
Volume 6, Issue 6, June – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21JUN1210 www.ijisrt.com 1233

Graph Convolutional Networks:

Adaptations and Applications

Sai Annanya Sree Vedala

Computer Science and Engineering

Chaitanya Bharathi Institute of

Technology

Hyderabad, India

Pavan Kumar Dharmoju

Electrical and Electronics

Engineering

Chaitanya Bharathi Institute of

Technology

Hyderabad, India

Rida Malik Mubeen

Computer Science and Engineering

MJCET

Hyderabad, India

Abstract:- Graph Convolutional Networks, Graph

Conventional Networks are a generalised version of

Convolutional Neural Networks. They are an extension of

the generic convolutional operation and have the ability

to deal with non-Euclidean types of data and can easily

work with nodes and graphs to get features to learn and

train the networks. They have evolved over time and have

been applied to various domains. The techniques have

improved and the performance of the Graph

Convolutional Networks has been a great tool in the

domain of research. In this study, we present the

transformations and improvements of Graph

Convolutional Networks and analyse the variation of the

contrast between the traditional convolutional neural

network and the graph neural network. The different

applications have been discussed, adaptations have been

highlighted along with the limitations.

Keywords:- Graph Convolutional Network.

I. INTRODUCTION

Graph convolutional network [7] is a type of neural

network that has a powerful architecture for machine learning

on graphs. They are a variant of graph neural networks that

can deal with the non-regularity of data structures. They

consist of operations of multiplying input neurons with

weights. This is the same as the convolutions operations in

the convolution layers that present in Convolution neural

networks. The set of weights are called filters and these

filters act as sliding windows across the images and enable

the neural network to learn features. Graph convolutional

networks are an extension of Convolutional Neural Networks

where the Convolutional Neural Networks are great at

computer vision tasks and ability to train deep neural

networks but fall short in their efficiency when it comes to

variation in the order of the data. While on the other hand,

Graph convolutional networks have the ability to work with

the unordered data and can work directly on graphs and deal

with structural information. One great advantage of using

Graph convolutional networks is that it solves the problem of

node classification. Each node provides feature information

from all neighbours and the aggregate value from the features

is fed into a neural network. They use both node features and

structures for the learning and the training. These number of

hops can be decided as to how fast the information from the

entire graph can be covered. It is observed that the results

obtained from a 2 to 3 layered Graph convolutional network

are quite optimal. The problem of increasing the number of

layers is the decrease in the performance of the network. This

is one of the issues that will be addressed in the latter part of

this paper.

II. UNDERSTANDING GCNS

A. The concept of Convolutional Neural Networks

Convolutional Neural Network [1] is similar to

traditional Artificial Neural Networks where they are

composed of neurons that tend to self-optimize through a

process of self-learning. Every neuron will still receive input

and perform an operation which is the very basis of ANNs.

Throughout the process, that is, from the input raw image

vectors, reaching the final output of the class score, the whole

network would still show a single perceptive score function

which is the weight. The final concluding layer will contain

loss functions associated with the classes, and further, all of

the regular tips and tricks built for a traditional ANN will still

apply. The major notable difference between Convolutional

Neural Networks [16] and traditional ANNs is that

Convolutional Neural Networks are majorly used in scenarios

involving images. This tends to allow us to encode features

which are image-specific into the architecture so that it helps

make the network more suited for image-focused tasks like

pattern recognition within images. This is done while further

reducing the parameters required to set up the model to not

make the entire process extremely expensive, both in terms of

time and space complexities which is one of the largest

limitations of traditional forms of ANN i.e., that they tend to

struggle with the computational complexity required to

compute image data. The basic architecture of a

Convolutional Neural Network can be broken down into the

following:

● The Input layer: It will hold the pixel values of the input

image.

● The Convolutional Layer: This will determine the output

of neurons that are connected to the regions which are

local to the input through the calculation of the scalar

product of their weights with the region connected to the

input volume. This aims to apply an elementwise

activation function like the sigmoid to the output of the

activation which is produced by the previous layer.

http://www.ijisrt.com/

Volume 6, Issue 6, June – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21JUN1210 www.ijisrt.com 1234

● The Pooling Layer: This will perform down sampling

throughout the spatial dimensionality of the input that is

given, which further reduces the number of parameters

within that activation which contributes to lesser

computation power.

● The Fully-Connected Layers: These will finally perform

similar duties that are found in standard ANNs and they

attempt to produce class scores from the aforementioned

activations.

B. Graph Convolutional Network

 Graph convolutional network is a type of neural network

that has a powerful architecture for machine learning on

graphs. They are a variant of graph neural networks that can

deal with the non-regularity of data structures. They consist

of operations of multiplying input neurons with weights. This

is the same as the convolutions operations in the convolution

layers that present in Convolution neural networks. The set of

weights are called filters and these filters act as sliding

windows across the images and enable the neural network to

learn features.

 Graph neural networks are a generalised version of the

convolutional neural networks where the nodes are not

ordered and the number of nodes connections vary. It

operates on graphs with a matrix as the input. An input

feature matrix and a matrix representation of the graph

structure are both considered as input to the network. Graph

Convolutional Networks are used for semi-supervised

learning and the main idea is to take the weighted average of

all the neighbours nodes features and passing the resulting

feature vectors through a neural network for training. The

node level output produced is a feature matrix that can be

modelled by introducing pooling operations. The input

matrix is typically not normalised and the scale is changed

when any multiplication operation takes place. The matrix

needs to be normalised in order to deal with the problem.

 Graph Convolutional Networks are an extension of

Convolutional Neural Networks where the Convolutional

Neural Networks are great at computer vision tasks and

ability to train deep neural networks but fall short in their

efficiency when it comes to variation in the order of the data.

While on the other hand, Graph Convolutional Networks

have the ability to work with the unordered data and can

work directly on graphs and deal with structural information.

As mentioned above, it solves the problem of node

classification. Each node provides feature information from

all neighbours and the aggregate value from the features is

fed into a neural network. They use both node features and

structures for the learning and the training. Multiple layers

are stacked on top of one another to get a deep network. The

output of the previous layer is considered as the input for the

next layer and so on and so forth. When the layers are

stacked, the process of gathering information is repeated and

the number of layers is the maximum number of hops each

node can travel. This number of hops can be decided as to

how fast the information from the entire graph can be

covered. It is observed that the results obtained from a 2 to 3

layered Graph Convolutional Network are quite optimal. The

problem of increasing the number of layers is the decrease in

the performance of the network. Graph Convolutional

Networks having the semi supervised learning ability with

normalised propagation leads to an improvement in the

efficiency in terms of the parameters and operations and

better prediction.

III. IMPROVEMENTS ON CONVENTIONAL

GRAPH CONVOLUTIONAL NETWORKS

One definite improvement [4] to Graph Convolutional

Networks would be to be able to make them go deeper than

the standard three to four layers and still not face issues like

the vanishing gradient problem. Drawing from Convolutional

Neural Networks, Graph Convolutional Networks aim to

extract rich features at a vertex by cumulating features of

vertices that are present in its neighbourhood. Most Graph

Convolutional Networks only update the vertex features at

each iteration and tend to have fixed graph structures. Recent

work shows that dynamic graph convolution[8] where the

graph structure changes in each layer, can learn better graph

representations as compared to Graph Convolutional

Networks with a fixed graph structure. We see that the

dynamically changing neighbours [5] in Graph

Convolutional Networks helps mitigate the over-smoothing

problem. This also results in a comparatively larger receptive

field in the case of Graph Convolutional Networks. The

improvement that is suggested is to recompute the edges

between the vertices with the help of a Dilated k-NN function

in the feature space of each layer to increase the receptive

field further. The following are three operations that can

enable much deeper Graph Convolutional Networks to be

trained:

A. Residual Connections

 The ResGraph Convolutional Network is proposed to

handle the vanishing gradient problem of Graph

Convolutional Networks. The PlainGraph Convolutional

Network, which is the baseline model that consists of three

blocks: a PlainGraph Convolutional Network backbone

block, a fusion block, and an MLP [17] prediction block. The

backbone stacks 28 EdgeConv layers with dynamic k-NN,

each of which is similar to the one used in DG Convolutional

Neural Network. There are no skip connections used here.

The ResGraph Convolutional Network is constructed by

adding a dynamic dilated k-NN and residual graph

connections to the aforementioned PlainGraph Convolutional

Network.

B. Dense Connections

 DenseNet was proposed to put to use the dense

connectivity among the layers of a neural network, which

improves information flow in the network. This allows

efficient reuse of features amongst the layers. The

DenseGraph Convolutional Network is proposed to handle

the vanishing gradient problem of Graph Convolutional

Networks. The DenseGraph Convolutional Network is built

by adding dynamic dilated k-NN and dense graph

connections to the PlainGraph Convolutional Network that

was previously written about.

http://www.ijisrt.com/

Volume 6, Issue 6, June – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21JUN1210 www.ijisrt.com 1235

C. Dilated Aggregations

 The Dilated wavelet convolution is an algorithm that

comes from the wavelet processing domain . Dilated

convolutions were introduced as an alternative to applying

consecutive pooling layers for dense prediction tasks in order

to mitigate spatial information loss caused by pooling

operations. The experiments demonstrate that aggregating

multi-scale contextual information using dilated convolutions

can highly increase the accuracy of dense prediction tasks.

The reason behind this is that the receptive field is enlarged

by dilation without the loss of resolution. Dilation assists or

helps the receptive fields of deep Graph Convolutional

Networks.

 Therefore, dilated aggregation [6] is introduced to Graph

Convolutional Networks. Out of the many possible ways, a

Dilated k-NN [9] is used to find dilated neighbours using a

predefined distance metric after every Graph Convolutional

Network layer and construct a Dilated Graph. Thus, by

adding skip connections to Graph Convolutional Networks,

the difficulty of training can be addressed, which is the major

problem of Graph Convolutional Networks to go deeper.

Additionally, dilated graph convolutions help to gain a larger

receptive field without loss of resolution. Even using a small

amount of nearest neighbours, deep Graph Convolutional

Networks can achieve high performance.

 Another way of letting Graph Convolutional Networks go

deeper is to use a differentiable generalized message

aggregation function. This defines a family of permutation

invariant functions. The definition of such a generalized

aggregation function provides a new view of the design of

aggregation functions in Graph Convolutional Networks. A

new variant of residual connections and message

normalization layers are further introduced. The new

generalized aggregation function is suitable for Graph

Convolutional Networks, as it has a permutation invariant

property. The generalized aggregation covers commonly used

functions like mean and max in graph convolutions.

Additionally, its parameters can be modified to improve the

performance of diverse Graph Convolutional Network tasks.

This method improves current state-of-the-art performance

by 7.8%, 0.2%, 6.7% and 0.9% on the following datasets:

ogbn-proteins, ogbn-arxiv, ogbg-ppa and ogbg-molhiv,

respectively.

 Self-supervision helps improve Graph Convolutional

Networks as well. They help in generalizability and they

boost Adversarial robustness as well. There are three

schemes to incorporate self-supervision into Graph

Convolutional Networks. Out of these, multi-task learning

seems to work as the regularizer and consistently benefits

Graph Convolutional Networks in generalizable standard

performances with proper self-supervised tasks. Self-training

is restricted in what are the assigned pseudo-labels and what

data are used to assign pseudo-labels. We also see that the

performance gain is more visible in few-shot learning

methods and can diminish with slightly increasing labelling

rates. In the case of the second, multi-task learning, self-

supervised tasks provide informative and relevant priors

which benefit Graph Convolutional Network in generalizable

target performance. Node clustering and graph partitioning

give priors on node features and graph structures; whereas

graph completion with priors on both provides help to a

Graph Convolutional Network in context-based feature

representation. Third, multi-task self-supervision in

adversarial training improves Graph Convolutional Networks

robustness against various graph attacks. Node clustering, as

well as graph partitioning, give priors on features and links,

and thus they defend better against feature attacks and link

attacks. Graph completion, with perturbation priors on both

features and links, increase the robustness consistently and

sometimes hugely for the most damaging feature and link

attacks.

IV. APPLICATIONS OF GRAPH

CONVOLUTIONAL NETWORKS

Lots of machine learning tasks require dealing with

graph data which contains rich relation information among

elements. Modelling physics systems, learning molecular

fingerprints, predicting protein interface, and classifying

diseases require a model to learn from graph inputs. In other

domains such as learning from non-structural data like texts

and images, reasoning on extracted structures, like the

dependency tree of sentences and the scene graph of images,

is an important research topic that also needs graph reasoning

models. Graph Convolutional Networks (Graph

Convolutional Networks) are connectionist models that

capture the dependence of graphs via message passing

between the nodes of graphs. Unlike standard neural

networks, graph neural networks retain a state that can

represent information from its neighbourhood with an

arbitrary depth. Although the primitive graph neural networks

have been found difficult to train for a fixed point, recent

advances in network architectures, optimisation techniques,

and parallel computation have enabled successful learning

with them. On several of the tasks described above, systems

based on graph convolutional networks (Graph Convolutional

Network) and gated graph neural networks (GGNN) have

recently exhibited ground-breaking performance. We present

a comprehensive assessment of the applications of graph

convolutional networks through adaptations and categorize

those applications [3] while giving an in-depth overview of

the process and comparison with state-of-the-art models.

A. Graph Convolutional Network approach for decoding

EEG Motor Imagery Skills

Brain Control Interface(BCI) applications have been on

the rise in the fields of medical engineering. BCIs decode the

brain activity so that they can operate devices like artificial

limbs and wheelchairs. Electroencephalogram(EEG) has been

the go-to procedure for measuring brain activity due to its

high resolution, portability and ease of use. EEG based on

motor imagery(MI) mentally mimics a variety of motor

activities, such as visualising hand or foot movements. The

Euclidean structure of EEG electrodes may not effectively

reflect and describe the interplay between signals. Traditional

Convolutional Neural Network methods do the classification

without considering the topological relationship among

electrodes. Neuroscience presses on the need for analysing

patterns of brain dynamics, Thus Graph Convolutional

http://www.ijisrt.com/

Volume 6, Issue 6, June – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21JUN1210 www.ijisrt.com 1236

Networks were employed to analyse the performance of raw

EEG signals on different types of motor imagery tasks while

giving equal importance to topological relationships of

electrons[12]. The model was built on Pearson's matrix of

overall signals, for representing the traditional topological

relationship of EEG electrodes a graph Laplacian was built.

The Graph Convolutional Networks-Net has an

experimentally determined architecture with six convolution

and six pooling layers, pooling layers are employed to reduce

the dimensionality of the model, the soft plus function is used

as activation function for convolution layers, the output layer

uses the SoftMax activation function

 This particular model used the same dataset as

‘PhysioNet’, the state of the art model in the given field,

while the experiments have shown that at the hundredth

subject level the Graph Convolutional Networks-Net model

outperformed all the other studies. The Graph Convolutional

Networks-Net was able to predict MI tasks with 99.18

maximum accuracy and 96.24 average accuracy, showing the

robustness and effectiveness of the proposed model. It, on the

other hand, accurately predicted all four MI tasks, the best of

which was the two feet prediction, which had a 99.42 percent

accuracy. It showed that the proposed technique could

provide a generalised representation that was resistant to both

personal and group-wise changes. It may be used to decode

any EEG MI signals as well as other EEG-based graph-

structured data in order to create more effective and efficient

BCI systems.

B. BRP-NAS: Prediction-based NAS using Graph

Convolutional Networks

In comparison to hand-crafted alternatives, neural

architecture search (NAS) has shown remarkable

effectiveness in automatically building competitive neural

networks. NAS, but on the other hand, is computationally

expensive, as it requires the training of models or introduces

non-trivial complexity into the search process. Furthermore,

in addition to being accurate, real-world deployment

necessitates models that satisfy efficiency or hardware

limitations (e.g., latency, memory, and energy consumption),

yet obtaining different performance metrics of a model can be

time consuming, irrespective of the cost of training it. It has

been demonstrated empirically that an accurate latency

predictor is crucial in NAS when latency on the target

hardware is of interest, and conventional latency predictors

are excessively error-prone. On a variety of devices, the

research offers an end-to-end NAS latency prediction based

on a Graph Convolutional Network and shows that it

outperforms prior methods (proxy, layer-wise) [13].

 A Graph Convolutional Network that learns models for

graph-structure data is used in the proposed end-to-end

latency predictor. The Graph Convolutional Network

predictor comprises four layers of Graph Convolutional

Networks, each with 600 hidden units, and a fully connected

layer that provides a scalar latency prediction. All predictors

are trained 100 times with a randomly sampled set of 900

models from the NAS-Bench-201 dataset each time. The

remaining 14k models are utilized for testing, while 100

random models are used for validation.

TABLE I. PERFORMANCE OF LATENCY PREDICTORS ON THE NAS-BENCH-201: OUR GRAPH CONVOLUTIONAL NETWORK PREDICTOR

OUTPERFORMS THE LAYER-WISE PREDICTOR ACROSS DIFFERENT DEVICES.

Error Bound

Accuracy of Graph Convolutional Network Predictor Accuracy of Layer-wise predictor

Desktop CPU Desktop GPU Embedded GPU Desktop CPU Desktop GPU Embedded GPU

±1% 36.0±3.5 36.7±4.0 24.3±1.4 3.5±0.2 4.2±0.2 6.1±0.3

±5% 85.2±1.8 85.9±1.9 82.5±1.5 18.2±0.4 17.1±0.3 29.7±0.8

±10% 96.4±0.7 96.9±0.8 96.3±0.5 29.6±1.1 32.6±1.2 54.0±0.8

 Table 1 compares the performance of the proposed

Graph Convolutional Network latency predictor to that of the

layer-wise predictor on various devices. The percentage of

models with predicted latency within the corresponding error

bound relative to measured latency is shown by the values.

We can observe that the excellent performance is consistent

across a variety of devices with radically varying latency

characteristics.

C. New Tricks of Node Classification with Graph

Convolutional Networks

 Methods based on the 3D Morphable Model (3DMM)

have had a lot of success reconstructing 3D face forms from

single-view pictures. However, the face textures

reconstructed using these approaches do not have the same

quality as the input pictures. Recent research shows that

generative networks can recover high-quality facial textures

from a large-scale collection of high-resolution UV maps of

face textures, which is difficult to create and not publicly

available. This research provides a method for reconstructing

3D facial forms with high-fidelity textures from single-view

pictures captured in the wild, without the requirement for a

large-scale face texture library, in this work. The basic

concept is to use face features from the input image to

improve the first texture created by a 3DMM-based

technique. Instead of recreating the UV map, we suggest

using graph convolutional networks to reconstruct the precise

colours for the mesh vertices[14].

 This system is made up of three modules, and it provides

a coarse-to-fine method for 3D face reconstruction. A

Regressor for regressing the 3DMM coefficients, face

position, and lighting parameters, and a FaceNet for

extracting image features for future detail refining and

http://www.ijisrt.com/

Volume 6, Issue 6, June – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21JUN1210 www.ijisrt.com 1237

identity-preserving are included in the feature extraction

module. The texture refinement module is made up of three

graph convolutional networks: a Graph Convolutional

Network Decoder that decodes FaceNet features and

generates detailed colours for mesh vertices, a Graph

Convolutional Network Refiner that refines the vertex colours

generated by the Regressor, and a combiner that combines the

two colours to produce final vertex colours. The

Discriminator uses adversarial training to try to enhance the

texture refinement module's output.

 The results obtained from this research are extremely

promising and the Graph Convolutional Network was highly

effective in predicting accurate colours and mesh vertices and

outperformed other models by far.

D. Point Cloud Upsampling using Graph Convolutional

Networks.

 As seen above, adaptations like residual connections,

dense connections, and dilated convolutions, Graph

Convolutional Networks were made to go deeper by getting

rid of the gradient problem. With slight adaptations, Graph

Convolutional Networks can be used effectively in the task of

point cloud upsampling. Deep learning-based approaches for

point cloud upsampling do not rely on priors or hand-crafted

features to learn how to upsample point clouds, unlike classic

optimization-based methods. The use of point clouds to

represent 3D data is becoming increasingly common. The

rising availability of 3D sensors is contributing to this

growing popularity. Such sensors are now an essential

component of key robotics and self-driving automobile

applications. But due to computational constraints, both in

terms of time and space, these 3D sensors often produce

sparse and noisy point clouds, which end up portraying

evident limitations.

 The upsampling modules and feature extractors employed

greatly influence the efficacy of learning-based point cloud

upsampling processes[10]. An efficient method is one that

uses a Graph Convolutional Network (Graph Convolutional

Network) to improve the encoding of the local point

information from point neighbourhoods. This method has

proved to extensively improve state-of-the-art upsampling

methods. The other part that needs to be worked on in order

to receive an efficient upsampling result would be an

improved feature extraction. This is achieved through a multi-

scale point feature extractor which is called the Inception

DenseGraph Convolutional Network. This performs by

aggregating features at multiple scales, leading to better final

performance efficiency. When the Inception DenseGraph

Convolutional Network is combined with the aforementioned

approach, it results in the PU-Graph Convolutional Network.

The above adaptation of a novel Graph Convolutional

Network was compiled and experimented on a new large-

scale dataset PU1K for point cloud upsampling and also a

dataset that was 8 times larger than the PU1K dataset and

both the results were concurrent. Extensive experiments

demonstrate that our proposed PU-Graph Convolutional

Network pipeline, which integrates Inception DenseGraph

Convolutional Network and a system to better encode local

point information from point neighbourhoods, outperforms

state-of-the-art methods on PU1K and the other dataset while

requiring fewer parameters and being more efficient in

inference. It also produces a higher upsampling quality on

real-scanned point clouds compared to other methods.

E. Temporal action identification using Graph Convolutional

Networks

 Temporal action identification [11] is a crucial yet

difficult job in video comprehension. Although video context

is a crucial signal for efficiently detecting activities, current

research focuses mostly on temporal context, disregarding

semantic context and other important context features. To

attain good efficiency in the aforementioned Temporal action

identification, a graph convolutional network (Graph

Convolutional Network) model which adaptively incorporates

multi-level semantic context into video features and casts

temporal action detection as a sub-graph localization problem

can be used. In this method, video snippets are defined as

graph nodes, snippet-snippet correlations as edges, and

context-associated actions are defined as target sub-graphs.

 With graph convolutional being the base, a GCNeXt is

designed, which learns the features of each node. It does this

by aggregating its context and dynamically updating the

edges in the graph. Each sub-graph must be localised. In

order to do this, an SGAlign layer is introduced to embed

each individual sub-graph into the Euclidean space.

Experiments show that this method is capable of finding

effective video context without extra supervision and

achieves more efficient results than state-of-the-art

performance at multiple instances. The SGAlign extracts sub-

graph features using a set of anchors. SGAlign aligns node

characteristics along temporal and semantic graphs and

outputs a concatenation of both features. The order of nodes

is maintained in the final representation when utilising the

temporal graph. Since node features are represented by their

feature neighbours, this isn't necessarily true for the semantic

network. In the GCNeXt block, temporal and semantic

networks of the same cardinality process the input feature. In

each box, we show the (input channel, output channel). Both

convolution streams use a split-transform-merge method with

32 pathways to boost transformation variety. The total of both

streams and the input is the output of the module.

F. Graph Mining

 Graph mining is a set of tools and techniques for

analysing the properties of real-world graphs, forecasting how

the structure and properties of a given graph might affect a

given application, and creating models that can generate

realistic graphs that match the patterns found in real-world

graphs of interest. Graph mining techniques [2] are often used

to find valuable structures for later tasks. Frequent subgraph

mining, graph matching, graph classification, graph

clustering, etc., are some traditional graph mining challenges.

Although certain downstream tasks may be addressed directly

using deep learning without the need for graph mining, the

fundamental problems are worth investigating from the

standpoint of GNNs.

http://www.ijisrt.com/

Volume 6, Issue 6, June – 2021 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT21JUN1210 www.ijisrt.com 1238

 Let us consider some challenges. The first challenge is

graph matching. Traditional methods for graph matching

usually suffer from high computational complexity, both in

terms of time and space constraints. GNNs allow researchers

to use neural networks to capture the structure of graphs,

providing yet another answer to the challenge. A Siamese

MPNN model was proposed to learn the graph editing

distance. It consists of two parallel MPNNs with the same

structure and weight sharing. The goal of the training is to

embed a pair of graphs with a short editing distance into a

small amount of latent space. While tests were carried out on

more real-world circumstances, such as a similarity search in

a control flow graph, several comparable approaches were

created. Graph clustering is the second challenge, which

involves grouping the vertices of a graph into clusters based

on the graph topology and/or node characteristics. Various

node representation learning works have been created, and

the node representation may be given to classic clustering

methods. Graph pooling, in addition to learning node

embeddings, may be thought of as a form of clustering. They

look at what makes a successful graph clustering technique

desirable and offer ways to improve the spectral modularity

metric, which is a very useful graph clustering metric. Graph

Convolutional Networks, therefore, assist us in overcoming a

variety of difficulties in addition to those mentioned above.

This results in a significant boost in efficiency and

productivity.

REFERENCES

[1]. Eason, B. Noble, and I.N. Sneddon, “On certain

integrals of Lipschitz-Hankel type involving products of

Bessel functions,” Phil. Trans. Roy. Soc. London, vol.

A247, pp. 529-551, April 1955. (references)

[2]. Li, Yujia et al. "Graph Matching Networks For

Learning The Similarity Of Graph Structured Objects".

PMLR, 2019.

[3]. Zhou, Jie et al. "Graph Neural Networks: A Review Of

Methods And Applications". AI Open, vol 1, 2020, pp.

57-81. Elsevier BV, doi:10.1016/j.aiopen.2021.01.001.

[4]. Li, Guohao et al. "Deepgcns: Can Gcns Go As Deep As

Cnns?". Arxiv.Org, 2019

[5]. Li, Guohao et al. "Deepergcn: All You Need To Train

Deeper Gcns". Arxiv.Org, 2020,

https://arxiv.org/abs/2006.07739v1. Accessed 30 June

2021.

[6]. Li, Guohao et al. "Deepgcns: Making Gcns Go As Deep

As Cnns". IEEE Transactions On Pattern Analysis And

Machine Intelligence, 2021, pp. 1-1. Institute Of

Electrical And Electronics Engineers (IEEE),

[7]. Zhang, Si et al. "Graph Convolutional Networks: A

Comprehensive Review". Computational Social

Networks, vol 6, no. 1, 2019. Springer Science And

Business Media LLC.

[8]. Manessi, Franco et al. "Dynamic Graph Convolutional

Networks". Pattern Recognition, vol 97, 2020, p.

107000. Elsevier BV

[9]. "Dynamic K-Nearest-Neighbor With Distance And

Attribute Weighted For Classification".

Ieeexplore.Ieee.Org, 2021

[10]. Qian, Guocheng et al. "PU-Graph Convolutional

Network: Point Cloud Upsampling Using Graph

Convolutional Networks". Arxiv.Org, 2019,

https://arxiv.org/abs/1912.03264

[11]. Zeng, Runhao et al. "Graph Convolutional Networks

For Temporal Action Localization".

Openaccess.Thecvf.Com, 2019

[12]. Lun, Xiangmin et al. "Gcns-Net: A Graph

Convolutional Neural Network Approach For Decoding

Time-Resolved EEG Motor Imagery Signals".

Arxiv.Org, 2020,

[13]. Dudziak, Łukasz et al. "BRP-NAS: Prediction-Based

NAS Using Gcns". Arxiv.Org, 2020.

[14]. Lin, Jiangke et al. "Towards High-Fidelity 3D Face

Reconstruction From In-The-Wild Images Using Graph

Convolutional Networks". Arxiv.Org, 2020.

[15]. Lin, Jiangke et al. "Towards High-Fidelity 3D Face

Reconstruction From In-The-Wild Images Using Graph

Convolutional Networks". Arxiv.Org, 2020

[16]. S. Albawi, T. A. Mohammed and S. Al-Zawi,

"Understanding of a convolutional neural network,"

2017 International Conference on Engineering and

Technology (ICET), 2017

[17]. Singh and M. Sachan, "Multi-layer perceptron (MLP)

neural network technique for offline handwritten

Gurmukhi character recognition," 2014 IEEE

International Conference on Computational Intelligence

and Computing Research, 2014, pp. 1-5, doi:

10.1109/ICCIC.2014.7238334.

http://www.ijisrt.com/

	I. INTRODUCTION
	II. UNDERSTANDING GCNS
	A. The concept of Convolutional Neural Networks
	B. Graph Convolutional Network

	III. IMPROVEMENTS ON CONVENTIONAL GRAPH CONVOLUTIONAL NETWORKS
	A. Residual Connections

	IV. APPLICATIONS OF GRAPH CONVOLUTIONAL NETWORKS
	A. Graph Convolutional Network approach for decoding EEG Motor Imagery Skills
	B. BRP-NAS: Prediction-based NAS using Graph Convolutional Networks
	C. New Tricks of Node Classification with Graph Convolutional Networks
	D. Point Cloud Upsampling using Graph Convolutional Networks.
	E. Temporal action identification using Graph Convolutional Networks
	F. Graph Mining
	REFERENCES

