
Volume 7, Issue 4, April – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22APR1563 www.ijisrt.com 1068

Enhancement of Hakak’s Split-Based Searching

Algorithm through Multiprocessing

Enrico Sebastian Digman, Robbie Shane Orantoy, John Alfred Velasco,

Mark Christopher Blanco, Richard Regala, Dan Michael Cortez

Computer Science Department

Pamantasan ng Lungsod ng Maynila (University of the City of Manila)

Manila, NCR, Philippines

Abstract:- One of the recent string-matching algorithms

classified as a Hybrid Boyer Moore Approach is Hakak’s

Split-Based Searching Algorithm which works by

dividing the pattern into two parts while concentrating

most of the searching process only to the second half of

the pattern. However, the algorithm calls for

optimization to its searching phase since it still employs

the single shifting for instances where a mismatch is met.

This paper presents an enhanced version of the

algorithm by applying multiprocessing emphasizing its

ability to make use of multiple CPU (Central Processing

Unit) cores in finding occurrences of the pattern during

the searching phase. Through this, concurrency and

parallelism can be reached in the existing algorithm that

is only limited to using a single processor prior

enhancement. In conclusion, this study successfully

enhanced the existing algorithm in terms of time

complexity by maximizing the usage of memory

resources.

Keywords:- Hakak’s Split-Based Searching Algorithm,
String Matching, Multiprocessing.

I. INTRODUCTION

String matching is defined as the process of searching

whether a specific group of characters or ‘pattern’ exists in a
group of strings or ‘text’. With the continuous amount of

information piling up on several databases, many problems

may arise with regards to the resources to be spent when

executing steps of searching, retrieving, and interpreting text

information. Existing string-matching algorithms play a

significant role to solve real-world problems concerning

various fields of application such as text mining; this type of

algorithm specializes on analyzing information which can be

used by the following: Intrusion Detection Systems, Search

Engines, Plagiarism Detection, Bioinformatics, and others.

Out of all the widely known string matching algorithms

available, many enhanced algorithms were already created
with intensive and thorough research, one of these is the

Hakak’s Split-Based Searching Algorithm. Hakak’s Split-

Based Searching Algorithm aims to work on a unique

approach of searching which aims to outpower similar

algorithms in terms of the time consumption along the

process of finding patterns on a text string.

Hakak’s Split-Based Searching Algorithm’s process

starts with the Preprocessing Phase where it implements a

unique approach of finding occurrences in the text by

splitting the string patterns into two; only the second half of

the pattern will be compared to the text. The end of the

preprocessing phase will be followed by the Searching

Phase where the second half of the pattern will be searched

in the text string. It also uses the brute force approach when

finding the index of the matching pattern. Once a match is

verified, it will then compare the first half of the pattern to
the part of the text string that is parallel before the first

character of the pattern’s second half. This algorithm

presented positive results where it outperforms other string-

matching algorithms in terms of time and space efficiency.

However, its implementation of single shifting leads to a

disadvantage especially on instances where patterns are to

be searched on large-sized texts. To address the problem, an

enhancement of the Hakak’s Split-Based Searching

Algorithm is proposed.

II. REVIEW OF RELATED LITERATURE

String matching algorithms usually comprise a

preprocessing and searching phase highlighting that the

latter makes use of a shift value keeping in mind the number

of character comparisons while searching [1]. Their paper

emphasizes that the searching phase may be improved by

employing other bad character shift functions, such as the

Berry-Ravindran algorithm which works by calculating the

shift value placing emphasis on the bad character shift of the

two consecutive characters. Other findings in regards with
the searching phase of other algorithms include the Boyer-

Moore algorithm having iterative processes of considerable

length in searching for the pattern in the text [2]. Since

Hakak's Split-Based Searching Algorithm is considered a

Hybrid Boyer-Moore Approach, it still retains the concept of

the bad character rule but utilizes the single shifting method.

Considering it only makes use of a single block of character,

the searching for the pattern may not be done efficiently.

Since Hakak's Split-Based Searching Algorithm still

employs the single shifting technique in order to search

different texts, it is hypothesized that the idea of
multiprocessing or parallelization of the algorithm will be

helpful for the performance of the algorithm considering the

time and space complexity.

A methodology is proposed in order to achieve
multiple executions of the same task through the usage of

multiprocessors. Multiprocessing is a kind of technology

that utilizes two or more CPU cores within a system

allowing the allocation and sharing of resources between

each of them [3]. Nowadays, the relevance of multicore

technology has shaped the industry's way of handling and

processing data. Technological advancements suggest the

exploration and optimization of current string matching

algorithms’ capability of processing texts. Since most exact

http://www.ijisrt.com/

Volume 7, Issue 4, April – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22APR1563 www.ijisrt.com 1069

string matching algorithms make use of a uniprocessor,

intensive research and enhancements are needed in order to
surpass the limitations encountered by these algorithms

since they are not capable of a high degree of parallelizing

of tasks.

The prominent challenge for the development of string
matching algorithms requires high and efficient performance

since applications such as network intrusion detection

systems need to match with today's network speed.

Shortcomings in identifying encountered attacks are highly

recommended to be enhanced. Also, the relevance of big

data in the industry requires efficient handling of big blocks

of data [4]. Parallel processing is also highlighted as a

technique that varies between multiprocessing and

multithreading. Multiprocessing works by the separation of

processes for execution of the same tasks in the program,

whereas multithreading utilizes breaking down large tasks
into a lot of tasks. An example of a study where it was

implemented is when Knuth Morris Pratt, Karp-Rabin, and

Boyer-Moore algorithms were integrated into a distributed

multiprocessing environment introducing the concept of

parallelization of exact string matching algorithms. These

were applied in Snort's string matching engine utilizing

Local Area Networks [5].

III. PROPOSED METHOD

In order to attain the objective of improving the

existing algorithm's time complexity, this paper proposes the

use of multiprocessing at the algorithm's searching phase.

A. Implementing multiprocessing in the searching phase of
Hakak’s Split-Based Searching Algorithm

Since the existing algorithm made use of the divide and

conquer approach in the form of splitting, the researchers

also took into consideration the same concept but through a

different method which is multiprocessing. [4] also

mentioned that multiprocessing works by separation of

processes for execution of same tasks in the program. Since

most CPU cores are not usually used by a computer, it is

hypothesized that these can be used rather than still being

idle. Time consumption is still the primary focus of a string-

matching algorithm but in today’s technology, algorithms
must also be flexible and able to adapt to any computer’s

specification. The experiment shall be done in PyCharm

Community Edition 2021.3.2 on AMD Ryzen 5 3500U

Processor with 8 cores, 4 GB RAM (Random Access

Memory) using Windows 10. To implement this in the

experimental research design, the multiprocessing package

of Python will be used to give the researchers the ability to

maximize multiple processors in a single computer. The

Process class is specifically used to initialize the processes

for each of the CPU cores proven and then using join ()

method so that all the processes are completed first before

continuing to the next line of code.

B. Comparing the performance of Proposed Algorithm with

Hakak’s Split-Based Searching Algorithm
To verify the efficiency of the proposed algorithm, both

algorithms (the existing Hakak’s Split-Based Searching

Algorithm and the proposed enhanced version) are to be

compared side by side in terms of their time and memory

consumption. The dataset that will be used for

experimentation is Hakak, et al.’s S1 Dataset, specifically

the bible.txt file. With regards to the total runtime per

pattern search, both algorithms will be running ten (10)

times using different pattern lengths such as short patterns

(having a length less than 4), medium patterns (having a

length of 4 to 7), and long patterns (having a length greater

than 7); a python module: datetime will be used to measure
the average runtime of the iterative processes performed in

this comparison in milliseconds (ms). On the other hand, the

quantification of both algorithms’ memory consumption

requires another Python module which is memory-profiler,

using mebibytes (MiB) as unit of measurement. By

performing these methods, it will now be possible to check

and compare the efficiency of the existing and enhanced

algorithms.

C. Identification of essential formulas to be used for the

Proposed Algorithm and multiprocessing

 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑛 / 𝑃 + 𝑚2 − 1 (1)

 𝑠𝑡𝑎𝑟𝑡 = (𝑖 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ) − ((𝑚2 − 1) ∗ 𝑖) (2)

 𝑒𝑛𝑑 = 𝑠𝑡𝑎𝑟𝑡 + 𝑙𝑒𝑛𝑔𝑡ℎ (3)

 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑀𝑎𝑝 = 𝑝2[𝑖0] − 𝑚2 (4)

Multiprocessing, as proposed to enhance the existing

algorithm, requires designating substrings of the text to each
CPU core where searching is to be done simultaneously. To

reach the substring length, it is important to take note of the

number of processors to be distributed (P) and the length of

the text (n). Considering the circumstances where patterns

can potentially be found in between ends of two succeeding

substrings, the formula includes adding the value of the

length of the second half of the pattern (m2) subtracted by 1.

This way, those areas will now be reached as the formula

slightly extends the searching threshold.

Given that the substring length has already been

computed, the starting index for searching at each processor

must be found by making use of formula no. 2. The formula

subtracts the product of the counter (i) and m2 subtracted by

1 to find the next substring which needs to start at an index

where it overlaps with the end of the earlier substring. After

executing the earlier formula, formula no. 3 figures out the
ending index of the substring assigned to each processor in

searching by adding the values computed from the first two

formulas.

Following the execution of earlier formulas, the

searching phase will now begin to search for pattern

matches in a concurrent manner. If the second half of the

pattern (p2) is found, formula no. 4 must be used to know

the current location of p2 in the substring. Subtracting the

current index by m2 will find the index of where the first

half of the pattern must be mapped in the substring.

http://www.ijisrt.com/

Volume 7, Issue 4, April – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22APR1563 www.ijisrt.com 1070

IV. RESULT AND DISCUSSIONS

A. Comparative Analysis of Initialization of Different No. of CPU Cores

Fig.1: Average running time of the proposed algorithm using different number of CPU cores

Fig. 1 shows how the proposed algorithm’s average
runtime is directly affected by the number of CPU cores

being distributed for running. Among all the CPU cores

used in testing, 4 cores garnered the shortest average

runtime at 689.7155ms (about half second). In addition,

slower average runtime is attributed to using insufficient and

excessive numbers of CPU cores. Not using enough cores in

the process causes the algorithm to run slow since the

partitioning of subtext will be longer, taking a considerable

time in shifting the pattern. Moreover, the usage of too
many cores will be like running the algorithm sequentially

since there is a time overhead when spawning a new child

process. Running the algorithm at 4 CPU cores, which is

found to be the best processor for this algorithm shows that

it is 14.394% and 18.446%faster than using a 2-core

processor 788.9914999999999ms (about 1 second) and an

8-core processor 816.9395000000001ms (about 1 second),

respectively.

B. Average running time Results

Pattern Length Text

Hakak’s Split Based

Searching Algorithm

Average Running Time (ms)

Proposed Algorithm

Average Running Time

(ms)

No.of

Occurrences

Less than 4

characters

God 1395.9604999999997 914.8524000000001 4040

for 1341.6218000000003 1073.334 12619

4 to 7
characters

wroth 1308.4778000000001 692.2360000000001 47

finish 1386.2564 691.5103 54

Greater than 7

characters

that Adam 1245.5148 782.0433 1

continually 1386.0278 834.1506999999999 79

Table 1: Comparison of Hakak’s Split-Based Searching Algorithm and Proposed Algorithm

As shown in Table 1, the Proposed Algorithm was able

to surpass Hakak’s Split Based Searching Algorithm in

terms of the average running time based on 10 rounds.
Specifically, patterns with length of 4 to 7 characters

showed a larger gap in terms of milliseconds compared to

other pattern lengths which means that the Proposed

Algorithm is at its’ best performance when searching for the

said pattern length. The researchers also seen that the no. of
occurrences of a pattern greatly affects the searching

performance.

http://www.ijisrt.com/

Volume 7, Issue 4, April – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22APR1563 www.ijisrt.com 1071

C. Memory Consumption Results

Fig. 2: Analysis of Hakak’s Split-Based Searching Algorithm’s Memory Consumption

Fig. 2 shows the existing algorithm’s memory

consumption throughout the entire process. The algorithm

started from 0 MiB and at once allotted 20 MiB for the

whole duration of the process. Also, there was no scenario

of any other memory being used in the latter part of the

string-matching algorithm. This result happened due to the

splitting of the pattern and allotting most of the entire

process only to the second half. Furthermore, the existing

algorithm’s motivation includes the elimination of creating a

shifting table in the preprocessing phase thus only making

use of a single shifting method when a mismatch is met in

the searching phase. Compared to traditional string-

matching algorithms, Hakak’s Split-Based Searching

algorithm considered using minimal memory while

concurrently addressing the concern of time consumed. The

existing algorithm may still be enhanced while taking into

consideration that the time consumed is less but at the same

time maximizing the resources the computer has.

Fig.3: Analysis of Proposed Algorithm’s Memory Consumption

Fig. 3 displays the memory consumption of the

proposed algorithm emphasizing the use of CPU cores or

child processes. The black line portrays the data consumed

by the main CPU which is 20 MiB. Also, no added memory
is used in the main CPU because of its child processes.

Before starting the multiprocessing, a specific CPU core,

portrayed as the blue line, was initialized known as the

Manager who handles the shared memory allocation for the

list of results. After a time, 4 child processes were spawned

taking into consideration the use of 4 CPU cores allotted for

multiprocessing. These child processes begin their task of

them are properly initialized because of the join () method.

Each child processor is assigned an index from the subtexts

proven which serves as their starting point of searching.
They work concurrently but if any child process finds a

match even if the other processes are not finished, it appends

the results to the Manager at once. The Manager’s memory

increased by a little amount because of the results that were

combined from the child processes.

http://www.ijisrt.com/

Volume 7, Issue 4, April – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22APR1563 www.ijisrt.com 1072

V. CONCLUSION AND RECOMMENDATION

Through the researchers' extensive analysis of gathered

data, they were able to draw these conclusions. First, the

single shifting text window is inefficient and may

compromise the time consumed in searching the pattern.

Since the technology of multiprocessing was introduced in
this study, avoiding the usage of too many or too little

amount of CPU cores allows string matching algorithms to

provide a high degree of parallelizing of processes.

Considering its elements, a manager can be shared across all

processes and is more dynamic compared to shared memory,

however, it is slower since it is spawning a new child

process. Also, big datasets are suitable for shared memory

resources in order not to compromise the time for passing

the arguments to the CPU cores.

After an in-depth evaluation of the study’s results and

conclusion, the researchers recommend implementing other

forms of parallelization as enhancements for string matching

algorithms such as multithreading, distributed computing,

etc. Also, the use of the GPU may enable advanced

parallelization of multiple data setsand is capable of
efficient computations. Architectures such as CUDA, MPI

(Message Passing Interface), and OpenMP allow

programmers to manipulate specific functions for

parallelization. When it comes to the proposed algorithm, it

may produce efficient results when searching texts such as

DNA sequences since the pattern is more likely to be found

in the text. Additionally, the proposed algorithm may

perform differently depending on the user's computer

specification, specifically the number of CPU cores

available. Experimentation of the study may consider the

programming language to be used when coding different

string matching algorithms for comparative analysis since
some have specific functions that may help in coding.

ACKNOWLEDGMENT

The researchers would like to express their utmost

gratitude to God Almighty for granting them the proper

skill, intellect, and enough strength to make this endeavor

come to reality. A plenty of thanks to their parents and kind

friends for their undying support and continuous
encouragement to keep going in pursuit of completing this

research. Finally, the researchers were beyond delighted to

acknowledge their research adviser and other professors of

the Pamantasan ng Lungsod ng Maynila for sharing their

ability as well as supplying motivational words and

constructive criticisms which makes a lot of help throughout

the course of carrying out this piece of work.

REFERENCES

[1.] Hudaib, A., Al-Khalid, R., Suleiman, D., Itriq, M., &

Al-Anani, A. (2008). A fast pattern matching algorithm

with two sliding windows (TSW). Journal of Computer

Science, 4(5), 393.
[2.] Xu, B., Zhou, X., & Li, J. (2006, June). Recursive shift

indexing: a fast multi-pattern string matching

Algorithm. In Proc. of the 4th International

Conference on Applied Cryptography and Network

Security (ACNS) (pp. 64-73). Springer-Verlag

Singapore

[3.] Soewito, B., & Weng, N. (2007, October).

Methodology for evaluating dna pattern searching

algorithms on multiprocessor. In 2007 IEEE 7th

International Symposium on BioInformatics and

BioEngineering (pp. 570-577). IEEE.
[4.] Hnaif, A. A., Aldahoud, A., Alia, M. A., Al'otoum, I.

S., & Nazzal, D. (2018). Multiprocessing scalable

string matching algorithm for network intrusion

detection system. International Journal of High

Performance Systems Architecture, 8(3), 159-168.

[5.] Al-Mamory, S. O. (2012). Speed enhancement of snort

network intrusion detection system. Journal of

Babylon University, Pure and Applied Science, 20(1),

1

http://www.ijisrt.com/

