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Abstract:- The ad hoc one-dimensional definition of the 

scalar thermal diffusion coefficient D defined as K / Roh 

C is short and inadequate to deal with the resolution of 

the 2D and 3D thermal diffusion equation. We have 

alternatively applied the chains of matrix B to the 

solution of the 2D and 3D heat diffusion equation for 

stationary solutions and time-dependent transient 

solutions. 

 

The role of 3D thermal diffusivity in the numerical 

resolution of the heat equation is carefully studied 

throgh the repeated variation of the main diagonal entry 

of matrix B,RO in the interval [0,1]. It is obvious that 

thermal diffusivity is related to RO, one of them 

produces the other. 

 

The chains of the matrix B using the 3D diffusion 

coefficient combine D, dt and the Laplace operator in an 

inseparable block and define a new technique to solve 

the diffusion of heat in different situations.In this article, 

we have applied the B chains to solve five different 

examples of heat diffusion in 2D and 3D geometries for 

both time-dependent and stationary conditions and the 

presented digital solutions are surprisingly precise, fast 

and stable. 

 

I. INTRODUCTION 

 

Below is the equation we are investigating, except we 

use D for the thermal diffusion coefficient instead of Alpha, 

d / dt(partial) U (r, t) = D Nabla2 (U (r, t) + S (r, 

t)  .. . .  . . . .  . . (1) 

 

with the boundary conditions B C on the limits of the 

domain of U and the initial conditions IC of U namely U (0, 

r). 

 

Where, 

S(r,t) is the numerical values of heat energy density source 

term at the corresponding free nodes in the considered 2D or 

3D domain. 

 

In classical numerical methods with finite difference 

FDM [1,2], when the source term is neglected, Nabla2 in 3D 

configuration is expressed numerically as follows, 

Nabla2 U (i, j, k) = {U (i + 1, j, k) + U (i-1, j, k) + U (i, j + 1, 

k) + U (i, j- 1, k) + U (i, j, k + 1) + U (i, j, k-1) -6 * (U (i, j, 

k)} / 6  . . . . . . . . . . . . . . . . . . . . . . . . .( 2) 

 

and the incremental temporal variation dU is expressed in 

the form, 

dU = D Nabla  2 .dt. . .  . . . . . . .(3) 

 

In matrix representation. 

 

The steady state equilibrium solution of Equation (1), which 

is time independent reduces to,[1] 

A (i,j,k) U=b . . .  .. . . .  .  . . . .. (4) 

 

And the spatio-teporal evolution or time dependent 

solution  of equation 1) reduces to,[2] 

 U(r,t+dt) = A . U(r,t ) dt.   ..  . .. .(5) 

 

where r in Cartesian coordinates is given by, 

x=i dx, y=j dy and z=k dz. 

 

A is the well-known square Laplace matrix (nxn) 

known to be tridiagonal for one-dimensional heat diffusion 

problems and 4-5 diagonal matrix for 2D and 3D problems 

respectively. 

 

Solving linear systems of algebraic equations (4) is not 

easy and requires the application of numerical techniques 

such as Gaussian elimination or more advanced methods. 

 

In addition, the spatio-temporal resolution of Eq 5 by 

successive iterations is more complicated and suffers from 

being slow and requires long computation times, especially 

for large n. Moreover, the solution itself has inherent 

problems of stability and convergence. 

 

We assume that the complexity of solving equations 

4,5, in classical numerical FDM, results from combining 

alha, nabla squared and dt into a single term by 

multiplication, i.e. D Nabla ^ 2. dt which would add nothing. 

 

Therefore, we propose the use of matrix chains B 

[3,4,5,6]. 

 

The inherent characteristics of the B chain transition 

matrix with different values of diagonal elements RO to 

replace the classic FDM. 

 

Here there is no D, neither Nabla ^ 2 nor dt since all 

this information is inherent in the inputs of the transition 

matrix B itself. 
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In addition, the classical ad hoc one-dimensional 

definition of thermal diffusivity like D = K / Roh.C is 

omitted. 

 

In fact, the coefficient D can be expressed as a 

function of the characteristic time TR of the exponential rise 

/ fall of the digital values of the limit temperature field as 

explained later in sections 2 and 3.. 

 

In the previous articles, we presented the chain 

transition matrix B and explained its resolution techniques 

[2,3] which completely neglects the existence of the heat 

diffusion equation PDE (1) as well as the techniques of 

FDM finite differences used to solve it. 

 

In other words, the new matrix B-chain techniques  

[1,2,3] completely neglect Eq.1 as if it never existed and 

ignore its classic digital FDM solution presented by 

equations 2-5. 

 

The new matrix chain B techniques are defined and 

based on the statistical recurrence formula [1], 

 

Ui,j,k (N + 1) = B (U N + b + S). . . (6) 

 

Where b is the vector of Dirichlet boundary conditions 

arranged in the prop order and S is the energy density 

source / sink term at the specified free node points. 

It follows that the numerical statistical solution of the heat 

diffusion equation is simply given 

by,U(r,t)=(B^0+B+B^2+B^3+. . . . .B^N). (b+S) + 

B^N .U(r,0) . . . . . . .. (7) 

 

For large values of the number of iterations N, B ^ N 

and the initial condition term B ^ N. U (r, 0) tends to zero 

for any initial arbitrary distribution U (r, 0) and will be 

neglected in the following to analysis . 

 

It is obvious that the matrix summation 

B^0+B+B^2+B^3+. . . . .B^N for any number of iterations 

N is the required transient time-dependent solution of the 

heat diffusion equation.Moreover  

 

The propsed new techniques presents the solution for 

Dirichlet boundary value problem of PDE 

1 ,U(r,t)=(B^0+B+B^2+B^3+. . . . .B^N). (b+S) =E . 

(b+S). . . (7) 

 

Where the transfer matrix E at given N , is given by, 

E(N)= 

B^0+B+B^2+B^3+. . . . .B^N . . . . . . . . . . . . . . . . . . . . . . (8) 

 

 b is the BC conditions vector arranged in proper adequate 

order and S is the energy density source/sink term at the 

concerned free nodes. Both b and S vectors are expressed in 

the same units as U. 

 

What is striking about equation (7) is that it exactly 

follows the rise / fall of the exponential curve of time when 

multiplied by the boundary condition vector b, i.e. say that it 

follows namely Exp -t / TR or 1- Exp -t / TR. 

the dimensionless time is given by, 

t ^ = t / TR. . . . . . . . . . . . . . . . . (9) 

 

Where TR is the characteristic time = 1 / Alpha. 

 

Here, the elapsed time appears in the form N t ^ or more 

simply N. 

 

It has been shown that the transition matrix B 

combines D, Nabla ^ 2 and dt in an inseparable block. And 

has been successfully applied [1,2,3,4] to systematically 

solve many Laplace PDE and Poisson PDE situations as 

well as the heat diffusion equation. 

 

The proposed B-techniques apply for any arbitrary 

distribution of the source / sink term S and for all types and 

geometries of boundary conditions BC which is the decisive 

factor in the statistical solution of PDE boundary value 

problems. We first deal with the simplest case, namely 

Dirichlet BC. 

 

During this work we extend the B techniques to the 

role of thermal diffusivity in the numerical resolution of the 

heat equation which is the subject of this article. 

 

II. THEORY 

 

The theory of this work is explained in 4 consecutive 

steps namely, 

I-Define the geometrical configuration 2D or 3D and 

discretize the space in n equidistant free nodes. 

ii-Construct the transition matrix B for the prescribed 

domain with an arbitrary diagonal entry RO. 

The B-matrix is well defined [1,2] by the conditions i-iv. 

iii-Use the B-matrix chains ,Equation 7, to find both the 

steady state solution or   the time dependent  spatio-temporal 

evolution of the solution of heat diffusion equation in 

either 2D or 3D. 

Note that the classic equations 1 - 5 have been replaced by a 

single equation 6. 

iv-Repeat step iii for different values of the diagonal input 

RO in the closed interval of [0,1] to obtain the equivalence 

relations of alpha or TR = 1 / alpha vs RO. 

 

This produces the connection between 3D alpha and RO as 

shown in Tables I and II. 

 

In other words, the construction of the B-matrix nxn 

would suffice to define the spatio-temporal evolution of the 

solution U (r, t) for any BC and any value of the diffusion 

coefficient D which is a function of RO of the matrix B 

itself.  

 

As a general rule, starting from zero initial conditions, 

The numerical results of solution (7) show that it exactly 

follows an exponential rise in time for all the free nodes in 

a given 2D or 3D configuration, namely U (t) = Umax (1-

Exp -ALPHA .t)The above rule is used to find the variation 

of Alpha with RO by finding the exponential fit of the time 

curve for any thermal diffusivity value D included in the 

variable RO 
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In other words, the time solution for U (r, t) exactly 

follows an exponential curve of time in the form U (t) = U (t) 

max. (1- Exp (-D .t)) for all values of RO. 

 

The insertion of the dimensionless time t ^ and the length h 

^ is simple. 

t ^ = t / TR and dimensionless coordinates x ^ = x ^ / h, y ^ 

= y / h and z ^ = z / h where h is the spacing between two 

successive free nodes. 

 

It follows that the dimensionless spacing between two 

successive free nodes h ^ is given by, 

 h^ = 1 / (n + 1) . . . . . . . . . . .(10) 

It is obvious that the time t in equation 7 is given by N dt, N 

being the number of iterations. 

 

Unlike conventional FDM, in the proposed B-chain 

techniques, there are no stability issues besides rapid 

convergence.  

 

Note that Equation 7 predicts two important physical 

facts, 

i-The value of U at the free node of position r1 is 

interchangeable with the source term at position r2, i.e. if S 

(r1) gives a numerical value of the energy at r2, then a 

source similar to r2 gives the same numerical value of 

energy at r1. 

ii-The temporal evolution of the energy density of a 2D 

rectangle is the same as that of a cube or a 3D rectangloid 

provided that the rectangle has the same distribution of free 

nodes as that of the base of the rectagloid, See Figs, 1, 2,3, 

4,5. 

 

In order not to worry too much about the theory and 

the details of its predictions, we go directly to 2D and 3D 

geometric spatial applications as follows: 

 

III. APPLICATIONS AND NUMERICAL RESULTS 

 

We present the applications and the numerical results 

of this article in two parts, namely the transient and 

stationary solutions. 

 

III-A.Transient Solutions 

Consider the simplest case of 3D geometric 

configuration. A 3D cube of 8 equidistant free nodes and 8 

boundary conditions as shown in figure-1. 

 

 
Fig. 1. Transient heat diffusion equation in a 3D cube of 8 

free nodes with 8 Dirichlet BC. 

For simplicity, the cube in Figure -1 has an initial zero 

temperature condition and is placed inside a larger cube of 

which all fixed Dirichlets BC are assumed to be unity. 

 

The chains of matrix B, Eq. 7, are used to find the 

temporal rate of exponential rise over time for different RO 

elements of the interval [0,1] and the numerical results are 

shown in Table I. 

 

Table I. Numerical results for RO vs alpha up to equation 7 

for the 3D cube 8 free nodes 

 
 

Note that Table I precisely prescribes the prediction relation 

between 3D Alpha and RO as a logarithmic relation, 

ALPHA = Log {1 / (1/2 + RO / 2)},. . . Relationship. . . . (1) 

 

Now consider another simple case of rectangular or square 

2D geometric configuration. A 2D square of 9 equidistant 

free nodes and 9 boundary conditions as shown in Figure 2. 

 
Fig. 2 - 2D square of 9 equidistant free nodes and 9 Dirichlet 

boundary conditions. 

 

The numerical results of Eq. 6 are shown in Table II, as 

follows, 

 

Table II. Numerical results for RO vs alpha up to equation 7 

for the 2D square 9 free nodes 

 
 

A slightly more complicated 3D application is shown in Fig. 

3 
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Fig. 3 - Heat diffusion in 3D paralleloid of 27 equidistant 

free nodes and 26 Dirichlet boundary conditions. 

 

The numerical results of Eq. 7 as applied for FIG. 3 are 

shown in Table III, as follows, 

 

Table III. Numerical results for RO vs alpha up to equation 

7 for the 3D paralleloid  27 free nodes 

 
 

Note that the numerical values for RO and Alpha in 

Table III are exactly the same as those in Table II according 

to equation 10 and prediction ii. 

 

Figure 4 shows the heat diffusion equation in a 2D 

rectangle of 25 equidistant free nodes with 16 Dirichet BC. 

 

 
Fig.4 diffusion equation in 2D rectangle of 25 equally 

spaced free nodes with 16 Dirichet BC. 

 

The numerical results of Eq. 7 as applied for FIG. 4 

are shown in Table IV, as follows, 

 

Table IV. Numerical results for RO vs alpha up to equation 

7 for the 2D square  25 free nodes 

 
 

III-B. Steady state solutions 

The steady-state equilibrium solution is defined 

mathematically in Equation 1 as, 

dU / dt) patiel = 0 

 

It follows that D Nabla ^ 2 = 0 is the same as Nabla ^ (r) = 

0. 

 

Therefore, it is evident that the distribution of the 

equilibrium temperature field does not depend on the value 

of thermal diffusivity D. It only affects the time elapsed to 

reach the final destination of the steady-state temperature 

distribution. 

 

However, in the steady-state digital solution of matrix 

B, it is obtained by one of two methods, namely, 

 

1-summation of E = B ^ 0 + B + B ^ 2 ...... + B ^ N .............. 

(8) for N sufficiently large. 

2-Using the equivalence relation, 

E = (I-B) ^ - 1. . . . . . . . . (11) 

 

And finally the solution in steady state of equilibrium is 

given by the matrix D = E-I, [1,3,6] and, 

U = D. (B + S) ...... . . . (12) 

 

We consider here two cases, 

 

Case 1 

Figure 2 was considered by Mathews [1] to find the 

steady-state temperature distribution by reducing the PDE .1 

into nine linear algebraic equations, then solving the 

algebraic system by Gaussian elimination. 

 

He assumed an arbitrary boundary conditions vector  b 

of 9 elements  in degrees C as, 

b = (100,20,20,80,0,0,260,180,180) T 

 

And he got the steady-state temperature distribution 

vector in the form,  

U = (55.7143, 43.2143, 27.1429, 79.6429, 70.0000, 45.3571, 

112.858, 111.786, 84.2857) T 

If we use Eq. 7 with the same BC, then the corresponding 

results of Eq. 7 after N = 30 iterations are,  

U = (55.7126, 43211, 27.142, 79.6396, 69.9968, 45.3555, 

112.8560, 111.7841, 84.2846) T 

 

The agreement between the Mathews results and the 

results of matrix B chain is excellent. 
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Case 2 

Case 2 investigates the steady-state temperature in Fig. 

3 of 27 equidistant 3D free nodes. The initial conditions are 

assumed to be zero and the 26 boundary conditions of vector 

b are assumed to be zero, except that b (1), b (2), b (3) are 

assumed to be maintained at 100 degrees C.ie., 

 

b=(100, 100, 100, 0,0,0,0,0,0. . ……0,0…….         0,0,0  )T 

we have applied Eq. 7 to the rectangle in Fig. 3 and 

 

the resulting steady-state temperature distribution after 

22 iterations is shown in three figures, namely Fig. 5, Fig. 6, 

Fig 7 for the three plane levels, namely nodes 1-9, nodes 10-

18 and nodes 19-27 

.

 
Fig. 5 The temperature distribution for Fig. 3 level one, i.e. 

free nodes 1-9. 

 

 
Fig. 6 The temperature distribution for Fig. 3 level two, i.e. 

free nodes 1-9. 

 
Fig.7 Temperature distribution for Fig. 3 level three, i.e. free 

nodes 19-27. 

 

IV. CONCLUSIONS 

 

The ad hoc one-dimensional definition of the thermal 

diffusion coefficient D is short and insufficient to deal with 

2D and the 3D heat diffusion equation in both the steady 

state and the time dependent transient state. 

 

The classical multiplication of the diffusion coefficient 

D by the operator Nabla ^ 2 dt adds nothing. 

 

We propose the use of matrix chains B where the 3D 

diffusion coefficient, dt and the Laplace operator are 

combined in an inseparable block. 

 

We repeatedly applied the B-chains with different ROs 

in the interval [0,1], to solve five different examples of heat 

diffusion in 2D and 3D time-dependent and steady-state 

situations and the numerical solutions were surprisingly 

precise, fast and stable. 

 

This technique is valuable because there are a large 

number of newly discovered materials and alloys for which 

the study of their thermal properties is of great interest. 

Replacing FDM with new B matrix chain techniques to 

measure these properties by solving the heat diffusion 

equation would be promising. 

 

N.B. All calculations in this article have been produced 

with the author's double precision algorithm to ensure 

maximum precision, as followed by Ref. 9 for example 
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