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Abstract:- The aim of the paper is to investigate path 

planning of an unmanned aerial vehicle with 

consideration of game theory. The benefit of this 

method is lack of detection and finding the optimum 

trajectory between terrains. Hence, by defining the 

permissible flight bands, and combining the kinematic 

and dynamic equation with wind gusts in the optimal 

control variables, the air vehicles can path through the 

terrain in minimum time and altitude. However, in 

final, two agents were considered by defining new cost 

function as a game theory. The results illustrated the 

combination of kinematic and dynamic were promising 

and the new cost function in two agents; optimal control 

has a good effect on tracking the agents in terrain. 
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I. INTRODUCTION 
  

This Stealth and lack of radar detection is one of the 
requirements of the Unmanned Aerial Vehicles (UAVs) on 

certain missions. One way for UAVs is beingundetectedby 

terrain and mountain. To go stealth, the air vehicles must 

have a trajectory and a good controller to reach the target. 

The main objective of optimum path is to generate the 

Trajectory with consideration of terrain following and 

terrain avoidance. This requirement allows the unmanned 

vehicles without the crash have their mission such as petrol, 

relief, pursuit and evader, rescue and landing into the 

airport near to the mountain, and etc. However, for these 

missions the modern controller will cost a fortune and 
generation of the optimal path is easier to use the usual 

controller. To determine the optimal path, the offline digital 

points of the searching area are received from the satellite 

and simulated by a mathematics model.  

So far, different modeling of terrain following and 

terrain avoidance (TF-TA) such as[1-4] has been studied. In 

these papers, the model of terrain based on Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA) 

investigated .The results were promising. In [5], the 

compelling of fuzzy control has been studied. The results 

showed the significant performance of the controller in the 

face of terrain. In another case  [6], the Wiener-Khinchin 
(W-K) filter was designed to investigate the collision of 

terrain with a new machine based on machine vision. 

Dealing with the issue of decision-making in natural 

obstacles in [7] were considered. Hence, the method of this 

paper for solving the optimization problem was convincing. 

In [8] studied the space robot exposed to several unknown 

terrains. The method of this paper has been used for 

compatibility of nonlinear adaptation controller. The 

optimal controller deal with terrain and showed the 

significant performance. To create the flight process, route 

information is generally given to the flight system as a 

matrix consisting of discrete points. Having the elevations 

of the earth, a mathematical function can be fitted to them. 

Methods such as least square, discrete orthogonally, and so 

on. The accuracy of the flight mission depends on these 

methods. In [9], reviewing the Chebyshev curve fitting 
method for modeling of terrain and performed at low 

altitude and time with considering of Lagrange equations in 

the interval [+1 -1] with a weight function. In other hand, 

the multi-agent, in the terrain following and terrain 

avoidance are studied. An example in [10] discusses a game 

theory-based method for developing an automatic 

maneuver algorithm in air warfare. The matrix algorithm 

executes its decisions based on differential game theory. 

The outcome in the matrix means that the flying vehicle is 

superior. The simulated algorithm of six degrees of 

freedom illustrates the efficient of this method.  
 

In another paper[11], a new algorithm for controlling 

a quad rotor using game theory is investigated. In this 

dynamic model, perturbations are also considered. The 

simulations indicate the optimal performance of this 
manner. In another reference [12] with the help of game 

theory, the scenario of defense, attack, and attack of three 

flying vehicles has been studied. In this article, the 

acceleration and target position are not specified. The 

achievement of this paper advocates the suitability of this 

method. In [13], the cost function is minimized in the 

regression-mode method, and the threat areas are 

investigated with the help of differential games. The results 

of the optimal performance of this function show the cost to 

minimize flying vehicles. Based on this fact, the optimal 

control is a good solution to find the optimal route of 
aircraft. By considering game theory in this theory, multi-

agent optimization can be generalized and all the formulas 

used in one agent can be applied in game theory. This 

paper, the optimal flight path of the aircraft in the pursuit of 

a three-dimensional model is discussed. The important 

point in these issues is a notice to the compatibility of the 

geometric properties of these routes with the functional 

ability and dynamic constraints of the aircraft that wants to 

follow this route in a limited period. As mentioned, the 

design process before was natural without regard to 

restrictions and bounds, and the passage of these bounds 

was done by control systems. Correcting the error of 
deviation from the reference path requires the high cost of 

using highly accurate sensors and other items that could 

have greatly increased the risk of flying at low 

altitudes[10]. According to the mentioned cases about 

geometric paths in the computational process of the optimal 

path, in this paper, the terrain model in kinematic equations 
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of motion is used, which has much fewer calculations than 

solving the three-dimensional problems of dynamic 
nonlinear equations. Considering the model of terrain in the 

kinematic equations of the flying vehicle, the movement 

path is first introduced for the flying vehicle, and the flight 

is based on the new route at low altitude. Of course, it 

should be noted that the definition of the appropriate cost 

function for the problem is one of the important factors in 

system performance. Because in creating the cost function, 

the designer can consider a set of operational and strategic 

criteria, also include the existing system constraints in the 

structure of the function. In this paper, it has been tried to 

include the criteria of time and altitude of mission in the 

cost function with considering of wind gust. In the 
continuation of this discussion, first, the kinematic 

equations and the dynamic dimension of motion on the 

elevations will be introduced and then the formulation of 

the optimal problem, simulation, and results will be 

explained and then these issues will have expanded for two 

flying vehicles based on a new cost function. By respecting 

the two agents and establish the optimization method with 

the help of differential game theory, so it can fly to the 

point in the shortest possible time due to the low altitude 

flight of the agent. In the previous studies the combination 

of dynamic and kinematic equation along with game theory 
cost function in the present of wind gust never been 

studied. The paper is separated into five sections, first the 

introduction, and the kinematic and dynamic equation of 

one agent based on terrain-following were evaluated and 

simulated then based on new cost function the game theory 

is used in pursuit- evader problem, the fourth part would be 

the simulation of the defined model, In the final section, the 

conclusion was discussed. 
 

II. MODEL OF TERRAIN 

  

The aim to generate the optimal path in the terrain 

following problem, is to reach the minimum altitude and 

time. During the flight, the aircraft has a terrain path 

limitation that may depict as (1): 

ℎ = ℎ(𝑥, 𝑦) (1) 

 

In (1), the (h) is the altitude of a plane in the body 

coordination system and x,y represent a profile of terrain 

following. This variable includes the set, thread, etc. It 

should consider these elements as (h) variable, (2). 
 

ℎ = ℎ𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 + ℎ𝑇ℎ𝑒𝑟𝑎𝑑 + ℎ𝑒𝑡𝑐  (2) 
 

Where h(x,y) can generate discrete data coming from a 

satellite. This paper assumed the discrete data has a 

continuous first and second derivative order. Fig.1, shows 

the local and inertia coordinate systems. 

 
Fig.1: Local and inertia coordinate systems[14] 

 

By defining the equation of movements in the local 
system and transferring it to the inertia system, we have the 

field in our problem (3). 
 

�̇�𝑙 = 𝑉𝑐𝑜𝑠(𝜒) + 𝑢 

�̇�𝑙 = 𝑉𝑠𝑖𝑛(𝜒) + 𝑣 

 

(3) 

 

Where in (3), (V,χ ) are the control variables, and 

(u,v) are the local wind gust speed status. The inertia 

problem represents as [13]: 

 

�̇� =
𝑉𝑐𝑜𝑠(𝜒)

√1 + 𝑓𝑥
2
+

𝑉𝐹𝑥𝐹𝑦sin(𝜒)

√1 + 𝑓𝑥
2√1 + 𝑓𝑥

2 + 𝑓𝑦
2
+ 𝑢 

(4) 

 

 

�̇� =
𝑉sin(𝜒)√1 + 𝑓𝑥

2

√1+ 𝑓𝑥
2 + 𝑓𝑦

2
+ 𝑣 

(5) 

ℎ̇ = 𝑉𝑠𝑖𝑛(𝛾) (6) 

 

Which in (6) 𝛾 is a flight path introduced by (7): 

 

γ = 𝑓𝑥�̇� + 𝑓𝑦�̇� (7) 
 

These equations represent a kinematic pattern of flight 

path in the field. 
 

Cost Function Definition 

To generate the optimal path, this paper illustrates the 

optimal control method [14].  The mathematical model of 

cost function decreases the complex calculations in the 

optimization algorithm. In this scenario, we represent the 

complex COST function including vertical acceleration, 

minimum time, and altitude. 

𝐽 = ∫ [(1 − 𝑘) + 𝑘𝐹(𝑥, 𝑦) + (𝑊1𝐹𝑥𝑥
2 +𝑊2𝐹𝑥𝑦

2
𝑡𝑓

𝑡0

+𝑊3𝐹𝑦𝑦
2 )] 

 

(8) 

 

 

In (8), the minimum time and altitude is the two 

phrases of the cost function, which we can change with the 
(0<k<1) variable and the second part is the vertical 

acceleration, is imported to the flying vehicle.  
 

The Hamilton function To optimize this equation was 

written [14].The equation of (4,5) is added as a state of 
Hamiltonian function. 
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𝐻 = [(1 − 𝑘) + 𝑘𝐹(𝑥, 𝑦) + (𝑊1𝐹𝑥𝑥
2 +𝑊2𝐹𝑥𝑦

2

+𝑊3𝐹𝑦𝑦
2 )] + 𝜆𝑥�̇� + 𝜆𝑦�̇� 

 

(9) 

 

What 𝜆𝑥and 𝜆𝑦exemplify as a co-status function for an 

optimal control problem: 

�̇�𝑥 = −
𝜕𝐻

𝜕𝑥
, �̇�𝑦 = −

𝜕𝐻

𝜕𝑦
 

 

(10) 

 
In this issue, the initial and final points are presented: 

𝑥(𝑡0), 𝑦(𝑡0) = 𝑔𝑖𝑣𝑒𝑛 

𝑥(𝑡𝑓),𝑦(𝑡𝑓) = 𝑔𝑖𝑣𝑒𝑛 

 

(11) 

 

Considering (χ) as a change in the Hamiltonian function, 

the values H/χ=0 and χ illustrate: 

tan(𝜒) =
𝜆𝑥𝑓𝑦𝑓𝑥 − 𝜆𝑦(1 + 𝑓𝑥

2)

𝜆𝑥√1+ 𝑓𝑥
2 + 𝑓𝑦

2
 

 

(12) 

 

Since the Hamiltonian function does not depend 

explicitly on time, the optimal equation is therefore based 

on free final time: 

H(t)=0 
(13) 

With the resolution of the border equation of (4), (5), 

the𝜆𝑥 , 𝜆𝑦 is evaluated. 

𝜆𝑦

=
(
sin(𝜒)

𝐵
−
cos(𝜒)𝐷.𝐸

𝐴
) . (𝐾𝐹 − 𝐾 +𝑊1(𝑓𝑥𝑥2) +𝑊2𝑓𝑥𝑦2 +𝑊3𝑓𝑦𝑦2 + 1)

𝑉𝑐𝑜𝑠(𝜒)2

𝐶
+
𝑉𝑠𝑖𝑛(𝜒)2

𝐶
−
sin(𝜒).𝑣

𝐵
+
cos(𝜒).𝑢.𝐵

√𝐶
+
cos(𝜒).𝐷.𝐸.𝑣

𝐴

 

 

Where: 

𝐴 = √(𝐷2 + 1). 𝐶 

𝐵 = √𝐷2 + 1 

𝐶 = 𝐷2 + 𝐸2 + 1 

𝐷 = 𝑓𝑥𝑥 

𝐸 = 𝑓𝑥𝑦 

 

 

 
 

 

 

 

 

(14) 

 

𝜆𝑥

=
cos(𝜒) . (𝐾𝐹 − 𝐾 +𝑊1(𝑓𝑥𝑥2) +𝑊2𝑓𝑥𝑦2 +𝑊3𝑓𝑦𝑦2 + 1)

√𝐴(
𝑉𝑐𝑜𝑠(𝜒)2

𝐴
+
𝑉𝑠𝑖𝑛(𝜒)2

𝐴
−
sin(𝜒).𝑣

𝐵
+
cos(𝜒).𝑢.𝐵

√𝐴
+
cos(𝜒).𝐷.𝐶.𝑣

√(𝐷2+1)+1
)

 

 

Where: 

 

𝐴 = 𝐷2 + 𝐶2 + 1 

𝐵 = √𝐷2 + 1 

𝐶 = 𝑓𝑦 

𝐷 = 𝑓𝑥 

 

 

 

 

 

 

 

 
(15) 

If we differentiate between (14), (15) with time and 

equation (4), (5), we can give the χ : 

�̇�

= (𝜆𝑦(𝑣𝑥 +
𝑉𝑠𝑖𝑛(𝜒)𝐷.𝐵

𝐵. 𝐹
3

2

−
𝐹𝑥𝐹𝑥𝑥𝑉𝑠𝑖𝑛(𝜒)

𝐷√𝐹

− 𝜆𝑥(
𝐹𝑥𝐹𝑥𝑥𝑉𝑐𝑜𝑠(𝜒)

(𝑓𝑥2 + 1)
3

2

−
𝑓𝑥. 𝐹𝑥𝑦. sin(𝜒)

√𝐸

−
𝐹𝑥𝑥. 𝐹𝑦. sin(𝜒)

√𝐸

+
𝐹𝑥 . 𝐹𝑦 . 𝑉. sin(𝜒) ((𝐹𝑥

2 + 1). 𝐵 + 2𝐹𝑥. 𝐹𝑥𝑥. 𝐹))

2𝐸
3

2

 

 

 

 

 

 

(16 

 

𝐹𝑥𝐾 + 𝐹𝑥𝑥. 𝐹𝑥𝑥𝑥.𝑊1 + 2𝐹𝑥𝑥𝑦. 𝐹𝑥𝑦.𝑊2

+ 2𝐹𝑥𝑦𝑦𝐹𝑦𝑦𝑊3)/(
sin(𝜒) . 𝐷. 𝐴

√𝑓. 𝐶

−
cos(𝜒) .𝐷 (

𝑣𝑤 cos(𝜒)

𝐷
+
𝑢𝑤 sin(𝜒)𝐷

√𝑓
+
𝐹𝑥.𝐹𝑦.sin(𝜒)

√𝐸
) 𝐴

√𝑓. 𝐶2
 

 

(17 

 

Where: 

 

𝐴 = 𝑊1𝐹𝑥𝑥2 + 𝑊2𝐹𝑥𝑦2 
+ 𝑊3𝐹𝑦𝑦2 − 𝐾
+ 𝐹𝐾 + 1 

 

 

𝐵 = 2𝐹𝑥𝐹𝑥𝑥 + 2𝐹𝑥𝑦𝐹𝑦 
 

𝐶 = 
𝑉𝑐𝑜𝑠(𝑐ℎ𝑖)2

√𝑓
−
𝑣𝑤 sin(𝑐ℎ𝑖)

𝐷

+
𝑉 sin(𝑐ℎ𝑖)2

√𝑓

+
𝑢𝑤 cos(𝑐ℎ𝑖) 𝐷

√𝑓

+
𝐹𝑥𝐹𝑦𝑣_𝑤𝑐𝑜𝑠(𝑐ℎ𝑖)

√𝐸
 

 

 

 

 

 
 

(18) 

 

 

𝐷 = √𝐹𝑥2 + 1 

𝐸 = (𝐹𝑥2 + 1). 𝑓 

𝑓 = 𝐹𝑥2 + 𝐹𝑦2 + 1 

 

 

 

 

(19) 

 

By solving the three equations of (4), (5), (16), one 

can enumerate the optimum trajectory. The Euler algorithm 

for solving the first-order nonlinear differential equation is 

considered. In this algorithm with knowledge of initial x(0), 

y(0), and guessing the χ(0) we start to reach the final x and 
y. 
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A. Algorithm Solution 

In this schematic, the field pattern is defined by (20). 
 

𝑓(𝑥, 𝑦) = sin(𝑥) . cos(𝑦) (20) 

 

This is an easy feature to consider as ground. For the Euler 

solution we must consider good area for χ(0) and solving 

the x ̇,y ̇,χ  ̇at the same time till we reach the x=𝑥𝑓.Then the 

value of  |𝑦 − 𝑦𝑓| < 𝑒 must satisfy; Otherwise we have to 

choose another 𝑥0for 𝜒0we add to reach the final value of 
(x,y), this method known as the steepest descent[15]. 
 

a) Variable of 𝑽 

As mentioned (V) is the control variable along 

with𝜒. In this section as appears by 
𝜕𝐻

𝜕𝑉
= 0, V is 

linear in the Hamiltonian equation. Maximum speed 

normally depends on a structure of the flying vehicle 

and by using the Pontriagen optimal condition for 

limited law control the optimal control is Bang-

Bang. 

  

𝑉 = {
𝑉𝑚𝑎𝑥𝑖𝑓𝑆 < 0
𝑉𝑚𝑖𝑛𝑖𝑓𝑆 > 0

𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑓𝑆 = 0
 

(21) 
 

 

 

S, defines by: 

𝑆 =
𝜕𝐻

𝜕𝑉

=
{𝜆𝑥(√1 + 𝐹𝑥

2 + 𝐹𝑦
2 cos(𝜒) + 𝐹𝑥𝐹𝑦 sin(𝜒))}

√((1 + 𝐹𝑥
2 + 𝐹𝑦

2)(1 + 𝐹𝑥
2))

+
−𝜆𝑦(1 + 𝐹𝑥

2)sin(𝜒)

√(1 + 𝐹𝑥
2)(1 + 𝐹𝑥

2 + 𝐹𝑦
2)

 

(22) 

 

By substituting  𝜆𝑦 , 𝜆𝑥 in (22), S change into: 
 

𝑆 =
[(1 − 𝑘) + 𝑘𝐹 + (𝑊1𝐹𝑥𝑥

2 +𝑊2𝐹𝑦𝑦
2 +𝑊3𝐹𝑥𝑦

2 )]

𝑉
 

(23) 

 

In (23) V is always positive and with the Bang-Bang 

theory, S needs to be negative to be in the form of optimum 

control. This algorithm applies before the flight to create 

the optimal path based on minimum time, altitude and 

vertical acceleration.The addition of the thread region in the 

path allows the algorithm to design the path so that it does 

not pass through the thread region. Due to the fact that 

proper design of cost functions is very important in the 

formation of dynamic constraints, but importing all existing 

constraints is a costly and laborious task that is not cost-

effective. This paper aims to combine the dynamic into the 
kinematic equations in path planning with regard of wind 

gust. By combining the equations the numerous calculation 

decrease and we are only deal with kinematic equation 

which is one of the advantage of this method. 
 

 

 

 

The dynamic equations are: 

 

𝑑𝛾

𝑑𝑡
= (

𝐿 + 𝑇𝑠𝑖𝑛(𝛼)

𝑚𝑉
) cos(∅) − (

𝑔𝑐𝑜𝑠(𝛾)

𝑉
) 

(24) 

𝑑ψ

𝑑𝑡
= (

𝐿 + 𝑇𝑠𝑖𝑛(𝛼)

𝑚𝑉𝑐𝑜𝑠(𝛾)
) sin(∅) 

(25) 

𝑑ℎ

𝑑𝑡
= 𝑉𝑠𝑖𝑛(𝛾) 

(26) 

𝑑𝑥

𝑑𝑡
= 𝑉𝑐𝑜𝑠(𝜓)𝑐𝑜𝑠(𝛾) 

(27) 

𝑑𝑦

𝑑𝑡
= 𝑉𝑠𝑖𝑛(𝜓)𝑐𝑜𝑠(𝛾) 

(28) 

 

The equation of (24-28) represent the aerodynamic 

and propulsion of the flying vehicle that makes the flying 

vehicle can maneuver with the heading and decent/ climb 

rate. These equations depends on time, (x,y) are trajectory 

coordinate in horizontal plane, (h) is the attitude of flying 

vehicle, ψ,γ,ϕ represent rolling, path, heading angle in 

order. V is the speed of the plane, (L, D) illustrates the 

aerodynamics and drag to the air vehicle, and T is the 

propulsion represents by (29): 
 

𝑇 = 𝑓𝑇(𝜂)𝑇𝑚𝑎𝑥(𝑀, ℎ) 
(29) 

Which in (29), η is the engine throttle and 0<η<1, 𝑓_𝑇 

it depends on engine specification, 𝑇_𝑚𝑎𝑥 is maximum 

propulsion of the engine. Equation (22-24) is confused and 

can be written as follows: 

(𝐿 + 𝑇𝑠𝑖𝑛(𝛼))2 = (𝑚.𝑉𝑐𝑜𝑠(𝛾)�̇�)2 + (𝑚𝑉�̇�
+ 𝑚𝑔𝑐𝑜𝑠(𝛾))2 

(30) 

As the (30) illustrates, the left-hand side (LHS) of the 

equation is Requirements of the Terrain Maneuver Power 
(RTMP) which includes propulsion and aerodynamic 

power. The Right Hand Side (RHS) of the equation are 

limited by terrain avoidance essential. The variables of 

γ ̇(,ψ)  ̇  in equations of (30) are also a function of the 

coordinate directions.  

 
As mentioned, the goal of this paper is to blending the 

dynamic into the kinematic equation. In this section, each 

component is designed according to the equations of the 

field and eventually replaced. 

�̇� = 𝜓𝑥�̇� + 𝜓𝑦�̇� + 𝜓𝜒�̇� 

�̇� = 𝛾𝑥�̇� + 𝛾𝑦�̇� + 𝛾𝜒�̇� 

(31) 

Equations of (31) are partial derivatives of (x,y,χ) with 
assuming the (31) are depend on (x,y,χ).  To change the 

existing parameters, it is necessary to change the dynamic 

parameters. By blending the equations (27, 28), it can be 

achieving that: 

𝑦𝑥 =
𝑑𝑦

𝑑𝑥
= tan(𝜓) 

 

(32) 
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With inverting the (32) and taking the derivate in 

𝑥, 𝑦, 𝜒 we can wrote: 

𝜓𝑥 =
𝑦𝑥𝑥
1 + 𝑦𝑥

2
 

𝜓𝑦 =
𝑦𝑥𝑦
1 + 𝑦𝑥

2
 

𝜓𝜒 =
𝑦𝑥𝜒

1 + 𝑦𝑥
2
 

 

 

 

 

(33) 

 

Which in (33)𝑦𝑥 is depending on𝑥, 𝑦, 𝜒. On other 

way by combing the (1, 3) we can obtain the γ : 

ℎ𝑥 =
tan(𝛾)

cos(𝜓)
 

(34) 

By deriving the (34) with 𝑥, 𝑦, 𝜒 (35-37) illustrated: 

𝛾𝑥 =
ℎ𝑥𝑥 . cos(𝜓) − ℎ𝑥sin(𝜓)(

𝑦𝑥𝑥

1+𝑦𝑥
2)

1 + ℎ𝑥
2cos(𝜓)2

 

(35) 

𝛾𝑦 =
ℎ𝑥𝑦 . cos(𝜓)− ℎ𝑥sin(𝜓)(

𝑦𝑥𝑦

1+𝑦𝑥
2)

1 + ℎ𝑥
2cos(𝜓)2

 

(36) 

𝛾𝜒 =
ℎ𝑥𝜒 . cos(𝜓) − ℎ𝑥sin(𝜓)(

𝑦𝑥𝜒

1+𝑦𝑥
2)

1 + ℎ𝑥
2cos(𝜓)2

 

 

 

(37) 

 

In equation of (35-37), 𝑦𝑥𝑦 , 𝑦𝑥𝜒 , 𝑦𝑥𝑥  evaluate by deriving 

base on (34) but first need to 𝑦𝑥 rewrite by terrain.  

𝑦𝑥 =
1+ 𝐹𝑥

2

√1+𝐹𝑥
2+𝐹𝑦

2

tan(𝜒)
+ 𝐹𝑥 . 𝐹𝑦

 

 

 

(38) 

 

By deriving the (38) with 𝑥, 𝑦, 𝜒, 𝑦𝑥𝑦 , 𝑦𝑥𝜒 , 𝑦𝑥𝑥  represent by: 

𝑦𝑥𝑥

=

𝑣𝑥 +
𝑉𝑠𝑖𝑛(𝑐ℎ𝑖)𝐶.𝐴

𝐵∗𝐸
3
2

−
𝐹𝑥𝐹𝑥𝑥𝑉𝑠𝑖𝑛(𝑐ℎ𝑖)

𝐶.√𝐸

𝐵

+

(

 
 
(𝑣𝑤 −

𝑉𝑠𝑖𝑛(𝑐ℎ𝑖). 𝐶

√𝐸
)

(

 
𝐹𝑥𝐹𝑥𝑥𝑉 cos(𝑐ℎ𝑖)

√(𝐹𝑥2 + 1)
3

2 )

 

− (
𝐹𝑥𝐹𝑥𝑦𝑉 sin(𝑐ℎ𝑖)

√𝐷
−
𝐹𝑥𝑥𝐹𝑦𝑉 sin(𝑐ℎ𝑖)

√𝐷

+
𝐹𝑥𝐹𝑦𝑉𝑠𝑖𝑛(𝑐ℎ𝑖)((𝐹𝑥2 + 1)𝐴 + 2𝐹𝑥𝐹𝑥𝑥𝐸)

𝐵.𝐷
3

2

)

)

 
 

/𝐵2 

Where: 

 

𝐴 = 2𝐹𝑥 . 𝐹𝑥𝑥 + 2𝐹𝑥𝑦𝐹𝑦 

 

 

 

 

(39) 

𝐵 = 𝑢𝑤 +
𝑉𝑐𝑜𝑠(𝜒)

𝐶
+
2𝐹𝑥 . 𝐹𝑥𝑥 + 2𝐹𝑦 . 𝐹𝑦𝑥

√𝐷
 

𝐶 = √1 + 𝐹𝑥
2, 

𝐷 = (𝐹𝑥2 + 1)𝐸 

𝐸 = √1 + 𝐹𝑥
2 + 𝐹𝑦

2 

𝑦𝑥𝑦

=
𝑣𝑦 +

𝑉 sin(𝜒)𝐶𝐴

2∗𝐸1.5
−
𝐹𝑥.𝐹𝑥𝑦.𝑉𝑠𝑖𝑛(𝜒)

𝐶𝑠𝑞𝑟𝑡(𝐸)

2

−

((
𝑣𝑤−𝑉 sin(𝜒)𝐶

√𝐸
)((𝑢𝑦)−

𝐹𝑥𝐹𝑥𝑦𝑉 cos(𝜒)

(𝐹𝑥2+1)
3
2

+
𝐹𝑥𝐹𝑦𝑦𝑉 sin(𝜒)

√𝐷
+
𝐹𝑥𝑦𝐹𝑦𝑉 sin(𝜒)

√𝐷
+
𝐹𝑥𝐹𝑦𝑉 sin(𝜒)((𝐹𝑥+1)𝐴+2𝐹𝑥𝐹𝑥𝑦𝐸)

𝐵∗𝐷
3
2

))

𝐵2
 

Where: 

 

𝐴 = 2𝐹𝑥𝐹𝑥𝑦 + 2𝐹𝑦𝐹𝑦𝑦 

 

 

𝐵 = 𝑢𝑤 +
𝑉𝑐𝑜𝑠(𝑐ℎ𝑖)

𝐶
+
𝐹𝑥𝐹𝑦𝑉𝑠𝑖𝑛(𝑐ℎ𝑖)

√𝐷
 

 

𝐶 = √𝑓𝑥2 + 1 

𝐷 = (𝑓𝑥2 + 1) ∗ 𝐸 

 

𝐸 = 𝑓𝑥2 + 𝑓𝑦2 + 1 

 

 

 

 

 

 

 

 
 

(40) 

𝑦𝑥𝜒 =
((
𝑉𝑠𝑖𝑛(𝜒)

𝐵
−
𝐹𝑥𝐹𝑦𝑉 cos(𝑐ℎ𝑖)

𝐶
))

𝐴2
+
(𝑣𝑤 −

𝑉𝑠𝑖𝑛(𝑐ℎ𝑖).𝐵

√𝐹𝑥2+𝐹𝑦2 +1

𝐴2

−
𝑉𝑐𝑜𝑠(𝜒). 𝐵

𝐴√𝑓𝑥2𝑓𝑦2 + 1
 

Where: 

 

𝐴 = 𝑢_𝑤 +
𝑉 cos(𝑐ℎ𝑖)

𝐵
+
𝐹𝑥𝐹𝑦𝑉𝑠𝑖𝑛(𝑐ℎ𝑖)

𝐶
 

 

𝐵 = √𝑓𝑥2 + 1 

 

𝐶 = √(𝑓𝑥2 + 1)(𝑓𝑥2 + 𝑓𝑦2 + 1) 

 

 

 
(41) 

 

  

Now the 𝑦𝑥𝑦 , 𝑦𝑥𝜒 , 𝑦𝑥𝑥 are obtained and with 

substituting in (35-37)�̇�, �̇� are illustrated: 
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�̇�

=
−1

(1 + 𝑦𝑥
2)(

𝑃2

tan(𝜒)
+ 𝐹𝑥 . 𝐹𝑦)2

{[2𝑃1𝑃1𝑥 (
𝑃2

tan(𝜒)

+ 𝐹𝑥𝐹𝑦) − 𝑃1
2 (

𝑃2𝑥
tan(𝜒)

+ 𝐹𝑥𝑥𝐹𝑦 + 𝐹𝑥𝐹𝑥𝑦)] �̇�

+ [2𝑃1𝑃1𝑦 (
𝑃2

tan(𝜒)
+ 𝐹𝑥𝐹𝑦)

− 𝑃1
2 (

𝑃2𝑦

tan(𝜒)
+ 𝐹𝑥𝑦𝐹𝑦 + 𝐹𝑥𝐹𝑦𝑦)] �̇�

− [𝐴2𝐵𝑐𝑜𝑠𝑒𝑐(𝜒)]�̇�} 

 

 
 

 

 

 

(42

) 

�̇�

= [
1

(1 + 𝑦𝑥
2)2(

𝑝2

tan(𝜒)
+ 𝐹𝑥𝐹𝑦)

2(1 + ℎ𝑥
2 cos(𝜓)2))

] 

{[ℎ𝑥𝑥 . cos(𝜓) − ℎ𝑥 sin(𝜓) 1 + 𝑦𝑥
2

+ 2𝑃1𝑃1𝑥 (
𝑃2

tan(𝜒)
+ 𝐹𝑥𝐹𝑦)

− 𝑃1
2 (

𝑃2𝑥
tan(𝜒)

+ 𝐹𝑥𝑥𝐹𝑦

+ 𝐹𝑥𝐹𝑥𝑦)] �̇�

+ [ℎ𝑥𝑦 . cos(𝜓)

− ℎ𝑥 sin(𝜓)1 + 𝑦𝑥
2

+ 2𝑃1𝑃1𝑦 (
𝑃2

tan(𝜒)
+ 𝐹𝑥𝐹𝑦)

− 𝑃1
2 (

𝑃2𝑦

tan(𝜒)
+ 𝐹𝑥𝑦𝐹𝑦

+ 𝐹𝑥𝐹𝑦𝑦)] �̇�

+ ℎ𝑥𝜒. cos(𝜓) (1 + 𝑦𝑥
2)

− ℎ𝑥sin(𝜓)𝐴
2𝐵𝑐𝑜𝑠𝑒𝑐(𝜒)]�̇�} 

 

Where: 

𝑃1𝑥 =
(𝐹𝑥𝑥 . 𝐹𝑥)

𝑃1
,𝑃2𝑥 =

(𝐹𝑥𝑥 . 𝐹𝑥 + 𝐹𝑦 . 𝐹𝑦𝑥)

𝑃2
, 

𝑃1 = √1+ 𝐹𝑥
2,𝑃1 = √1+ 𝐹𝑥

2 + 𝐹𝑦
2 

 

 

 

 

 

 

 

 

 

(43

) 

 

With replacing the (42, 43) in (31), the equations written as: 

 

𝑅𝑇𝑀𝑃2 = (𝑚𝑉𝑐𝑜𝑠(𝛾)[𝜓𝑥�̇� + 𝜓𝑦�̇�

+ 𝜓𝜒�̇�])
2+(𝑚𝑉[𝛾𝑥�̇�

+ 𝛾𝑦�̇� + 𝛾𝜒�̇�])
2 

         (44) 

 

The (44) is an algebra equation and can be solved 

based on  �̇�, by replacing the �̇�𝑜𝑝𝑡 the optimal RTMP can 

be obtained. In fact RTMP is an evaluation of aerodynamic 

and propulsion ability of aerial vehicle in pursuing of 

terrain. The real answer of this equation means the flying 

vehicle can path through to terrain but if the answer is 

imaginary the flying vehicle is not allowed to go through in 
the terrain. 
 

B. Control Variable Calculation 

In the anterior section the RHS of the RTMP is 

deliberated. In this section the control variables of T,α,ϕ are 
evaluated. Then the airspeed of the air vehicle has to be 

maximum, so: 

𝑉 = 𝑉𝑚𝑎𝑥 ⇒ �̇� = 0 (45) 

 With replacing the (45) into the speed dynamic equation 

indicate [15]: 

𝑇𝑐𝑜𝑠(𝛼) − 𝐷 − 𝑚𝑔𝑠𝑖𝑛(𝛾) = 0 (46) 
 
By rewriting the (30), (47) illustrate: 

 

𝑇. sin(𝛼) + 𝐿 = 𝑅𝑇𝑀𝑃 (47) 
 

The lift and drag represent by: 

𝐿 = 𝐿𝛼𝛼 

𝐿𝛼 =
1

2
𝜌𝑉2𝑆𝐶𝐿𝛼 

𝐷 = 𝐷0 + 𝐷𝛼𝛼2 

𝐷0 =
1

2
𝜌𝑉2𝑆𝐶𝐷0 

𝐷𝛼 =
1

2
𝜌𝑉2𝑆𝐾𝐶𝐿𝛼

2  

 
 

 

 
 

(48) 

 

With exchanging the equations of (46-48), two 

equations accomplish based on (𝛼).   

 

𝑇𝑐𝑜𝑠(𝛼) − 𝐷 −𝑚𝑔𝑠𝑖𝑛(𝛾) = 0 
 

𝑇. sin(𝛼) + 𝐿 = 𝑅𝑇𝑀𝑃 

(49) 

 

By solving (49), L, 𝛼 represent by: 

𝑇𝑟𝑒𝑞 =
𝑅𝑇𝑀𝑃

𝛼𝑟𝑒𝑞
− 𝐿𝛼  

 
(50) 

 

𝐷𝛼𝛼𝑟𝑒𝑞
3 − (𝐿 + 𝐷0 +𝑚𝑔𝑠𝑖𝑛(𝛾))𝛼𝑟𝑒𝑞

+ 𝑅𝑇𝑀𝑃 = 0 

(51) 

 

Afterward, the calculation of the require propulsion 

force and angle of attack is completed; however it should 

be notice that: 
 

If the evaluated �̇� in the 𝛼𝑟𝑒𝑞equation pass the 

allowed band, 𝜒 must retain to the closest band and 𝛼𝑟𝑒𝑞 

must calculatedagain.  
 

If  𝑇𝑟𝑒𝑞 in (50) becomes more than 𝑇𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒  which is 

determined by ability of engine performance in altitude and 

speed of flight. It must put the amount of require propulsion 

with available propulsion and calculate the RTMP again. 
 

𝛼𝑟𝑒𝑞 =
𝑅𝑇𝑀𝑃

𝑇𝑟𝑒𝑞 + 𝐿𝛼
 

(52) 
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III. GAME THEORY 
 

In the previous section we dealt with the single flying 

vehicle (agent) and tried to find the optimal path with 

terrain following and avoidance. This section deal with two 

agents which each agent has own path and trying to engage 

one another.     
 

In this situation this paper aims to use differential 

game theory for defining the new cost function in the low 

altitude and time. The differential game has a several 

implementations, the non-zero-sum games are: Stackelberg 
and Nash game. Which each game has own performance, 

Assuming the each player has own information. A 

differential game follows as: 

 

�̇� = 𝑓(𝑥, 𝜙, 𝜓, 𝑡)𝑥(𝑡0) = 𝑥0 (53) 
 

Where x(t) is a state of equations and the 𝜙(𝑡) is the 

control player 1 and 𝜓 is the control player 2. The initial 

and final constraints are R(x(t0), t0) = 0 , P(x(tf), tf) = 0 

in order respectively , tf is free. This paper is uses zero-

sum game which means two participants has own decision 

and loss of one decision maker gain equal with wining the 

other participant gain[14].  

 

𝐺1 = −𝐺2 = 𝐺 (54) 

 

The cost function defined by: 

 

𝐽[(𝑥, 𝜙, 𝜓, 𝑡)] = 𝑚𝑖𝑛𝑚𝑎𝑥(𝑔(𝑥(𝑡𝑓), 𝑡𝑓)

+∫ 𝐿((𝑥, 𝜙, 𝜓, 𝑡))
𝑡𝑓

𝑡0

𝑑𝑡) 

(55) 

 

Which is in (55) the (L) must be optimized and, g is 
the final condition. These terms with two agents are in the 

form of pursuit and evader and assumed the formation is 

consist during the mission. 
 

A. Formulation of flying path 
As stated in the previous section, the assumption that 

both agents are aware of their beginning and the situation 

remains the same until the end of the game is resolved. This 

condition is restrictive, but shows its special capability in 

some maneuvers. The subject is studied with a simple flight 

of the agent. In this paper, the mass point model is used to 

solve issues. As the previous section, it used the terrain 

following and avoidance with consideration of wind gust 

 

(56) ℎ = 𝑓(𝑥, 𝑦) + ℎ𝑐 
 

Since the equations (4, 5) are for one agent, by 

generalizing these equations for two agents, the equations 

are written as follows [14]. 

 

  (57) 

 𝑥1̇ =
𝑉1𝑐𝑜𝑠(𝜒1)

√1 + 𝑓𝑥1
2
+

𝑉1𝐹𝑥1𝐹𝑦1sin(𝜒1)

√1 + 𝑓𝑥1
2√1+ 𝑓𝑥1

2 + 𝑓𝑦1
2

+ 𝑢1 

(58) 
𝑦1̇ =

𝑉1sin(𝜒1)√1 + 𝑓𝑥1
2

√1+ 𝑓𝑥1
2 + 𝑓𝑦1

2
+ 𝑣1 

(59) 
𝑥2̇ =

𝑉2𝑐𝑜𝑠(𝜒2)

√1 + 𝑓𝑥2
2
+

𝑉2𝐹𝑥2𝐹𝑦2sin(𝜒2)

√1 + 𝑓𝑥2
2√1+ 𝑓𝑥2

2 + 𝑓𝑦2
2

+ 𝑢2 
 

 

(60) 

 

𝑦2̇ =
𝑉2sin(𝜒2)√1 + 𝑓𝑥2

2

√1+ 𝑓𝑥2
2 + 𝑓𝑦2

2
+ 𝑣2 

Index (1) and (2) is for the evader and pursuit agent 

respectively. It is assumed the pursuer is faster than the 

evader for the physical meaning, so that the flying vehicle 

engages with the target. 

(61) 𝑉2 > 𝑉1 
 

 
If the altitude variation considered zero, the problem will be 

very easy to trap the evader. 
 

B. The game theory condition 

Based on the zero-sum game, the game ends when the 
pursuer reaches the evader or its circular range (d). When 

the pursuer is in accepting range, then the game is over. 

The equation of (62) is used to approach. 
 

(62) (𝑥1 − 𝑥2)
2+(𝑦1 − 𝑦2)

2 < 𝑑2 
 

In Equation (62), (d) is the approach range of two 
agents and has a specific value. 

 

C. Cost function in Game Theory 

In most two-player games, the measure of performance 

is the timing of the chase. It is obvious that the evader is 
trying to increase his time to avoid getting caught and the 

pursuer is trying to reduce the time to the lowest altitude. 

So, the cost function is regarded by (63, 64): 

 

(63) 𝐽 = 𝑚𝑖𝑛.max(𝑄(𝑡𝑓))

+∫ (1 − 𝐾 +𝐾(1 + 𝑤2𝑓2

𝑡𝑓

𝑡0

−𝑊1𝑓1))𝑑𝑡 
(64) 𝑄(𝑡𝑓) =

𝜈

2
{((𝑥1 − 𝑥2)

2+(𝑦1 − 𝑦2)
2

− 𝑑2)} 
In the above equations, the(𝑤1 ,𝑤2) is the weight 

functions and the negative sign indicate that the evader 

agent wants to maximize the cost function. The ν parameter 
is also an indeterminate coefficient in the system that 

depends on the number of agents. 
 

D. Solving Algorithm of Game theory 

Since in optimal control require to create a Hamiltonian 
function, first need to generalization the function for two 

agents, the optimal solution for several agents using game 

theory is expressed by Equation (65). 

 

(65) 𝐻 = 1 − 𝐾 +𝐾(𝑤2𝑓2 −𝑊1𝑓1) + 𝜆1�̇�1
+ 𝜆2�̇�1 + 𝜆3�̇�2+𝜆4�̇�2 
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Considering the cost function and the continuous 

equations, the sufficient condition for the game to reach the 
actual result, the cost function must be extreme. Therefore, 

to solve these equations, first of all, the quasi-state 

equations must solve and then with a final condition for 

quasi-state, can proceed backward to solve the Hamiltonian 

function.   
 

The final conditions are: 

(66) 

𝜆1(𝑡𝑓) = −𝜈(𝑥2 − 𝑥1) 
𝜆1(𝑡𝑓) = −𝜈(𝑦2 − 𝑥1) 
𝜆1(𝑡𝑓) = 𝜈(𝑥2 − 𝑥1) 
𝜆1(𝑡𝑓) = 𝜈(𝑥2 − 𝑥1) 

(𝜈)can be determined by substituting the (66) into (65): 

(67) 

ν

=
1+𝑊2𝑓2 −𝑊1𝑓1

𝑥1̇(𝑥2 − 𝑥1) + 𝑦1̇(𝑥2 − 𝑥1)−𝑥2̇ (𝑥2 − 𝑥1) − 𝑦2̇(𝑥2 − 𝑥1)
 

 

E. Numerical Simulation of Game Theory  

Most of the numerical methods used in game theory are 

related to simple targeting with the help of dynamic 

programming methods or using the control methods to 

obtain game points in this theory[10-12]. In this research, 

the retrospective summation method has been used to 
produce the extreme path[16-17]. To produce the optimal 

path, the final coordinate points are first determined. Then, 

having an escape point, the following points are obtained 

according to Equation (62). Then we find ν according to the 

relation (67) and by placing it in the equations of state and 

quasi-state we will come to the beginning from the last 

time. However, the Equation of (24) is used for control 

variables (χ). In the different routes to reach the target 

point, the tracking point can be used. All the relation and 

RTMP with consideration of wind effect are evaluated in 

the game theory. 
 

IV. SIMULATION 
 

The aim of this section is to simulate the path 

planning of flying vehicle with regard of minimum time 

and altitude. Since the primary and final points of the path 

are determined, the algorithm begins with initial heading 

angle bounded limits. The equations of (4), (5), (16), must 

solve at the same time to reach the 𝑥(𝑡) = 𝑥𝑓, with 

compare of 𝑦𝑓 with final y in the limited error we can 

choose the selected χ before the plane flew. 
 

The steepest descend algorithm is applied in this 

scenario. The (K)variable is an important because by using 

this variable the minimum time and altitude can be reached. 

The most important thing in defining the (F) function is the 

function must have a first and second derivative order. In 

order to define the terrain and thread avoidance, for 

modeling of real 3d points, This paper used the spline 

fitting method [17]. The aerodynamic coefficient of 

unmanned aerial vehicle is mass-point data and the flying 

vehicle attends to reach the 𝑥𝑓 = 9000(𝑚), 𝑦𝑓 = 6000. 

Fig.2, represent the model of the terrain.   

 

 
Fig. 2: The model of terrain 

 

Fig.3,4 illustrates the (x,y) variable base on 𝜒. The 

primary angle of heading is represented as a control 

variable in optimal path. We can show that with a setting of 

proper angle can be reach to the final point. Behave of  𝑦𝑓 

with  𝑊 = 0, 𝑉𝑚𝑎𝑥 = 200(𝑚/𝑠) and 𝐾 = 0, 1 shows in 

fig.3,4. 
 

Table 1 represents the specification of the unmanned 
aerial vehicle. 

 

𝑉(𝑠𝑝𝑒𝑒𝑑) 50(𝑚/𝑠) 
𝑊 (weight) 1000 

𝑇𝑎𝑣 10000(𝑁) 
𝑥𝑓 , 𝑦𝑓 9000,6000(𝑚) 

𝑢(𝐷𝑜𝑤𝑛𝑟𝑎𝑛𝑔𝑒𝑤𝑖𝑛𝑑𝑔𝑢𝑠𝑡) 
𝑣(𝑐𝑟𝑜𝑠𝑠𝑟𝑎𝑛𝑔𝑒𝑤𝑖𝑛𝑑𝑔𝑢𝑠𝑡) 

𝑢 = 60 cos(𝑥)(𝑚/𝑠) 
𝑣 = sin(𝑥) . cos(𝑦)(𝑚/𝑠) 

𝑑(𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) 10(𝑚) 
Table 1: Specification of aerial vehicle 

 

 
Fig. 3: tracks of  final point with different heading angle in  

K=0 
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Fig.4. The tracks of optimal point with lowest altitude K=1 

 

As the fig.3, and fig.4, demonstrate, when the (𝑥) 
reaches to the final point with minimum error then 

algorithm will try to execute the (𝑦𝑓) with minimum error. 

Fig.5, illustrates the vertical forces with the weight off𝑊 =
1000,𝑊1 = 𝑊,𝑊2 = 2𝑊,𝑊3 = 𝑊 . As the results 

represent there are fewer maneuver with considering the 

acceleration, because the aerial vehicle cannot follow the 

terrain in the limited area. Fig.5,shows the best path 

according with or without the vertical acceleration.  

 
Fig. 5: Difference between with or without vertical 

acceleration in K=0, W=1000 
 

Fig.6, Represent the surface data with K= 0, 1. In 

minimum time, the algorithm tries to find the closest path 

without considering the altitude; however, in minimum 

altitude the closest path following regardless of considering 

the time, the plane will go to the lowest altitude. Table.1 

illustrate the time of reaching to the target regarding the 

minimum time and altitude in the present of vertical 

acceleration and wind gust. The table.1 shows when (𝐾 =
0) the time of reaching to final point is in minimum time 

and when the perturbation like wind gust approach the time 

increase, as for vertical acceleration.  

 

Table.2 illustrates the different situation of problem in 

the present of wind gust and vertical acceleration. As the 

data representation, the time of reach point when these 

constrains add to the problem is influenced. 

 

𝐾 𝑊 Wind gust Time(sec) 

0 0 0 93 

0 1000 0 91 

0 0 𝑢 = 60 cos(𝑥) 
𝑣 = sin(𝑥) . cos(𝑦) 

667 

1 0 0 96 

1 0 𝑢 = 60 cos(𝑥) 
𝑣 = sin(𝑥) . cos(𝑦) 

759 

1 1000 0 97 

Table 3: Different types of constraints 
 

Fig.6, demonstrates the minimum time and altitude in 

the present of wind effect. As the result shows with 

consideration of wind gust, the time of path following in 

the final point is bigger than the result of fig.6, as expected 

but the new cost function capable to solve the problem.  

 
Fig. 6: The difference of minimum altitude and time in 

terrain following. 

 

 
Fig. 7: Terrain following with consideration of wind gust 
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To analyze the control variable and state of the system 

the dynamic system must follow the terrain, it must 
evaluate the aerodynamic and propulsion force with 

consideration of RTMP in the present of vertical 

acceleration, minimum time and altitude, however, the LHS 

must be bigger than RHS. With this condition the aerial 

vehicle has the strength to follow the terrain. Fig.8, 

represent the 𝜒 optimal angle for minimum time and 

altitude. As the figure illustrates when the aerial vehicle 

wants to follow the terrain in minimum time, the plane has 

to follow the tip of the terrain to reach the final point, 

however, when the plane wants to put through in low 

altitude the plane will follow the lowest point of terrain 
which doesn’t need to change its local heading.     

 
Fig. 8: the local heading angle with present of wind gust 

 

Fig.9, represent the  (𝛾,𝜓) angles for minimum time 

and altitude in the present of wind gust. Since in (𝐾 = 1), 
the aerial vehicle will go to the straight path with regard of 

the terrain so the 𝜒 angle doesn’t changing too much.   

 

 
Fig.9. Difference between the 𝛾, 𝜓 angle in lowest time and 

altitude with wind gust 
 

Fig.10, represent the require thrust with consideration 

of minimum time and altitude. As the result indicates, the 

thrust require the aerial vehicle in the higher altitude is less 

than the lowest altitude because of air density.  
 

 
Fig.10: The require thrust for terrain following 

 

The next figures endeavor to discuss two 

agents.Fig.11, demonstrate the two agent in the case of 

pursuer and evader. Based on game theory algorithm, the 

pursuer will try to reach the evader. As the result shows 

when the evader flying between the terrains, the pursuer 
wills follow the evader until reaches to the limited area. 

Fig.12, illustrate the pursuing of two aerial vehicles and 

they targeting another as the result represented, the 

twoobject reached within acceptable range.  

 
Fig. 11: Two agent in the form of pursuer and evader 

 
 

Fig.12. The contour of terrain with pursuer and evader 
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Fig.13: Shows the following of two agents without the 

wind gust 
 

 
Fig.13: Two agent regardless of wind gust 

 

As the result represents this algorithm has ability to 

pursue the target in terrain following consideration of wind 

gust and vertical acceleration.  
 

V. CONCLUSION 
 

In this paper has been tried to reach the final point in 

terrain following and avoidance with consideration of 

defining combination of kinematic and dynamic equation. 

As the result showed this combination has the ability to 

consider constrains as vertical acceleration and wind gust in 

minimum time and altitude. In the second part the game 

theory in terrain following a combination of kinematic and 

dynamic was studied, and the results illustrated the benefit 

of this method in the present of wind gust and vertical 

acceleration.   
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