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Abstract:- The present article is an extension of the 

previous article based on the statistical transition matrix B 

which aimed to study the steady-state solution of the IC-

BC distribution in the diffusion PDE. We extend here the 

same theory to find the spatio-temporal evolution of the 

energy density vector. 
 

Numerical results of the required solution are presented 

for 2D and 3D configuration space problems where the 

precision and convergence speed or computation time are 

superior to the conventional method of separating 

variables and numerical finite difference techniques.  
 

I. INTRODUCTION 
 

In a previous article [1], we proposed a numerical 

statistical method for the steady-state solution of heat 

diffusion, the Laplace and Poisson PDEs based on the  

transition marix B. 

 

Moreover, we can find an efficient spatio-temporal 

statistical solution to heat diffusion, the Poisson and Laplace 

partial differential equations based on the same techniques 
[1,2]. All these equations describe the spatiotemoral evolution 

of the energy density distribution of the function U (x, t) 

through the PDE, 

 

 d U / d t) partial = a . Nabla ^ 2 U + S (x, t)  . . . . . . .(1) 

 

with boundary conditions of Dirichlet or Neumann BC and 

initial conditions IC given by U (x, 0). 

 

a is the thermal diffusivity and S (x, t) is the energy density 

source / sink term. 

 

In the current article, we use Cartesian coordinates, with 

the Dirichlet boundary conditions while the extension to 

spherical or cylindrical coordinates and to Neumann BC is 

possible and straight forward. 

 
Here the unconventional method proposed to solve 

Equation 1 is based on a rigorous physical statistical 

assumption assuming the existence of a transition matrix B for 

a time step  dt which can be formulated mathematically as, 

 

Ui,j,k  
(N + 1) = B. ( b + S) + Ui,j,k  

(N )   . . . (2) 

b is the vector of the boundary conditions BC arranged in the 

proper order. 

 

U  N (x, t) is the spatiotemporal solution of the situation 

described by heat diffusion equation or Poisson PDE (1). N 

represents the number of steps dt or number of iterations N. 
 

dt is implicitly or inherently included in matrix multiplication. 

 

Equation 2 is a recurrence formula which leads for a transfer 

matrix E and D for N consecutive time steps . 

 

Hence, we define the transfer matrix E as the power series of 

matrix B, 

 

E (N)= B ^ 0 + B + B ^ 2 +. . . . . + B ^ N . . . .  (3) 

Where B ^ 0 = I 

 

At the limit where N is large enough, the relation, 

 

E infinite= (I-B)  - 1.. . . . . . . (4)  holds 

 

And the transfer matrix D is similarly defined by the power 
series of matrix B, 

 

D(N) = B + B ^ 2 +. . . . . + B ^ N . . . . (5) 

Obviously, 

D = E-I. . . . . . . (6) 

And it is also evident that for N consecutive time steps dt, the 

time-dependent  solution of the heat diffusion equation 

1 is given by, 

UN
i, j, k  = D (N) (b + S). . . . . (7) 

 

For a time interval t = Ndt. 

Equation 7 is the numerical statistical   replacement of  

the PDE 1 based on successive application of B-transition 

matrix Equation 2. 

 

However, Equation (6) is appropriate to study the 

steady-state solution as used in article [1] while in the current 
article we deal with the case of the small N applied to a time-

dependent transient solution. 

 

The initial conditions IC are assumed to be zero in the 

current analysis of equations 2 and 7, but they can be simply 

implemented in equation 7 by adding the term B ^ N .U (x, 0) 

which tends to conform to BC for a large N as described in 
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reference [2]. Initial conditions are simply avoided in this 

article so as not to overload the analysis. 

 

II.         THEORY 
 

The main assumption of the numerical statistical solution 

Eq 2 is that there exists a physical statistical transition matrix 

B such that equation 2 is satisfied for each jump or  particular 

time step dt. 

 

It follows that the time-dependent solution of the heat 

diffusion Eq 1 at time t = Ndt will be given by, 

U(N) = D(N). (b + S). . . . . . . . .(7) 

 

Therefore, the starting point or key to the numerical 

statistical solution is to find the base transition matrix B. 

However, the steps of the resolution procedure are 

explained and matrix B is well defined through conditions i-iv 

below, 

 

 We have to explain the whole procedure of the proposed 

numerical statistical method which should be done in 3 
consecutive precise steps and will be more explained further 

by 2 illustrative applications in 2D and 3D configuration 

space. 

 

*First Step  

 

Discretize the 2D or 3D domain in n equally spaced free nodes 

and find the appropriate stochastic transition matrix B(nxn) 

satisfying the statistical physical conditions i-iv below, and 

therefore the hypothesis of equation 2 applies. 

 

The statistical transition matrix B = (Bi, j) itself is well defined 

by statistical assumptions i-iv. 

 For 2D and 3D Cartesian coordinates, the inputs B i, j satisfy 

or are subject to the following conditions: 

 

This means that the statistical transition matrix B = (Bi, j) 
itself is well defined through the statistical assumptions i-iv. 

 For 2D and 3D Cartesian coordinates, the inputs B i, j satisfy 

or are subject to the following conditions: 

i- B i, j = 1/4 for 2D or 1/6 for 3D for i adjacent to j .. and B i, j 

= 0 otherwise. 

 

This means that there is no substantially preferred spatial 

direction. 

ii- B i, i = RO, i.e. the main diagonal consists of constant 

inputs RO 

 

The transition is a collective identical process. 

RO can take any value in the closed interval [0,1] and plays a 

crucial role in the heat diffusion equation. 

 

 We show that the thermal diffusivity a is proportional to 1-

RO . Ultimately, Ro = 0 corresponds to super conduction and 

RO = 1 corresponds to the case of insulators while for Laplace 

and Poisson PDE, RO = 0 

 

That is to say that by solving Poison and Laplace PDE B is a 

zero principal diagonal matrix which corresponds to the 
assumption of a zero residue or of no energy storage after each 

time step for all the free nodes n. 

iii- B i, j = B j, i for all i, j. 

 

The matrix B is symmetrical to conform to the physical 

principle of detailed equilibrium. 

iv- The sum of B i, j = 1 for all rows far from the borders and 

the sum B i, j <1 for all rows connected to the borders to allow 

the contribution BC to the energy of the system as an energy 

density source  / sink term. The meaning of condition iv is that 

the probability of whole space = 1. 

 

Obviously, the statistical matrix B is very different from the 

Laplacian mathematical matrix A described in Ref [4,6] and 

from the Markov transition matrix [3,4]. 

 

The physical nature of matrix B is clear and briefly explained 
above through conditions i to iv which support Hypothesis 2. 

 

**Second Step  

Define b vector which is the vector of the boundary conditions 

by arranging BC in the correct order. 

Calculate the source / sink term vector in energy density J / m 

^ 3 rather than the temperature in degrees Kelvin (for the case 

of the heat diffusion equation) or the voltage for the Poisson 

and Laplace PDEs. 

 

***Third Step 

Compute the transfer matrix E and D by equations 3 and 5 and 

therefore find the solution as a function of time of the heat 

diffusion equation from the formula, 

 U (N ) = D(N). (b + S)…. . . . (7) 

 

where N = 1,2, ... N. That is to say  the solution U(x,t) at 
iteration N or at time = N dt is given by Equation 7. 

 

Notice that for N sufficiently large, 

E infinite=(I-B)-1 which is the transfer matrix for the steady 

state equilibrium solution as N tends towards infinity. 

 

Obviously, all the inputs of the term matrix B ^ N 

converge to zero when N tends to infinity, since the sum of 

one or more rows is less than unity, which is a necessary 

condition for the convergence of the matrices E and D. 

 

Actually, it is not complicated to calculate the matrix E 

or D. The finite series (3& 5) can be evaluated in a simple 

separate calculation algorithm by computing the matrix 

multiplication power series and adding for the required 

number N. Double precision algorithms are a must in such 

calculations [5] 
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The simplicity and the precision of the proposed 

numerical statistical method are quite surprising, it is enough 

first to calculate the matrix B and the  BC vector b 

corresponding to the geometry of the energy field and the 

configuration of BC of the problem then to calculate the 
matrix D and E by the sum of the power series of B Eq. (3 & 

5) or the use of equation (4) in the case where N is large 

enough. 

 

However, so as not to worry too much about the details of the 

theory, let's go  right into 2D and 3D illustrative applications. 

 

III.          APPLICATIONS 
  

A.-2D CONFIGURATION SPACE 

  

Consider the simple case of a rectangular domain with 9 

equidistant free nodes, u1, u2, u3, ... u9 and 12 Dirichlet 

boundary conditions BC1 to BC12 as illustrated in figure 1. 

 

 
Fig.1 A 2D rectangular domain with 9 equidistant free nodes. 

 

The 12 boundary conditions in figure 1 can be reduced to 9 

BC for the 9 free nodes as follows, 

 BC1 = BC1X + BC1Y 

BC2 = BC2X + BC2Y 

. . . . . . . . . . . . . . . . 

BC9 = BC9X + BC9Y 

 

The inputs of matrix B i, j 9x9 are constructed according to 

figure 1 and the statistical base described by conditions i-iv, 

and are given by, 

  

B = 1-RO 1/4-RO / 4 0.0000 1/4-RO / 4 0.0000 0.0000 0.0000 0.0000 0.0000 

       2- 1/4-RO/4  RO  1/4-RO/4 0.0000 1/4-RO/4 .0000 0.0000 0.0000 0.0000  
       3- 0.00000 1/4-RO/4  RO 0.0000 0.0000 1/4-RO/4 0.0000 0.0000 0.0000  

       4- 1/4-RO/4 0.0000 0.0000 RO 1/4-RO/4  0.0000 1/4RO/4  0.0000 0.0000  

  

       5- 0.0000 1/4-RO/4  0.0000 1/4-RO/4  RO 1/4-RO/4 0.0000 1/4-RO/4  0.0000  

  

       6-0.0000 0.0000 1/4-RO/4  0.0000 1/4-RO/4  RO 0.0000 0.0000 1/4-RO/4   

  

       7-0.000 0.0000 0.0000 1/4-RO/4  0.0000 0.0000 RO 1/4RO/4  0.0000  

  

       8- 0.0000 0.0000 0.0000 0.0000 1/4-RO/4 0.0000 0.1500 RO 1/4-RO/4   

  

       9- 0.0000 0.0000 0.0000 0.0000 0.0000 1/4-RO/4  0.0000 1/4-RO/4 RO  

 

If the 2D rectangle in figure 1 is placed inside a larger rectangle of uniform temperature of 100 degrees for all 4 sides. 

then the boundary conditions vector  b for the 9 free nodes is given by, 

b = (50,25,50,25,0,25,50,25,50). . . . (8) 

 
 We solve the heat diffusion equation of Figure 1 with a zero source term, S = 0, for two cases (a) and (b). 

Case (a) RO=0 : 

 

Using equation 7 and placing RO = 0 in matrix B, and considering the vector b given by equation 8, the time evolution of the resulting 

temperature T as a function of time is shown in Table I. 
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Table I, spatiotemporal evolution of temperature for  9 free nodes in figure 1.(t = n dt time step) 

 

(1dt) 50.0000000       25.0000000       50.0000000       25.0000000       0.00000000       25.0000000       50.0000000       25.0000000       

50.0000000 

(2dt)  62.5000000       50.0000000       62.5000000       50.0000000       25.0000000       50.0000000       62.5000000       50.0000000       
62.5000000 

(3dt)  75.0000000       62.5000000       75.0000000       62.5000000       50.0000000       62.5000000       75.0000000       62.5000000       

75.0000000 

(4dt)  81.2500000       75.0000000       81.2500000       75.0000000       62.5000000       75.0000000       81.2500000       75.0000000       

81.2500000 

(5dt)   87.5000000      81.2500000       87.5000000       81.2500000       75.0000000       81.2500000       87.5000000       81.2500000       

87.5000000 

(6dt)  90.6250000       87.5000000       90.6250000       87.5000000       81.2500000       87.5000000       90.6250000       87.5000000       

90.6250000 

(7dt)  93.7500000       90.6250000       93.7500000       90.6250000       87.5000000       90.6250000       93.7500000       90.6250000       

93.7500000 

(8dt)  95.3125000       93.7500000       95.3125000       93.7500000       90.6250000       93.7500000       95.3125000       93.7500000       

95.3125000 

 

To elucidate the efficiency of the new computational technique, we apply it to Table I. 

We explain how to get U (x, t) in step 5 from step 4 using the transition matrix B and the boundary conditions b as follows, 

Vector Uk + 1, = B ^ k  (b+S)+ (Uk) ...... . . . . . . . (9) 
 

Equation 9 calculates the 9 spatio-temporal operations of the 4dt vector in a single operation, for example to calculate the 5dt vector 

from 4dt that we apply, 

 

Vector 5dt = Vector 4dt + B^4 .b 

Since, 

 

U(4dt) = [81.25, 75, 81.25, 75, 62.5, 75, 81.25, 75, 81.25] ^ T. 

And matrix B^4 (9x9)= 

 

1-   3.9062500000000000E-2   0.0000000000000000        3.1250000000000000E-2   0.0000000000000000        

6.2500000000000000E-2   0.0000000000000000        3.1250000000000000E-2   0.0000000000000000        2.3437500000000000E-2 

2-   0.0000000000000000        7.0312500000000000E-2   0.0000000000000000        6.2500000000000000E-2   0.0000000000000000        

6.2500000000000000E-2   0.0000000000000000        5.4687500000000000E-2   0.0000000000000000      

3-   3.1250000000000000E-2   0.0000000000000000        3.9062500000000000E-2   0.0000000000000000        

6.2500000000000000E-2   0.0000000000000000        2.3437500000000000E-2   0.0000000000000000        3.1250000000000000E-2 

4-   0.0000000000000000        6.2500000000000000E-2   0.0000000000000000        7.0312500000000000E-2   0.0000000000000000        
5.4687500000000000E-2   0.0000000000000000        6.2500000000000000E-2   0.0000000000000000      

 5-   6.2500000000000000E-2   0.0000000000000000        6.2500000000000000E-2   0.0000000000000000       

0.12500000000000000        0.0000000000000000        6.2500000000000000E-2   0.0000000000000000        6.2500000000000000E-2 

6-   0.0000000000000000        6.2500000000000000E-2   0.0000000000000000        5.4687500000000000E-2   0.0000000000000000        

7.0312500000000000E-2   0.0000000000000000        6.2500000000000000E-2   0.0000000000000000      

7-   3.1250000000000000E-2   0.0000000000000000        2.3437500000000000E-2   0.0000000000000000        

6.2500000000000000E-2   0.0000000000000000        3.9062500000000000E-2   0.0000000000000000        3.1250000000000000E-

002 

8-   0.0000000000000000        5.4687500000000000E-2   0.0000000000000000        6.2500000000000000E-2   0.0000000000000000        

6.2500000000000000E-2   0.0000000000000000        7.0312500000000000E-2   0.0000000000000000      

9 -  2.3437500000000000E-2   0.0000000000000000        3.1250000000000000E-2   0.0000000000000000        

6.2500000000000000E-2   0.0000000000000000        3.1250000000000000E-2   0.0000000000000000        3.9062500000000000E-2 

 

And boundary Conditions b vector=                                                                           

 (50,25,50,25,0,25,50,25,50) T 
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 The formula  9 precisely computes  vector 5dt, ie.It results in, 

U (5dt)= (87,500 81,2500 87,500 81,2500 75,000 81,2500 87,500 81,2500 87,500) ^ T 

Which equals U(6dt). 

 

On the other hand, the classical method, finite difference techniques, evaluates Nabla2Uk
i, j individually 9 times for the 9 free nodes 

and applies, 

Uk + 1
i,j= Uk

i, j + a .Nabla2Uk
i, j .dt. . . . .(10) 

instead of equation 9. 

 

where Nabla2Uk
i, j =(Uk

I+1,j+Uk
i-1,j+Uk

i,J+1+Uk
i,j-1 -4 Uk

i,j)/ h
2 

for 2D, 3 point finite difference scheme. 

 

Hence, In order to solve the heat PDE 1 by the FDM, we have to evaluate the equation (10) point by point 9 times for the 9 free nodes 

while in the statistical transition matrix B, the equation 9 replaces the 9 operations with a single operation. 

 

It should be mentioned that the above example clearly explains how the new method works and why it is much faster and more 

accurate than conventional finite difference techniques. 

 

Case b: 

Similar to case (a) but with RO = 0.2 

Here, the change in temperature T as a function of space and time is calculated using Equation 7 and is shown in Table II. 

 
Table II, spatio-temporal evolution of the temperature T on 9 free nodes of figure 1, (t = n dt time step) 

 

(1dt)   40.0000000       20.0000000       40.0000000       20.0000000       0.00000000       20.0000000       40.0000000       20.0000000       

40.0000000     

(2dt)   56.0000000       40.0000000       56.0000000       40.0000000       16.0000000       40.0000000       56.0000000       40.0000000       

56.0000000     

(3dt)   67.1999969       53.5999985       67.1999969       53.5999985       35.2000008       53.5999985       67.1999969       53.6000023       

67.2000046     

(4dt)   74.8800049       64.6400070       74.8800049       64.6400070       49.9199982       64.6399994       74.8799973       64.6399994       

74.8800049     

(5dt)   80.8320084       72.8639984       80.8320007       72.8639984       61.6959991       72.8639984       80.8320084       72.8639984       

80.8320007     

(6dt)   85.3119965       79.2448044       85.3119965       79.2448044       70.6304016       79.2448044       85.3119965       79.2448044       

85.3120041     

(7dt)   88.7603149       84.0998306       88.7603226       84.0998383       77.5219269       84.0998383       88.7603226       84.0998383       

88.7603226     

(8dt)   91.3920059       87.8284912       91.3920059       87.8284836       82.7842636       87.8284836       91.3920059       87.8284836       
91.3919983 

 

Similar to case (a), we compare the results obtained by Equation 9 to the classical conventional method .In the classical conventional 

FDM . The change for a single time step dt in the solution is classically evaluated as, 

 

Uk+1
i,j=Uk 

i,j+a.Nabla2 Uk
i,j . dt       . . . . .(10) 

 

where Nabla2 Uk
i,j =(Uk

I+1,j+Uk
I-1,j+Uk

i,J+1+Uk
i,j-1 -4 Uk

i,j)/4 for 2D scheme. 

 

Once again, equation (10) is evaluated point by point for the 9 free nodes while in the statistical matrix B equation 9 works in one 

operation, 

 

Vector Uk+1=B^k (b+S) +Uk .... . . . . . . . . . (9) 

 

Similar to case a, Eq 9 calculates the 9 operations of Eq 10 in a single multiplication operation. 

 

 For example, calculate Vector 6dt from 5dt (k=5) that we apply, 

Vector 6dt=Vector 5dt +B^5 .b/ (1-RO) . . . .(11) 
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Matrix B^5 for RO=0.2 is given by: 

 

1-   2.2720001692771961E-002   2.8480002121925418E-002   1.6000001192092932E-002   2.8480002121925415E-002   

3.2000002384185863E-002   1.9200001430511517E-002   1.6000001192092932E-002   1.9200001430511517E-002   
9.6000007152557583E-003 

2-   2.8480002121925412E-002   3.8720002884864886E-002   2.8480002121925412E-002   3.2000002384185863E-002   

4.7680003552436928E-002   3.2000002384185863E-002   1.9200001430511517E-002   2.5600001907348690E-002   

1.9200001430511517E-002 

3-   1.6000001192092932E-002   2.8480002121925418E-002   2.2720001692771961E-002   1.9200001430511517E-002   

3.2000002384185856E-002   2.8480002121925415E-002   9.6000007152557583E-003   1.9200001430511517E-002   

1.6000001192092932E-002 

4-   2.8480002121925415E-002   3.2000002384185863E-002   1.9200001430511517E-002   3.8720002884864893E-002   

4.7680003552436928E-002   2.5600001907348690E-002   2.8480002121925412E-002   3.2000002384185863E-002   

1.9200001430511517E-002 

5-   3.2000002384185856E-002   4.7680003552436928E-002   3.2000002384185856E-002   4.7680003552436928E-002   

6.4320004792213559E-002   4.7680003552436928E-002   3.2000002384185856E-002   4.7680003552436928E-002   

3.2000002384185856E-002 

6-   1.9200001430511513E-002   3.2000002384185856E-002   2.8480002121925415E-002   2.5600001907348686E-002   

4.7680003552436928E-002   3.8720002884864886E-002   1.9200001430511517E-002   3.2000002384185856E-002   

2.8480002121925415E-002 

7-   1.6000001192092932E-002   1.9200001430511517E-002   9.6000007152557583E-003   2.8480002121925418E-002   
3.2000002384185863E-002   1.9200001430511517E-002   2.2720001692771961E-002   2.8480002121925415E-002   

1.6000001192092932E-002 

8-   1.9200001430511517E-002   2.5600001907348690E-002   1.9200001430511517E-002   3.2000002384185863E-002   

4.7680003552436928E-002   3.2000002384185863E-002   2.8480002121925415E-002   3.8720002884864893E-002   

2.8480002121925415E-002 

9-   9.6000007152557583E-003   1.9200001430511517E-002   1.6000001192092932E-002   1.9200001430511517E-002   

3.2000002384185863E-002   2.8480002121925412E-002   1.6000001192092932E-002   2.8480002121925412E-002   

2.2720001692771961E-002 

 

And the computation for Vector U(6dt) goes as: 

Vector (6dt)=Vector (5dt) +B^5 .b .(1-RO) . . .(11) 

 

Note that 1-RO = 0.8 which is proportional to the thermal diffusivity a. 

where, 

Vector,u(5dt)=[81.25,75,81.25,75,62.5,75,81.25,75,81.25]^T.  

 

Therefore, calculations using matrix B of equation 11 yield the vector 6dt, i.e. 
U(6dt)=( 85.312       79.2448      85.312       79.24480       70.630      79.2448       85.312       79.2448       85.312) T 

 

B. 3D CONFIGURATION SPACE, 27 FREE NODES  

Let us now consider the more complicated case of a Rectanguloid domain with 27 equidistant free nodes, u1, u2, u3, ... u27 and 52 

Dirichlet boundary conditions shown in Fig.2. 
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Fig. 2. 3 D Rectanguloid with 27 equidistant free nodes and 52 BC 

 

In the 3 D with 27 free nodes of figure 2, the conditions of dirichlet 52 BC can be reduced to 27 BC through the relation, 

BC1=BC1X+BC1Y +BC1Z 

BC2=BC2X+BC2Y +BC2Z 

. . . . . . . . . . . . . . . . . . . . . . . 

 

BC27=BC27X+BC27Y +BC27Z 

If we place the rectangle inside a greater of uniform temperature T = 100 units on its six faces, the vector of boundary conditions 

vector b of the 27 elements is given by, 

 

b =  ( 50.0000000       33.3333321       50.0000000       33.3333321       16.6666660       33.3333321       50.0000000       33.3333321       
50.0000000       33.3333321       16.6666660       33.3333321       16.6666660       0.00000000       16.6666660       33.3333321       

16.6666660       33.3333321       50.0000000       33.3333321       50.0000000       33.3333321       16.6666660       33.3333321       

50.0000000       33.3333321       50.0000000  )T  

 

The spatio-temporal evolution of the solution vector (U1, U2, ......, U27) for two consecutive time steps 4dt and 5dt for RO = 0 is 

presented in table III. 
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Table III 

U(x,t) vector for t=4dt ,RO=0 

 

92.181071938329723        89.060358466048939        92.181071938329708        89.060358466048939        84.379288602410753        

89.060358466048953        92.181071938329708        89.060358466048953        92.181071938329723        89.060358466048939        
84.379288602410739        89.060358466048982        84.379288602410739        78.137864086240228        84.379288602410739        

89.060358466048967        84.379288602410739        89.060358466048967        92.181071938329737        89.060358466048939        

92.181071938329723        89.060358466048967        84.379288602410739        89.060358466048939        92.181071938329723        

89.060358466048953        92.181071938329723     

U(x,t) vector for t=5dt ,RO=0 

94.530180692096479        92.186787771716723        94.530180692096479        92.186787771716737        89.063217075925607        

92.186787771716737        94.530180692096508        92.186787771716752        94.530180692096479        92.186787771716723        

89.063217075925607        92.186787771716737        89.063217075925607        84.379291210113848        89.063217075925607        

92.186787771716752        89.063217075925607        92.186787771716723        94.530180692096494        92.186787771716723        

94.530180692096479        92.186787771716723        89.063217075925607        92.186787771716723        94.530180692096479        

92.186787771716737        94.530180692096479  

 

Again, note that using  double precision algorithm to 

find the B-Matrix solution is a must in such cases [5]. 

 

Similar to cases a and b, the solution vector for U (x, t) 

at t = 5dt is obtained from the one-operation formula 9 with k 
= 4, 

U (x, 5dt) = B ^ 4 .b + U (x, 4dt) 

with precise results. 

 

This one-step procedure replaces the classical FDM 

finite difference method of computing Nabla ^ 2 dt 27 times 

for the 27 free nodes for each time step dt, and adding the 

results to the vector solution at kdt. 

 

The proposed technique performs the function of a high 

speed computer but with a software improvement rather than a 

hardware improvement. 

 

IV .       B-Transition matrix in 4D space 
 

The resolution procedure shows that the matrix B in the 

IC-BC problem works in a collective statistical behavior to 
find all the temporal transitions of the solution vector in a real 

connected 4D space x, t rather than 3D +tinclassical 

treatment[4] U(x,t+dt)= U(x,t)+a Nabla2 x .dt 

 

However, in the proposed method, the matrix B  ̂ N is 

applied to the vector of boundary conditions (b) and produces 

an inherent operator Nabla ^ 2 acting across the boundaries of 

the system and does without Nabla ^ 2 itself. 

 

V.         CONCLUSION 
 

The theory and the numerical results show that the 

complete spatiotemporal numerical solution of the boundary 

value problem in the partial differential equation of heat 

diffusion,Laplace and Poisson comes from a SINGLE 

statistical transition matrix B. 

 

We present the B, E and D transfer matrix and explain their 

remarkable physical and statistical properties as well as the 

principles underlying their derivation. 

 

The numerical results of the temporal evolution of the 
thermal energy density, or voltage, are provided in two cases: 

2D and 3D configurations showing the stability, precision and 

speed of the proposed non-classical transition matrix method. 

 

The numerical results validate the fact that the thermal 

diffusion phenomenon is an x-t transition phenomenon where 

the separation of the variables x, t works collectively with the 

boundary conditions of the system. 
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