
Volume 7, Issue 8, August – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22AUG689 www.ijisrt.com 1432

Distributed Workspace Using Cloud Technology and

Version Controlling

Nikhil Pujari

Department of Information Technology

St. Francis Institute of Technology

Mumbai, India

Rohit Choudhari

Department of Information Technology

St. Francis Institute of Technology

Mumbai, India

Rahul Shirolkar

Department of Information Technology
St. Francis Institute of Technology

Mumbai, India

Dr. Minal Lopes

Department of Information Technology
St. Francis Institute of Technology

Mumbai, India

Abstract:- Efficient management of stakeholders in any

web project is need of the time. There are lots of

stakeholders involved in a web project and managing

everyone and everything becomes messy. To make the job

easier there for platforms that facilitate distributed

development. With this system, “Distributed Workspace”,

features of existing applications have been integrated and

more features have been appended to make development

much easier. It is done by the algorithm which is based on
microservice architecture. The application aims to provide

better source code accessibility and version control. It

automates project operations and other development tools

all in one place. Mainly, it eliminated the overhead of

downloading the project files to the local machine. All these

make a platform where users can works, coordinate with

each other and share their resources, bridging the

communication gap in a more efficient manner than the

existing applications.

Keywords:- ERP, Distributed Workspace, Developer
Workspace, Cloud Computing, Live Code Editor, Version

Control.

I. INTRODUCTION

In today's world communication is a key to the success of

any project. The work “Distributed Workspace" is based on the

aspects of providing ways for better communication between

project team members [1]. This is done using distributed cloud

servers i.e. more than one server acting together to perform a

large task in the system. In this system these distributed servers

are Amazon’s EC2 instances. EC2 is a service that provides us
to compute on virtual machine. These distributed servers

communicate with each other using API and are connected in

a network storage. This system uses an amazon storage service

called the EFS, designed to provide scalable, elastic,

concurrent and encrypted file storage. Every EC2 instance

makes use of this file system.

The objective of this work is to develop a platform where

resources & work of every developer can be viewed and shared

by authorized co-workers. This platform which can be used in

a website developing organization, where website resources

can be bundled in one place [3].

This creates a workspace for every member in a project

to view and use the resources for development. This

workspace gives the developers the luxury to host their project

within the same platform without the need to download the

repository and run it on a local machine [3]. This system
provides features like creating a roadmap, assigning task and

contact members. An efficient algorithm and such added

functionalities make this as a practical application.

II. RELATED WORKS

This section discusses the literature surveyed to build the

idea of distributed workspace with unique features. It was

identified that some existing workspaces use only cloud

computing, only distributed computing or only version

controlling. The idea proposed in this paper integrate these
features and aims to overcome the drawbacks of these existing

projects.

 Microsoft Azure

Windows Azure platform offers a runtime execution

environment for managed code to host and run scalable

solutions. Each Windows Azure Compute instance is also a

Virtual Machine (VM) instance created by the platform and

only the number of instances is configured by the team hosting

the application. Every VM instance runs an Azure agent to

connect and interact with the Windows Azure fabric. Every

VM has a local file system which can be utilized by the
web/worker role instance during their life-time, but once the

VM instance is shut down, VM and local storage will go away.

Azure maintains 3 different instances of every application on

the cloud and the end-user will not be aware of which instance

is serving the specific request. Hence persistent storage is

required to support the application data and this can be met

using the Windows Azure Storage Service. With

geographically distributed canters, Windows Azure Compute

provides developers with the functionality to build, host and

http://www.ijisrt.com/

Volume 7, Issue 8, August – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22AUG689 www.ijisrt.com 1433

manage applications on the cloud. Application developers can

connect to Windows Azure portal using Windows Live ID and

choose a hosting account to host applications on the cloud and

a storage account to store data or any relevant content on the

cloud. Certain applications can use either the hosting or

storage accounts or both. The accounts enable developers to

host and deploy applications on the Windows Azure platform.

Windows Azure presently supports three roles; web role
instance, worker role and VM role.

 Palantir: Coordinating distributed workspaces

By our observation Palantir not only requires the main

user to have knowledge of their own set of work but it also

requires the user to have knowledge about the changes done

by his/her developer colleague. Palantir provides the developer

with a graphical display. Specifically, Palantír allows

developers to better coordinate their activities by providing

each developer with a graphical display that shows the set of

artifacts they are modifying, meta-data about those artifacts

(e.g., artifact name, version number, author information, etc.),
and the severity and impact of the modifications being made in

parallel by other developers. Knowing this information allows

developers to better assess the ongoing activities and

accordingly coordinate their activities amongst each other.

III. PROBLEM DEFINITION

Through the rigorous literature survey, it is observed that,

in a typical distributed project work, where more number of

people contribute, it is difficult to communicate with each other

in a true manner [1]. The common problems encountered by
any website developer are assigning sharing, tasks, hosting,

having a progress report.

The work in this paper, aims to solve these problems by

providing an environment where users can work in

synchronism, controlled by a project administrator. The other

objectives of this work is to provide flexible version control.

While working on different technologies and modules, it may

sometimes become necessary to revert back to the older

versions of the modules. It is observed that this is extremely

difficult in most of the existing workspace solutions because

the current file is modified by multiple users simultaneously.
[2].

The drawback of the systems which provide version

control is that it mandates the entire project repository to be

downloaded on the local machine making them less user

friendly.

IV. METHODOLOGY

Fig 1 Conceptual Architecture of Palantír.[6]

The above figure displays the architecture used for the

creation of Palantir. The main role of the Palantir Client is to
intercept the severity and change impact events and translate

them into an internal representation that is subsequently used

by the visualization block. At a minimum, the visualization

component will show which artifacts are being checked-out

and checked-in and the severity and impact of each of the

changes. In doing so, developers are presented with an

increased level of awareness of other developers’ activities.

We intend to develop a range of visualizations from which each

developer can choose the one they prefer. Each of these

visualizations will be based on a different balance among the

amount of information displayed, interface usability, and
intrusiveness of the interface.

A. About the system

Distributed workspace is categorized in two parts, a) front

end: It is the dashboard available for the admin, and b) the

backend that handles the files and maintains version control.

The front end dashboard interacts with the user/admin where

they can edit files, add files, add employees, view their work

etc. The backend consists of two servers, ‘the php server’ and

the ‘Linux powered got server’. All actions performed in

frontend are received at the backend. The steps are as follows:

By referring to Fig 2, the flow of the project can be

understood. First any user would visit the website having

information about us and how he/she could use the service.

When a new user signs up, if it is a company, it will register

itself and get a repository allocated with its company name on

the server. If it is an employee, he would have to enter the

unique company pin(known to the company admin only) to be

registered into the company.

http://www.ijisrt.com/

Volume 7, Issue 8, August – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22AUG689 www.ijisrt.com 1434

Once the user has signed up he/she would be prompted to

sign in. On successful sign in, the website would open up either

an admin dashboard, if sign in is performed through a company

email id or to the user dashboard, if sign in is performed

through an employee’s email id.

In an admin’s dashboard, the admin can add/Delete

employees in his company and add projects and upload
necessary files into the repository. The admin assigns a project

manager whose role is to select required employees added in

the company to his project and maintain the repository and

maintain a To-Do list. In a user’s dashboard, the

user/employee can view his colleagues in the company he

works, view projects assigned to him, keep a track of his works

and tasks in the To-Do list and view files in the repository

assigned to him and edit code using built-in code editor.

Fig. 2 Flow of Distributed Workspace

At the backend, it is mainly making use of two servers,

one is the php server and other is the git server. While creating

a project a git repository is created in the git server. Admin and

manager are assigned with the developer (dev) branch and

employees with their own branch named after their email id.
When the user has to access the project files, a request is sent

to the git server to load the files in the frontend. The editor will

have a file structure column, which will be received from the

server. It would only be the structure and not the files to save

the server load. Once the employee selects a file, the request

would be sent to the server and the file will be fetched and

displayed in the editor. When the employee saves the file, it is

stored in the php server. When the work is done, the employee

commits the file, with a commit message. Once this is done the

files saved on the server are committed and pushed to the git

repository.

Fig. 3 Architecture of Distributed Workspace back-end

It can be seen that at the backend five servers dedicatedly
perform their respective tasks. The operations performed

through these servers are explained further.

Operation 1: Source code related operations

Step 1: Fetch source code related files to EFS file system from

git.

Step 2: Send the hierarchy of the files. Step 3:

Perform operation on files the EFS files by using the root id

and the file name and the type of operation to perform on the

file.

Fig. 4 Microservice Architecture

http://www.ijisrt.com/

Volume 7, Issue 8, August – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22AUG689 www.ijisrt.com 1435

Operation 2: Test the work live.

Step 1: Load the editor from the above scenario. Step

2: Save the files on the server.

Step 3: Access the result of the file by going to the link:

http://live.dwspace.tech/root_id.

Step 4: The php server will check the files from the EFS system

and retrieve the necessary files from it.

Operation 3: Project related operation

Step 1: Create repository using the git init –bare command.

Step 2: Add branches to the repo using the name of the user.

Step 3: Perform project related operation on the repository like

delete branch, delete repo.

Operation 4: Rollback the branch

Step 1: Load the logs for that users on page load of the

corresponding project.

Step 2: Select the log for resting the head.

Step 3: Set request to the rollback server.

Step 4: Server will fetch the files on the EFS system and then
perform git reset –head command on the source files.

Step 5: Force push the code and the git tree on the remote

repository.

Operation 5: Merge 2 branches

Step 1: Load the repository files on to the EFS server. Step

2: Return the branches w.t.r. to the project. And send back to

the user. Step 3: user will send the base and upcoming

branch Step 4: Server will fetch the base branch and then the

upcoming and branch.

Step 5: Server will perform merge operation on to the base
branch.

Step 6: Server will then find the ‘=======’ sign for conflict

detection.

Step 7: Send back the hierarchy to the user. Step 8:

Use will fix the conflict and the commit the code.

Fig. 5 Format of conflict detected by git

Fig 5 shows the example of how the merge server sends

a conflict file when a conflict is detected. The conflicted file

returned by the ‘git handler’ has a specific format which

denoted where and on which branch the conflict has been

raised. The code between ‘<<<<<<< HEAD’ till ‘=======’ is

the part of code (in the base branch) which is different from

the code in the incoming branch starting from ‘======’ till

‘>>>>>>> (followed by the hash code of the incoming
branch)’.

Distributed workspace project simplify this task of

identifying the conflict by separating the two files and

highlighting the conflicted area in the files.

The task for identifying this conflict is simplified in the

system where the conflict file is separated as two different

original files and the conflicted area is highlighted.

Operation 6: Checkwork

Step 1: Send request to the checkwork server for creation of
the other branch source code file on the EFS system.

Step 2: On the completion of the creation. Server will retun a

root key to the user.

Step 3: User can access the details form workdone. Dwspace

.tech/root_id

Fig. 6 Micro server and its operations

http://www.ijisrt.com/
http://live.dwspace.tech/root_id

Volume 7, Issue 8, August – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22AUG689 www.ijisrt.com 1436

V. EXPERIMENTATIONS AND RESULTS

A) Application of the algorithm in the system

Fig 7 Admin Editor

Fig 7 shows the admin is assigned with a ‘developer(dev)’

branch. This branch is considered as a production branch where

the code stored is the final expected output of the project. The

dev branch has a default file structure which can be altered by

creating a new file/folder or by uploading files/images from the

local machine. Every change done in the repository has to be

committed with a commit message and should be pushed.

Fig 8 shows the merge conflict page. As mentioned

above, the developer(dev) branch is the ones whose code is

considered as the final deployment version. As other

employees are working on their respective assigned branches.

At the end, the admin has to merge the code.

Fig 8 Handle Merge Conflict

During the merge process it is very much possible that a

conflict might arise between the ‘dev’ branch and the employee

branch. This is catered by this module, where the admin

decides which code stays in the ‘dev’ branch. The code

highlighted in red, depicts that this part is different from the

other branch and here the conflict has arisen.

Fig 9 Rollback

Fig 9 shows Rollback feature used in version control. It is
possible that at some point the admin needs to retrieve the code

with older version compared to current version code which

user has committed recently. This can be done by clicking on

it. the rollback button and selecting the commit message. All

changes will be retrieved till the point where that selected

commit was performed.

Fig 10 User Editor

Fig 10 shows the user editor. It works similar to the admin

editor. It displays the file allocated to the respective user

branch. Any work performed, when just ‘saved’, is stored on

the file server, once it is committed and pushed to the user

repository, it is saved in the ‘git’ server.

B) Performance analysis

Although the current version of this system is built at the
lowest level of hardware configuration, it has gained a very

decent range of performance. This can be easily scaled up using

vast service options from AWS and any other available cloud

service providers at the time of deploying this project live for

commercial use.

http://www.ijisrt.com/

Volume 7, Issue 8, August – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22AUG689 www.ijisrt.com 1437

Table 1.2 shows the performance test results of important modules of this project and the time taken to perform it.

Table 1.2 Application performance analysis

Sr no. Module Name Operation performed Time take n (in sec)

1.

All CRUD

Operations

Operations performed on the mySQL database like IN-

SERT, UPDATE, DEL ETE.

<1

2. Project creation Git repository created on the Git server (installed on EC2). 3.78

3. Editor loading Fetching file hierarchy response from the server. 2.30

4. Loading a file in the editor area Fetch the file content from the hierarchy sent. 1

5. Upload Image Image is base64 format to the hierarchy selected. 2.1

6.

Save File

Content from file content is

fetched and stored in the corresponding file hierarchy.

1.2

7.

Commit

All unsaved files are saved on the php server and a ‘git

commit’ command is executed.

1.5

8. Push ‘git push’ command is executed 2.3

9. Load rollback logs Logs of all the of the

corresponding branch is requested

5

10. Populate branches options during merge Fetch all the branch name belonging to the corresponding

project.

2.3

11. Merge operation Fetch base branch and the merge with in coming branch 4.5

12. Download project Fetch files from git server, store it in a folder, convert into
zip and return this folder name in response.

3

Above performed task were carried out on branches

which sized around 12MB. These numbers can vary depending

on the size of the files. The git which could perform a merge of

two 12 MB branches in 4 seconds could take even 10 minutes

for a 100MB sized branch. Likewise, an image of 200 KB takes

less than 2 seconds to be stored but an image of 8 MB could

take more than 5 seconds. This depends upon the file size and

the server capacity.

VI. FUTURE SCOPE

Distributed Workspace, while building aimed at

eliminating the hardships taken by the members of a web

project. The system is believed to overcome most of the

problems that existed in the current system by providing the

development means all at one place, in a user friendly fashion.

Though, it is always said that everything has a margin of

improvement in them. So while consistently improving the

existing features in this system, the system has impressive

future scope as well.

As Distributed Workspace is capable of managing
multiple projects, the system can provide a periodic project

report, on the basis of which the admin could understand

whether or not the given task is completed by the employees .

The efficiency at which the project is being built can also be

calculated. There is a vast scope of improvement in our editor.

We can provide a number of production tools and extensions

for our editor like, syntax checker, parenthesis highlighter,

theme change, beautify tool, live share, auto completion,

multiple cursor, etc. We could add website templates to make

the work of developers easy, using the templates a lot of

workload on the developers could be reduced. We can give the

testers a dedicated area to create test cases and run the , for

checking errors.

The features we provide to the public free of cost could

be optimized and customized according to the

clients/companies requirements, like providing an error

detection system and also equipping the system with a

compiler if need be. Another source of revenue can be

providing domain names of their own company name, as the

free one will have our domain name(dwspace.tech). We could
also add video conferencing to the system so that

communication is easier between the members and a more

professional environment can be maintained.

VII. CONCLUSION

The main focus of our project was to overcome the

drawbacks of existing systems and provide better

communication, by providing the users with a workspace to

communicate. We have tried to integrate practical features into

the application which other applications may lack. Our

algorithm makes distributed computing more efficient with the
help of microservers, each assigned with an independent role.

This can be seen in the application performance table, above in

the report. The system has taken care of security aspects by

giving a special privilege to the admin and controlled

access/privileges to the employees. We are making a project

environment that will be used for distributed product

development on a rapid scale using agile project management.

The project with its efficient algorithm has tried to be a better

alternative and at the same time believe that there is more scope

for improvement and make it a purposive application.

http://www.ijisrt.com/

Volume 7, Issue 8, August – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22AUG689 www.ijisrt.com 1438

There are more applications like Github, Amazon Code

Commit[9], BitBucket, Google Cloud Source

Repositories[10], etc with similar concepts. However, this

system is been inspired by these mentioned application's core

concept of version control. This system has made maintaining

the codes simpler for students or individuals, working in a

small-scale project to use the system without worrying about

the complications of version management. By providing a
simple user interface and giving project management tools like

roadmap, to-do, contact(chat), live-testing, etc., this system

stand out from the other similar technologies in the market.

REFERENCES

[1]. Sutherland, Jeff, et al. "Distributed scrum: Agile project

management with outsourced development teams." 2007

40th Annual Hawaii International Conference on System

Sciences (HICSS'07). IEEE, 2007.

[2]. MacGregor, Steven Patrick. Describing and supporting

the distributed workspace: towards a prescriptive
process for design teams. Diss. University of Strathclyde,

2003.

[3]. Padhy, Rabi Prasad, Manas Ranjan Patra, and Suresh

Chandra Satapathy. "Windows azure paas cloud: an

overview." International Journal of Computer

Application 2 (2012).

[4]. Daud, Nik Marsyahariani Nik, Nor Azila Awang Abu

Bakar, and Hazlifah Mohd Rusli. "Implementing rapid

application development (RAD) methodology in

developing practical training application system." 2010

International Symposium on Information Technology.
Vol. 3. IEEE, 2010.

[5]. Zahariev, Alexander. ”Google app engine.” Helsinki

University of Technology (2009): 1-5.

[6]. Sarma, Anita, and Andre Van Der Hoek. "Palantir:

coordinating distributed workspaces." Proceedings 26th

Annual International Computer Software and

Applications. IEEE, 2002.

[7]. Wiil, Uffe Kock, and John J. Leggett. "Workspaces: the

HyperDisco approach to Internet distribution."

Proceedings of the eighth ACM conference on Hypertext.

1997.

[8]. Fernandez, Daniel J., and John D. Fernandez. "Agile
project management—agilism versus traditional

approaches." Journal of Computer Information Systems

49.2 (2008): 10-17.

[9]. Amazon Web Services, Amazon CodeCommit

Documentation. July 09, 2015. Available:

https://docs.aws.amazon.com/codecommit/index.html

[10]. Google LLC, Cloud Source Repositories |

Documentation. August 26, 2021. Available:

https://cloud.google.com/source-repositories

http://www.ijisrt.com/

	Operation 1: Source code related operations
	Operation 2: Test the work live.
	Operation 3: Project related operation
	Operation 4: Rollback the branch
	Operation 5: Merge 2 branches
	Operation 6: Checkwork

