convolution neural networks. Convolution is the simple

application of a filter to an input image. The convolution

neural networks have the ability to automatically tune a large

number of filters in parallel specific to a training dataset

under the constraints of a specific predictive modeling, such

as image classification.

Amount of calculation required for processing can be

reduced by using a few convention layers which again tends
to increase the error rate.

4) Lowering the number of objects

Yolo-Tiny[6] algorithm can identify 20 objects when it

use PASCAL VOC data set. This number is decided by the

size of the last layer of the convolutional neural network.

Amount of computations required for the convolutional

neural network can also be reduced by lowering the number

of detectable objects.

Based on these facts, we have studies three different

CNN architectures with following basic features summarized
in Table1.

Table 1 : Customized Yolo Algorithms Summarize

In [5], there are 21 different trials and they have tested
them using Dell XPS 13 which is a non-GPU based laptop.

Their target is to have 10 frames per second (fps) object

detection rate. Out of 21 different trials, 6 trials have shown

fps higher than 10. As the Raspberry Pi has less

computational power, we selected two trails from [5] having

the lowest floating-point operations per second (flops) and

highest fps rate (i.e., trial 12 & trail 3).

In order to select the best architecture for the Raspberry

PI, we decided to train them using two objects (Hand and TV

antenna cable end). Then the selected architecture was
trained for more objects.

III. RESULTS

We use Google Colaboratory (Google Colab) to train

the architectures. Then all architectures we tested on the

Raspberry Pi 3B+ to measure the frame rate (fps). With the

configuration file, one can enable or disable batch

normalization option. As Google Colab platform does not

support batch normalization disabled architectures, we have

studied all the architectures with batch normalization.

For selection of the best architecture following

measures were considered.

 Fps

 Flops

 mAP (Mean average precession)

mAP is a measure about the network accuracy.

1) Architecture 1
Due to the low flops count, Yolo-Lite [5] trail 12 was

selected as Architecture 1 and tested on Raspberry Pi 3B+.

Results are shown in Fig. 2 and Fig. 3 where the percentage

number shows the confidence of the detected object. Key

features of Architecture 1 are as follows:

 flops count – 71M

 mAP value – 26.90%

 fps on Dell XPS 13 – 6.9

 fps on Raspberry Pi 3B+ – 2.9

Architecture Input

layer

size

Batch

Normalization

Number of

Convolution

layers

Stride

1 224*224 yes 8 2

2 224*224 yes 7 2

3 128*128 yes 7 2

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No: 2456-2165

IJISRT21FEB537 www.ijisrt.com 760

Figure 2 : Architecture 1 Result for TV Antenna Cable End

Detection on Raspberry Pi 3B+

Figure 3: Architecture 1 Result for Hand Detection on

Raspberry Pi 3B+

2) Architecture 2

Due to the moderate flop requirement and high mAP,

trail 3 of YOLO-Lite [5] was selected and tested on

Raspberry Pi 3B+. Results are shown in Fig. 4, Fig. 5 and

key measures are as follows:

 flops count – 482M

 mAP value – 34.59%

 fps on Dell XPS 13 – 9.5

 fps on Raspberry Pi – 4.9

Figure 4: Architecture 2 Result for TV Antenna Cable End

Detection on Raspberry Pi 3B+

Figure 5: Architecture 2 Result for Hand Detection on

Raspberry Pi 3B+

3) Proposed Architecture

Due to low processing power on the Raspberry Pi 3B+,

we noted that it is not possible to achieve 10 fps detection
rate. Hence, we study several architectures and we found that

proposed Architecture as detailed in Table 2, can achieve 10

fps detection rate.

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No: 2456-2165

IJISRT21FEB537 www.ijisrt.com 761

Table 2 : Proposed Architecture

Performance of our proposed architecture on Raspberry

Pi 3B+is shown in Fig. 6, Fig. 7 and key measures are as

follows:

 flops count – 60M

 mAP value - 30.15%

 fps rate in Raspberry Pi 3B+- 10.5

Figure 6: Proposed Architecture Result for TV Antenna

Cable End Detection on Raspberry Pi 3B+

Figure 7: Proposed Architecture Result for Hand Detection

on Raspberry Pi 3B+

Table 3 : Architecture Comparison

In order to test the suitability of the proposed

architecture for applications in intelligent robots, we

considered the following event. There are three types of milk

packets in a tray such that the intelligent robot detects the
type of milk packet and pick it and place in three different

bins. Due to safety reasons, the intelligent robot will carry

out the operation if no human hand is visible. In this case,

five different objects (milk packet type1, milk packet type2,

milk packet type3, TV antenna cable end and Hand) were

taken for training. Fig. 8 to Fig. 12 show the performance and

we observed the frame rate is marginally dropped to 9.5. The

reason for dropping the FPS is to increase the objects for the

final layer filter and add the center and direction of the object
for calculations. Further, center and direction of the object

also detected (as show by red marker and blue line) after the

objects were detected by the CNN algorithm.

Layer Filters Size Stride Pad Number of pixels

Input image (128, 128) - - - - -

Convolution 1 16 3×3 1 1 128, 128,16

MaxPooling 16 2×2 2 - 64, 64

Convolution 2 32 3×3 1 1 64, 64, 32

MaxPooling 32 2×2 2 - 32, 32

Convolution 3 64 3×3 1 1 32, 32, 64

MaxPooling 64 2×2 2 - 16, 16

Convolution 4 128 3×3 1 1 16, 16, 128

MaxPooling 128 2×2 2 - 8, 8

Convolution 5 128 3×3 1 1 8, 8, 128

MaxPooling 128 2×2 2 - 4, 4

Convolution 6 256 3×3 1 1 4, 4, 256

MaxPooling 256 2×2 2 - 4, 4

Convolution 7 35 1×1 1 1 4, 4, 35

Architecture Flops count mAP value Fps rate on Raspberry Pi Fps rate on Dell XPS 13

1 71M 26.90% 2.9 6.9

2 482M 34.59% 4.9 9.5

Proposed 60M 30.15% 10.5 -

http://www.ijisrt.com/

Volume 6, Issue 2, February – 2021 International Journal of Innovative Science and Research Technology

 ISSN No: 2456-2165

IJISRT21FEB537 www.ijisrt.com 762

Figure 8: Milk Packet Type1

Figure 9: Milk Packet Type 2

Figure 10: Milk Packet Type 3

Figure 11: TV Antenna Cable End

Figure 12: Hand

IV. CONCLUSION

Yolo algorithm is one of the best algorithms for real-

time object detection. Yolo-Lite algorithm proposed in [5]

has several architectures which can achieve fps rate better

than 10 on non-GPU based computers. Detection of objects
with 10 fps rate is sufficient for many real-time applications.

We studied the achievable speed of Yolo-Lite algorithms on

Raspberry PI. As the performance is poor for real-time

applications, we presented a new architecture which can

achieve a fps rate close to 10. This new architecture is used

as a real-time vision system for an industrial robot and shown

promising results.

REFERENCES

[1]. J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural networks, vol. 61, pp. 85–117, 2015.

[2]. Redmon, J., Divvala, S., Girshick, R. and Farhadi, A.,

2016. You only look once: Unified, real-time object

detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 779-788).

[3]. Redmon, J. and Farhadi, A., 2017. YOLO9000: better,

faster, stronger. In Proceedings of the IEEE conference

on computer vision and pattern recognition (pp. 7263-

7271).

[4]. Souza, R., Freitas, M., Jimenez, M., Magalhães, J.,

Kubrusly, A.C. and Rodriguez, N., 2020. Real‐time

performance assessment using fast interrupt request on a
standard Linux kernel. Engineering Reports, 2(1),

p.e12114.

[5]. Pedoeem, J. and Huang, R., 2018. YOLO-LITE: a real-

time object detection algorithm optimized for non-GPU

computers. arXiv preprint arXiv:1811.05588.

[6]. J. Redmon and A. Farhadi, “Yolo9000: Better, faster,

stronger,” arXiv preprint, 2017.

http://www.ijisrt.com/

	I. INTRODUCTION
	II. SYSTEM ARCHITECTURE
	1) Input layer size
	2) Batch Normalization
	3) Number of Convolution layers
	4) Lowering the number of objects
	Yolo-Tiny[6] algorithm can identify 20 objects when it use PASCAL VOC data set. This number is decided by the size of the last layer of the convolutional neural network. Amount of computations required for the convolutional neural network can also be ...

	III. RESULTS
	1) Architecture 1
	2) Architecture 2
	3) Proposed Architecture

	IV. CONCLUSION

