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Abstract:- Operations Research and Financial markets 

share a relation like Tom and Jerry, both do well when 

they are alone, but when they are together, things are 

even better. In this paper, we have reviewed the 

application of operations research in financial markets. 

Historically, various Operations research techniques like 

Game theory, network analysis, Markov chain, neural 

networks have been implemented to solve the 

irrationalities arising from the financial markets. Our 

research paper attempted to outperform the local index 

using the weights resulting from the linear programming 

problem under certain constraints. In addition to this, 

we have run a simple Monte Carlo simulation with the 

geometric Brownian motion (GBM) model to forecast the 

future price movement of a multinational company. 

 

I. INTRODUCTION 

 

Operation research(OR) originated during Second 

World War in the U.K. and was used for military strategy. 

Throughout World War II, a gaggle of researchers from 

arithmetic, statistics, physical and social sciences were 

entrusted with studying various military operations. 

 

The demand for such a study arose from the military 

policies and choices made, which were crucial and high-

priced, requiring researchers and scientists to provide 

quantitative intelligence using research and knowledge-based 
technical methods to arrive at decisions (Nikhila C, 2020). 

The critical application of OR is that it eases decision-

making in the business where the division/allotment of 

resources is of utmost importance, i.e., finance, staffing, and 

other business resources. 

 

In its past decade, OR has solved multiple research 

situations for the military, the government, and industries. 

The prime issue of all underdeveloped and upcoming 

countries has been to eliminate the shortage of food. With 

the explosion of population, which resulted in a scarcity of 

food, all countries were facing problems allocating land for 
various crops under climatic conditions and available 

facilities (LISA C. TOWNES, July 30, 2021). For over four 

decades, OR has been applied to financial markets, which 

has helped develop new theories for finance, and in turn, 

there has been tremendous growth in OR techniques (Kaur 

& Singh, 2014). Alternatively, it has been used in solving 

equity, debt, foreign exchange, derivative markets. While 

solving financial problems, the aims are usually to 

maximize profits or minimize costs with the best possible 

result. With OR techniques, reaching optimality becomes 

more straightforward as there are various methods to choose 

from to solve a financial problem. 

 

II. LITERATURE REVIEW 

 

2.1 Portfolio Optimization 

For investors and asset managers, knowing what 

proportion of the capital needs to be allocated to any 

particular asset can statistically build or break the portfolio. 

Balancing the portfolio can be illustrated by terms and 

parameters such as time, risk, markets, and technologies 

(Cooper, Edgett, & Kleinschmidt, 2000). The optimal 

portfolio is the Max Sharpe Ratio Portfolio. Portfolio 

optimization is predicated on Modern Portfolio Theory 

(MPT). The main objective of the MPT is to achieve the 
highest return with the lowest possible risk. To achieve this, 

assets in a portfolio should be selected after considering how 

they perform relative to each other, i.e., they must have a low 

correlation. MPT assumes diversification of assets to avoid a 

crash when a particular asset or asset class underperforms to 

provide an optimal portfolio. 

 

The classical MPT is valid only when the expected 

return is multivariate, and the investor is risk averted and 

prefers low risk. This approach has drawn many criticisms 

mainly because of its complexity. It is extremely tough to 
find an optimal portfolio when the number of assets is large. 

Additionally, even when this practice is achieved, 

implementing the replica portfolio is near to impossible. 

Markowitz's standard formulation considers variance to 

measure risk volatility and completely disregards the 

investor's risk appetite. The main argument is that the 

variance cannot be considered a good measure of risk since 

high returns might increase the variance. Better risk 

measures are based on the chances of the value of losses. 

The developments in risk theory recommend quantile-based 

measures that are well-suited functions to quantify risk. The 

most popular suggestions are the Treynor and Sortino ratios, 
defined as the expected return to the portfolio beta and the 

portfolio semi deviation, respectively (Taras & Taras, 2016). 

Another drawback of the MPT is its use of estimates and 

assumptions. Amongst the basic assumptions of MPT, all of 

them are considered impractical and oversimplified for an 

investor looking to trade long term. This model completely 

disregards intermediary fees like brokerage, tax, 

commission fees, and other transactional fees. Another fault 
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with this model is that it estimates findings using historical 

data. 
 

Now, the chosen subset should replicate the given 

time period as accurately as possible. Another weakness 

of the model is that it does not consider the possibility of 

unanticipated events like political tensions, unseen policy 

changes, or even a financial crisis. Thus, this model should 

not be the sole quantitative tool to rely on for investment 

planning. Several attempts have created less complex 

portfolio selection problems by linearizing the quadratic 

objective function (Henriques & Duarte Neves, 2019). In 

the finance domain, especially in Portfolio management 

Linear Programming is used to optimize portfolio returns. 
One can either maximize returns by putting risk constraints 

or minimize risk by applying return constraints. 

Nevertheless, the introduction of fundamental features 

involving the use of integer variables may significantly 

increase problem complexity and make LP solvable 

models more competitive with quadratic models. No risk 

measure can be a linear function of the portfolio shares to 

guarantee that the portfolio takes advantage of 

diversification. However, a risk measure can be LP 

computable in discrete random variables when realizations 

define returns under the specified scenarios. This applies, in 
particular, to the mean absolute deviation from the mean 

(Mansini, Wlodzimierz, & Grazia, 2013). Conventional 

multi-objective models usually address practical portfolio 

selection problems in which all coefficients and parameters 

are given beforehand. Nevertheless, in real-world 

situations, information regarding asset returns, risk, and 

liquidity are often incomplete, and the markets in which the 

assets are traded exhibit extreme volatility (Henriques & 

Duarte Neves, 2019). Optimization and investment 

communities have faced a long-standing challenge to devise 

an efficient algorithm to select a small number of assets 

from the variety in the asset pool and work out an optimal 
portfolio objective (Jianjun & Duan, 2013). 

 

2.2 Option Pricing 

In the financial market, the term asset refers to any 

object accessible in the market whose value is precisely 

known at the present but prone to change in the future. 

Typical examples of assets are stocks, bonds, and currencies. 

A financial option, or otherwise referred to as an option, is a 

contract tied to one or more assets and involves two parties, 

specifically a writer and a holder. Since the action taken on a 

particular asset is to sell or buy, options can be divided into 
two categories depending on the option holder's right. The 

first being Call option, which is the term used to describe the 

option where its holder has the right to buy the underlying 

asset at the strike price from the option writer, and the 

second being the Put option which is the term used to 

describe the option where its holder has the right to sell the 

underlying asset at the strike price to the option writer 

(Rujeerapaoboon, 2012). 

 

Option pricing is the core content of modern finance 

(Chen, 2011). Option pricing theory calculates the value of 
an options contract by allocating a premium based on the 

calculated chance that the contract will expire in the money. 

The traditional method of valuing European- style options is 

that of using the Black-Scholes model. This method relies on 
many assumptions that sometimes fail to hold out in 

fundamental markets, so over time, OR techniques have been 

used to price complex options that do not have an analytical 

solution (Board, Sutcliffe, & Ziemba, Applying Operations 

Research Techniques To Financial Markets, 1999). Monte 

Carlo simulation is used to create possible trajectories for 

options until they reach maturity by many analysts. They can 

then discount the cash flows from the option for each path, 

weighted by their risk-neutral probabilities (inferred from 

prices by assuming that investors have risk- neutral linear 

utility functions) back to the present using the risk-free rate, 

to compute the average present value across all the sample 
paths to obtain the current price of the option (Joy, Boyle, & 

Seng Tan, 1996). Empirical studies suggest that, even 

though the Black Scholes pricing version affords correct 

charges for at-the-cash alternatives (the modern fee of the 

underlying asset is near the fee at which the choice may be 

exercised), a few styles arise in alternatives charges, along 

with the "volatility smile." A smile occurs while the 

implied volatility for out-the-cash alternatives (specifically 

puts) exceeds that for at-the-cash alternatives. However, OR 

techniques may permit the smile while pricing options 

(Board, Sutcliffe, & Ziemba, Applying Operations Research 
Techniques To Financial Markets, 1999). Other OR 

techniques that can be used to valuation options include 

Linear Programming, Dynamic programming, Quadratic 

Programming, Non- Linear Programming, and Neural 

networks. Given a contemporary set of prices for European 

style put and call options on the same underlying asset, 

(Rubinstein 1994) used quadratic programming to calculate 

the value of risk-neutral probabilities and made a binomial 

with the help of these probabilities tree is consistent with the 

observed options. For incomplete markets, when Black-

Scholes is inapplicable, (Ritchken 1985) used linear 

programming to compute higher and lower bounds on 
option prices. 

 

2.3 High-Frequency Trading 

The World of High-Frequency Trading. In the past 

three decades, the average time scale over which the high-

frequency trading firms like Citadel, Tower Research 

process a trade has gone from minutes to milliseconds. 

"Ultra-low latency" is even considered to be under one 

millisecond! (Moallemi & Sağlam, 2013). In the book- 

"Real-Time Risk: What Investors Should Know About 

FinTech, High-Frequency Trading, and Flash Crashes,"- 
Aldridge and Krawciw estimated that in 2016 High-

Frequency Trading on average initiated 10–40% of trading 

volume in equities and 10–15% of volume in foreign 

exchange and commodities. (Aldridge & Krawciw, Real-

Time Risk: What Investors Should Know About FinTech, 

High- Frequency Trading, and Flash Crashes, 2017). So 

much so is their influence that Algorithmic and High-

Frequency traders were both found to have contributed to 

volatility in the Flash Crash of May 6, 2010, when high-

frequency liquidity providers rapidly withdrew from the 

market (Kirilenko, Kyle, Tuzun, & Samadi, 2017). A $4.1 
billion trade on the NYSE resulted in a loss of more than 

1,000 points, which rose back to its previous values in just 
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15 minutes, hence the name FLASH CRASH. 

 
High-Frequency Trading firms battle across the globe 

to be "milliseconds" faster. In the movie "The Hummingbird 

Project,"- They tried to run an optic fiber cable line directly 

from Kansas to the Wall Street Data Bank in New Jersey, 

cutting through mountains and under rivers to gain a 

millisecond of info advantage-the speed of a Hummingbird's 

wingbeat-that could potentially earn them Billions (Nguyen, 

2019). It has been stated that a one-millisecond advantage 

can be worth $100 million to a major brokerage firm 

(Martin, 2007). The Sharpe Ratio is an often- used metric to 

evaluate the risk-adjusted return (Excess Return divided by 

Standard Deviation) proposed by Nobel Prize winner 
William Sharpe (Sharpe, 1994). It measures the return for 

each unit of risk. Higher the Sharpe Ratio higher is the risk-

adjusted return of the stock/portfolio. The Sharpe Ratio of 

EUR/USD trading strategies held positions for 10 seconds 

scored Sharpe ratios well over the five thousand marks! 

Held positions for one minute-Over the 1800 mark 

(Aldridge, HuffPost, 2010). For some context-The Sharpe 

Ratio of the S&P 500 has averaged between 2 and 3 in the 

last ten years. It peaked at a Sharpe Ratio of 4 in 2018 

during the previous eight years (Portfolio Lab). 

 
High-Frequency Trading is a highly automated 

process. Problems tend to re-occur, possibly many times per 

day, spreading the costs of developing an OR solution over 

many transactions. This scale and repetition make creating 

OR models more attractive for such purposes than for small 

or one-time decisions. Appropriately designed OR models, in 

conjunction with powerful computers, allows for trading to 

happen in milliseconds (Board, Sutcliffe, & Ziemba, 

Applying Operations Research Techniques to Financial 

Markets, 2003). 

 

Financial market problems are numerical, with well-
defined boundaries and objectives, clear and stable 

relationships between variables, and excellent data that 

make it well suited to OR analysis. In the paper "Behaviour 

Based Learning in Identifying High-Frequency Trading 

Strategies,"- traders' behavior was characterized by the 

reward functions most likely to have given rise to the 

observed trading actions. Trading decisions were modeled 

as a Markov Decision Process (MDP) and an optimal 

decision policy observations to find the reward function- 

Inverse Reinforcement Learning (IRL). An IRL algorithm 

based on linear programming resulted in 90% classification 
accuracy in distinguishing high-frequency trading from other 

trading strategies in experiments on a simulated E-Mini 

S&P 500 futures market. These results suggest that high-

frequency trading strategies can be accurately identified and 

profiled based on observations of individual trading actions 

(Yang et al., 2012). Game Theory has also been 

implemented in High-Frequency Trading. In the paper-

"Quantum Prisoner's Dilemma and High-Frequency Trading 

on the Quantum Cloud"- 

 

High-Frequency Trading has been taken as an instance 
of the famous Prisoner's Dilemma. There are two players. 

 

Player I and Player II 

They represent the market's mindset, buying and 
selling, using the two strategies, Buy or Sell. Player I : (Sell, 

Buy)  (Buy, Buy)  (Sell, Sell) (Buy, Sell) 

 

Player II : (Buy, Sell) (Buy, Buy) (Sell, Sell) (Sell, Buy) 

The Dilemma in High-Frequency Trading, in this case, is 

that the game will reach the Nash equilibrium Sell, Sell, 

which would be devastating for the markets, like was the 

case in the Flash Crash in 2010 (Khan & Bao, 2021). 

 

2.4 Regulating Banking Exposure to Market Risks 

In the past, regulators took the help of simple models to 

calculate the capital adequacy of banks. The rapidly 
developing world also means the internationalization and 

universalization of banking operations. This also led to more 

complex models to measure the capital adequacy of banks. 

This change took place because of the increasing market risk. 

Presently, there are mainly three approaches to regulating the 

market risk of banks. Each approach is determined by how 

well it fulfils the aim of regulation. The three approaches are 

the building block approach, the internal models approach, 

the pre-commitment approach (Stephanou, 1996). Different 

capital requirements are determined for each of the four 

major market risk categories in the building block approach 
and then aggregated (Hill, 2003). An internal model is an 

approach where the loss to the bank's portfolio is calculated 

with a specified probability over a specified holding period 

of time (Capital.com).The pre-commitment approach is 

where banks pre-commit a fixed capital amount to protect 

their maximum trading loss exposure over a regulatory 

period. Out of all the approaches experts have analyzed, the 

internal models remain the most reliable and market-

friendly approach (Stephanou, 1996). 

 

III. OBJECTIVES 

 
1) To use a Simple Linear Programming Model with a 

simplex solution and backtest the resulting weights in a 

“real world” situation to check the performance of the 

portfolio and beat the index returns. 

2) To Apply a Simple Monte Carlo Simulation Model to 

predict the future stock price Movement using 100,000 

different simulations. 

 

a. Monte Carlo Stock Simulation - Geometric Brownian 

Motion 

 
How does one predict future stock prices? 

Broadly there are two approaches-Technical Analysis and 

Fundamental Analysis. 

 

Technical Analysis is based on the assumption of future 

stock prices following specific patterns seen in the past (Fama 

& French, 1995). Fundamental analysis assumes that a 

particular company's stock has an "intrinsic value" derived 

from forecasting its future earnings potential. Fundamental 

analysis suggests that the stock, therefore, is either 

overvalued or undervalued and, at some point in the future, 
will trade at its actual "intrinsic value" (Fama & French, 

1995). Monte Carlo Simulation with the Geometric 

http://www.ijisrt.com/


Volume 6, Issue 10, October – 2021                                      International Journal of  Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT21OCT125                                                                www.ijisrt.com                     284 

Brownian Motion follows the Random Walk Theory. The 

Random Walk Theory is entirely different from both the 
Fundamental Analysis and Technical Analysis. Random 

Walk Theory suggests that past patterns are in no way 

indicative of future performances. The stock is bought or 

sold only if and when a particular trend has developed -

Technical Analysis. Fundamental analysis is also not 

dependable due to the possibility of misconstruction and 

misinterpretation of financial information. There may also 

be situations where the stock may never reach its "fair 

intrinsic value" due to external market forces-Fundamental 

Analysis (Smith, 2020). Random Walk Theory assumes that 

movement in the stock is indeed random. It follows a 

completely unpredictable path, and the only way to 
outperform the market is to assume additional risk (Reddy 

& Clinton, 2016). The Monte Carlo Simulation builds a 

model of millions of simulations and "random trials" (read: 

possibilities) of stock prices with specific predefined input 

parameters. It produces a distribution of outcomes that can 

be analyzed to create various targets, stop loss levels (Harper, 

2020) 

 

(Sengupta, 2004) has specified the following Geometric 

Brownian Motion assumptions: 

1) Going Concern Company 

2) The stock follows the Markov process, which 

means it follows a random walk and is consistent with the 

weakest form of the Efficient Market Hypothesis. 

3) Proportional Returns are log-normally distributed. 

4) The compounded returns follow a Normal distribution. 

The Geometric Brownian Motion (GBM) with the Monte 

Carlo Simulation incorporates the Random Walk theory. In 

this case, we aim to test this in actual circumstances with a 

simple model. 

 

CASE: 

We have performed a simple Monte Carlo Simulation 

with the GBM process on Reliance Industries Ltd from 2005 

to 2015. We tested the results on the actual stock movement 

of Reliance Industries from 2015 to September 1, 2021, 
using monthly stock prices and returns. (NSE: RELIANCE). 

 

Inputs into the Python Model: (Refer to Appendix) 

1. Annualized Historical Returns/ Drift Factor: 20% 

2. Annualized Standard Deviation/Volatility: 50% 

3. Average Indian Government 10 Year Yields as Risk-Free 

Rate: 6% 

4. Number of years: 6 years 

5. Simulations: 100,000 

6. Starting Value: Reliance Industries' initial stock price 

indexed to 100. 

 

AIM: 

 

To Test the stock movement of Reliance Industries from 

2015 to September 1, 2021, with Monte Carlo GBM 

simulations. 

 

 

IV. RESULT 

 

 
Figure 1-Monte Carlo Simulation 

 

1) The Dark Black line represents the actual monthly stock movement of Reliance Industries from 2015 to 1st September 2021 

when indexed to 100. 

2) The multicoloured lines represent the 100,000 simulations of the stock for the same period. 

3) The X-axis represents the 72 months (6 years*12 months) period for the simulations. 
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ANALYSIS 

 

 
Table 1-Year 1 & Year 2 

 

 
Table 2-Year 3 & Year 4 

 

 
Table 3-Year 5 & Year 6 
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2) Reliance Industries grew at a CAGR of 34% 

approximately from 2015 to 1st September 2021. Monte 

Carlo Simulations Average CAGR-20% approximately. 

3) Reliance Industries ending value is 25% more than the 

100,000 simulations average ending value. 

 

POSSIBLE REFINEMENTS: 

 

This is an extremely simple Monte Carlo Simulation 
with the GBM model. This model can be further refined by 

increasing the number of simulations, removing certain 

extreme outliers from those simulations, and using 

confidence interval levels instead of simple averages to test 

the Errors.Instead of entirely removing the outliers, 

minimum weights can be assigned to reduce the impact on 

the overall error. 

 

2.1 Linear Programming Problems in Finance 

Most financial decisions are made directing towards 

maximizing profit with a minimum risk factor. Operations 
techniques play an essential role in analyzing different 

financial problems, essentially equity, debt, design 

securities, foreign exchange, risk evaluations, regulations of 

capital reserves, devising pricing equations, and analyzing 

market data. 
 

In financial problems, well-defined boundaries and 

objectives result in a clear, stable relationship between 

variables and the available data, making it suitable to work 

within OR techniques. (Kaur & Singh, 2014) 

 

AIM: 

 

To outperform the local index(Nifty) from a portfolio 

of 10 different companies with a fixed budget using data of 

the stock prices from 2005-2015. 

 
CASE: 

 

In this case, the objective is to acquire an optimal 

portfolio following the constraints with respect to the 

annualized returns and annualized standard deviations (risk). 

The investor has a budget of 1 million Rupees. The portfolio 

has ten different companies give with their annualized 

returns and annualized standard deviations. 

 

 
Table 4-Linear Programming Inputs 

 

The following constraints are to be followed while allocating funds: 

1) The total money to be invested in the entire portfolio must be 1 million Rupees. 

2) The average annualized return to annualized std deviation ratio should be greater than or equal to 0.5 

3) No companies should get an investment of more than ¼ of the entire budget i.e., 250,000. 

4) Average annualized standard deviation should be less than or equal to 32%. 

 

 
Figure 2-Linear Programming Constraints 

(Solved using solver on excel) 
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ANALYSIS: 

 

 
Figure 3-Company Investments 

 

 
Figure 4-Company Weightages(Allocations) 

 

 

 
Figure 5-Backtesting Results 
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Back Testing Inputs 

 

1. Estimation Windows = 36 months 

2. Daily Historical Adjusted Close Returns of the 

Companies. 

 

Nifty 50 (Local Index) 

3. Annualized Returns (1/1/2015-1/1/2021)- 9.2% 

approximately (NOTE: 252 days per year considered) 

4. Annualized Volatility (1/1/2015-1/1/2021) - 18% 

approximately (NOTE: 252 days per year considered) 

 

LPP Portfolio 

5. Annualized Returns (1/1/2015-1/1/2021) - 11.8% 

approximately (NOTE: 252 days per year considered) 

6. Annualized Volatility (1/1/2015-1/1/2021) - 16.3% 

approximately (NOTE: 252 days per year 

considered) 

 

 

V. LIMITATIONS OF OR IN FINANCE 

 

It is indeed acceptable that OR techniques are 

instrumental in financial markets and are a great advantage to 

those who apply them. However, there are some limitations 

to OR techniques being used. There is a necessity for a 

computer most of the time. Some of the factors taken in the 

research are enormous, and establishing relationships 

between these requires computers to handle them. The 

financial market is very dynamic; incorporating the data into 

OR models is time-consuming and costly. A better solution 

than OR techniques may be available at this stage. The 

implementation of the research should be done correctly, 
and it takes a variety of factors and complexities (Gilb, 

1988). Sometimes, due to psychological factors, resistance 

may be offered, which may not have any bearing on the 

problem and the solution. In addition, the OR job, a 

specialist’s job, might not be aware of the business 

problems. 

 

Similarly, a person not familiar with the OR working 

will fail to understand the complex working of the job, in 

this case, the manager. Because of this, there is always a 

significant gap between these two. The management itself 
will offer much resistance due to conventional thinking 

(Hillier, Frederick S, 2010) 

 

VI. CONCLUSION 

 

Quite a few OR techniques have been used in financial 

markets, but the most widely used is Mathematical 

Programming (linear, quadratic, nonlinear, integer, goal, 

DEA, and dynamic). Apart from this, Monte Carlo 

Simulation is widely used to ascertain the value of 

derivatives and securities. In some cases, it has also been 

used to test trading rules and examine the risks of loan 
portfolios. Over the years, OR techniques have permitted 

traders to make better financial decisions in lesser time. In 

the future, as the availability of data and computing power 

continue to improve, the application of OR Techniques in 

the Financial Markets will only increase. Faster computers 

and the convenience of immense amounts of data give rise 
to the development of efficient and methodical algorithms 

that would provide a base to solve even more complicated 

problems (Board, Sutcliffe, & Ziemba, Applying Operations 

Research Techniques To Financial Markets, 1999). 
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APPENDIX 

 
1) 

Def 

Backtest_Weighting_Scheme(returns,estimation_window=60

,weighting=Weight_ 

Equally_Weighted_Portfolio,verbose=False,**kwargs): 

 

""" 

Backtests a given weighting scheme, given some 

parameters: returns : Asset returns to use to build the 

portfolio 

estimation_window: The window(in months) to use to 

estimate parameters. 
It must be a function that takes "returns", and a variable 

number of keyword-value arguments. 

""" 

n_periods = returns.shape[0] # return windows 

windows = [(start, start+estimation_window) for start in 

range(n_periods- estimation_window)] 

weights = [weighting(returns.iloc[win[0]:win[1]], 

**kwargs) for win in windows] # convert List of weights to 

DataFrame 

weights = pd.DataFrame(weights, 

index=returns.iloc[estimation_window:].index, 
columns=returns.columns) 

returns1 = (weights * returns).sum(axis="columns", 

min_count=1) #mincount is to generate NAs if all inputs are 

NAs 

returns2=(1+returns1).cumprod() 

returns2.plot(figsize=(24,12), title="Back Test 

Returns(Cumulative Product)") return returns1 

 

2) 

Def 

Geometric_Brownian_Motion_with_Monte_Carlo_Simulatio

ns(annualised_expected_ 
return_mu,annualised_volatility_sigma,riskfree_rate,n_year

s=10, 

simulations=1001,steps_per_year=12,starting_value=100,p

rices=True): 

“”” INPUTS: 

annualised_expected_return_mu:Input the Annualised 

expected returns of the stock.NOTE this is also the drift 

factor i.e the market drift i.e this will remain 

constant till time "t" so dont take an extraordinary year for 

the stock where that were very impressive returns 

annualised_volatility_sigma:Input the Annualised volatility 
of the stock. riskfree-rate:Input the 10 Year Government 

Treasury Bond Rate n_years:The number of years for the 

analysis 

simulations:Input the number of MONTE CARLO 

simulations for the stock.Keep a bare minimum of 1000.For 

actual analysis can use around 50000. 

steps_per_years:Input the steps per year.It is like 

periods_per_year. 

“”” 

# Derive per-step Model Parameters from User 

Specifications dt = 1/steps_per_year 
n_steps = int(n_years*steps_per_year) + 1 

 

 

# the standard way ... 
# rets_plus_1 = np.random.normal(loc=mu*dt+1, 

scale=sigma*np.sqrt(dt), size=(n_steps, n_scenarios)) 

# without discretization error ... 

rets_plus_1 = 

np.random.normal(loc=(1+annualised_expected_return_mu

)**dt, scale=(annualised_volatility_sigma*np.sqrt(dt)), 

size=(n_steps,simulations)) 

rets_plus_1[0] = 1 

ret_val = 

starting_value*pd.DataFrame(rets_plus_1).cumprod() if 

prices else rets_plus_1-1 

ax=ret_val.plot(legend=False,figsize=(24,12),alpha=0.5,lin
ewidth=2,title="Monte Carlo Geometric Brownian 

Motion",fontsize=12,ylabel="Values",xlabel="Time 

Period") 

ax1=ax.axhline(y=starting_value,ls=":",color="black") 

plt.plot(0,starting_value,marker='o',color='darkred',alpha=

1) b=ret_val.pct_change().dropna() 

last_value=ret_val.iloc[-1:] f = plt.figure() 

f.set_figwidth(24) f.set_figheight(12) 

mean=ret_val.mean(axis=1) 

print("The Minimum Values per Year/Month") 

print(ret_val.min(axis=1)) 
#ret_val.min(axis=1).plot.bar(figsize=(24,12),title="Minim

um Values") print("The Maximum Values per Year/Month") 

print(ret_val.max(axis=1)) 

#ret_val.max(axis=1).plot.bar(figsize=(24,12),title="Maxim

um Values") print("The Average CAGR in % for all 

Simulations") 

xyz=((mean.iloc[-1]/mean.iloc[0])**(1/n_years))-1 

print(xyz*100) 

print("The Mean Values per Year/Month") print(mean) 

plt.plot(mean,color="magenta") 

plt.plot(ret_val.min(axis=1),color="green") 

plt.plot(ret_val.max(axis=1),color="blue") 
plt.legend(["Mean Values","Minimum Values","Maximum 

Values"]) plt.title("Mean Values-Minimum Values-Maximum 

Values") plt.axhline(100,color="goldenrod") 

return ret_val 
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