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Abstract:- In this paper, we present a basis for rigorous 

experimental measurements of the thermal diffusivity α of 

metals and hence their thermal conductivity K in 3D 

geometric material objects rather than the 1D objects used 

in current literature. The proposed experimental technique 

is based on the numerical method known as the Cairo 

technique. The key point of this research is that the new 

numerical method anticipates an exponential cooling curve 

for material objects and describes the exponent control 

equation as a function of thermal diffusivity and body 

dimensions. 

 

We measured the time-dependent 3D temperature 

field during the cooling curve in standard 10 cm cubes of 

pure Egyptian aluminum and high-grade Russian low-

carbon steel. The experimental results obtained confirm the 

exponential cooling curve and presented precise values of 

thermal diffusivity of aluminum and steel in good 

agreement with those of the thermal tables. 

 

The experimental measurements of the time-

dependent 3D temperature field confirm the validity of the 

proposed experimental technique and the accuracy of its 

basis in the numerical method called Cairo technique. 

 

I. INTRODUCTION 
 

The object of this work is to numerically solve and 

experimentally validate the general form of the time-dependent 

equation of heat diffusion in 3D geometric space, i.e., 

 

d / dt (partial) U (x,y,z,t) = α Nabla2 U (x,y,z,t) + S (x,y,z,t) 

.. . . . . . . (1) 

Subject to the boundary conditions BC of Dirichlet on the 

limits of the domain of U and the initial conditions IC of U at 

t=0 that is U ( x,y,z,0). 

 

Obviously, the thermal energy density U(x,y,z,t) is equal 

to KB T(x,y,z,t) where KB is the Boltzmann constant and T is 
the absolute temperature in degrees Kelvin. 

 

To our knowledge, the solution of the time-dependent heat 

partial differential equation (1) in 2D and 3D geometry 

considering simultaneously BC and IC is absent from the 

current literature. 

 

The analytical solution is inaccessible or a false analytical 

solution and the numerical solution is inaccessible or a false 

numerical solution. 

 
In fact, the solution of the heat partial differential equation 

(1) was only accessible in one dimension and therefore the 

thermal diffusivity α is always defined as a scalar α=K/ρ C in 

normal conventions and therefore its experimental 

measurements were made in 3 consecutive steps ρ ,C and K in 

one dimension of space [1,2]. 

 

The temperature T in the energy density diffusion 

equation is strictly defined as absolute in degrees Kelvin and so 

we have to solve equation 1 for arbitrary boundary conditions 

BC and initial conditions IC simultaneously. Assuming 

alternatively that IC or BC is zero is not sensible and is not 
physics since absolute temperature can never go to zero. 

 

However, we have proposed and described in some 

previous papers a new numerical method capable of solving the 

time-dependent heat equation in 3D geometry with arbitrary BC 

and IC which has proven effective in solving diffusion limit 

value problems. (heat, electrical potential, sound intensity in 

audio rooms, etc. [3,4,5].) 

 

The proposed new numerical technique is based on the 

matrix formalism of the heat diffusion equation with its 
cornerstone called transition matrix B which is well defined and 

capable of producing unique, stable and fast convergent 

solutions. 

 

In fact the matrix formalism of the diffusion problem of 

Dirichlet boundary conditions with arbitrary IC is essential in 

itself because it converts complicated and intractable 3D time-

dependent phenomena into a much simpler phenomenon 

because: 

 

The proposed matrix formalism allows passing or 

transforming the Dirichlet boundary conditions of the 2D and 
3D geometry into an adequate 1D boundary condition. It is the 

same for the initial conditions IC. Moreover, the proposed 

matrix formalism also allows to pass or transform the 2D and 

3D temperature energy density distribution field into an 

adequate 1D field. 

 

The Schrödinger equation which is at the heart of quantum 

mechanics can be considered as a diffusion equation with a 

complex diffusion coefficient ih(bar)/2m [6] and therefore one 
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can claim to apply the chains of the matrix B in its solution but 

the application of the new B matrix technique in QM is still a 

subject of speculation since the wave, the psi function and the 

potential energy field in general are complex functions. 

 

II. THEORETICAL AND EXPERIMENTAL 

ANALYSIS 

 
In this work, theory and experiment cannot be separated, 

therefore theoretical and experimental analysis are added 

together. Throughout this work we carry out a continuation and 

a validation of the new numerical method known under the 

name of technique of Cairo [3]. In other words, our objective 

here is to seek a theoretical and experimental validation of the 

new numerical method which is explained in the present section 

II of theoretical and experimental analysis keeping in mind that 

they cannot be separated and should be summarized together. 

 

A. Theoretical View 

The cornerstone of the new numerical technique is the 
matrix formalism used in the description of the diffusion 

problem. In short, the B-Transition matrix is implicitly a time-

dependent 3D geometry describing the diffusion phenomena of 

nature. The 3D cubic transition matrix a B nxn has an allowed 

number of free nodes n given by n=N^3 where N is a positive 

integer greater than or equal to 2 (2,3,4,..etc). Therefore, the 

allowed number of free nodes is 8, 27, 64, etc., but here we will 

limit our analysis to the case N = 3 and n = 27, as shown in 

Figure 1. 

 

All matrices are two-dimensional and matrix operations 
follow the rules of linear algebra. In fact, these matrix 

operations rules are unique in that they find a way to transform 

or pass the two and three-dimensional Dirichlet boundary 

conditions to the nx1 matrix (called vector b). They also find a 

transform or to go from the 3D initial conditions at the free 

nodes concerned to the nx1 matrix (called the vector IC), and 

finally transform the 3D energy density field into the nx1 matrix 

(called U(x,y, z ,t) vector) by an appropriate arrangement and 

order of nodes in 3D space, as shown in Figures 1 and 2. 

 

The role of the well-defined transition matrix B is 

surprising because it simultaneously gathers all vectors b, IC, 
source term vector S and U (x, y, z, t) in an accurate, stable and 

fast convergent solution for the time-dependent 3D heat 

equation Eq 1 as follows, 

 

Assuming that the transfer matrix E is given by the sum of 

the matrix powers, 

E(N)=B^0+B+B^2+B^3+. . . . +B^N . . . . . . . . . . . . . . . . . . (2) 

Where B^0=I, the unitary matrix, then the time dependent 

solution, 

U(N) = E(N) (b+S) + B^N (IC) . . . (3) 

 

Where UN(x,y,z,t) is the numerical value of energy density 

field at geometrical point x,y,z at the time t given by t=N dt with 

dt time jump or step. 

 

E(N) is the transfer function after N iterations or N time 

steps. 

 

Equation 3 is of utmost importance because it serves for 
the time-dependent transient solution and also applies to 

generate the time-independent steady-state solution for U(N). 

For a large N the transfer function E(N)=B^ 0 +B+B^2 +…..B^ 

N is simply found by the relation, 

 

E(N)=1/(I-B) …. (4) 

for N large enough. 

 

Note that for N sufficiently large, B^N and therefore the 

contribution of the initial conditions IC tends towards zero and 

we end up with the contribution of the boundary conditions (Eq 

3). 
 

Now our task of performing theoretical calculations and 

experimental measurements of the thermal energy density 

scattering field can be well characterized as shown in the 

present Section II A, B and C. 

 

Again, the transition matrix B is an nxn square matrix with 

the n = integer^3 allowed where the integer is greater than or 

equal to 2. This means that the matrix B must be 

8x8,27x27,64x64 ..etc. Obviously, the accuracy of numerical 

calculations increases as n increases. 
 

Throughout this work and to be specific, we consider 

without loss of generality the material tested in the form of a 

standard cube of side L=10 cm divided into a grid of 27 

equidistant free nodes as shown in Figure 1. 

 

 
Fig 1. Cube of side L divided into 27 equidistant free nodes 

with 27 modified Dirichlet boundary conditions. 
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We must first specify the essential theoretical and 

experimental considerations necessary for the realization of the 

experimental technique and present its adequate interpretation. 

 

B. Mathematical View 

The statistical transition matrix B which contains all the 

information for solving Equation 1 in the time-dependent 3D 

geometry of the cube in Figure 1 is given by a procedure similar 
to that followed in Reference 3, where the entries of the matrix 

B27X27 are expressed in the following form [3], 

 

27X27 B-Matrix inputs, 

Line1 RO 1/6-RO/6 0.0000 1/6- RO 1/6-RO/6 0.0000 0.0000 

0.0000 0.00001/6-RO/6 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 

Line 2 1/6-RO/6 RO 1/6-RO/6 0.0000 1/6-RO/6 0.0000 0.0000 

0.0000 0.000 0.0000 1/6-RO/6 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 
Line 3 0.0000 1/6-RO/6 RO 0.0000 0.0000 1/6RO/6 0.0000 

0.0000 0.00000.0000 0.0000 1/6-RO/6 0.0000 0.0000 0.0000 

0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Line 14 0.0000 0.0000 0.0000 0.0000 1/6-RO/6 0.0000 0.0000 

0.0000 0.00000.0000 1/6-RO/6 0.0000 1/6-RO/6 RO 1/6-RO/6 

0.0000 1/6-RO/6 0.00000.0000 0.0000 0.0000 0.0000 1/6-RO/6 

0.0000 0.0000 0.0000 0.0000. . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Line 25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1/6-

RO/6 0.0000 0.00000.0000 0.0000 0.0000 1/6-RO/6 0.0000 

0.0000 RO 1/6-RO/6 0.0000 

Line 26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 1/6-RO/6 0.00000.0000 0.0000 0.0000 0.0000 1/6-RO/6 

0.0000 1/6-RO/6 RO 1/6-RO/6 

Line 27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 1/6-RO/60.0000 0.0000 0.0000 0.0000 0.0000 

1/6-RO/6 0.0000 1/6-RO/6 RO  

 
In current thermal tables, K, ρ and C are measured in 3 

independent steps, whereas in the proposed experimental 

technique explained in section III, α is measured directly in one 

step. In other words, in the current literature, the accepted 

inadequate scalar definition of thermal diffusivity α is known to 

be α=K/ρ C . 

 

However, by experimentally measuring the transient 

temperature field in 3D combined with the theoretical method 

of the Cairo technique, Eq 3, one can calculate the thermal 

diffusivity which is contained in the main diagonal element RO 
of the so-called transition matrix chains B. We assume that this 

3D experimental and theoretical technique is advantageous to 

calculate α in an isotropic and anisotropic material object. 

 

Here, we obtain the appropriate numerical results for T(x, 

y, z, t) in the energy density scattering time domain with the 

appropriate value of RO and compare them with the 

experimental results in real experimental time. This procedure 

leads to obtaining the correct value of the thermal diffusion 
coefficient α. 

 

It can be shown that [3,8], 

B^N. I = (0.5+0.5 RO)^N .I. .. . . . . . . (5) 

I is the unitary 27x27 matrix. 

And, 

α = Log (0.5+_0.5 RO) . . . . . . . . . .(6) 

 

Equations 5&6 holds for all zero or positive values of N and all 

values of the diagonal input RO element of [0,1]. 

 

Moreover, the proposed numerical technique suggests an 
exponential cooling curve for material objects and offers a 

semi-imperial formula for the exponent as a function of thermal 

diffusivity [3,7,8], 

T(t)at center of mass =T(0)Exp(-α .5.Pie.t) ……(7) 

 

It is predicted that Eq 7 is valid for any regular shape, 

cubic or not, provided that the cooling temperature curve is 

measured precisely at the center of mass of the object and that 

the characteristic length L of the shape of the object is correctly 

evaluated mathematically or experimentally. 

 
It follows from equation 7 that the thermal diffusivity α 

can be expressed in terms of the half-period T1/2 "the time t after 

which the initial temperature T(0) drops to half its value" as, 

 α = Log 2./ (0.5 Pie .T1/2) . . . . . . . . . . . . . . . . (8) 

 

The equations 5 , 6 , 7 and are of great help in the proposed 

numerical technique. 

 

Moreover, equation 8 predicts an experimental technique 

to measure the thermal diffusivity α by fitting the experimental 

cooling curve to an adequate RO to obtain T1/2 and hence α. In 

fact, it is this method that we use here to experimentally find 
the thermal diffusivity of metals. 

 

Note that equations 5, 6 and 7 are in a way a numerical and 

experimental validation of the transition matrix B. 

 

C-Experimental View 

We design a simple transient heat temperature experiment 

consisting of standard metal cubes of the material under test 

fitted with holes for temperature measurement Fig 2. 
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Fig 2. Cube of side L divided into 27 equidistant free nodes 

with 27 modified Dirichlet boundary conditions and fitted 

with holes for measurement of T(x,y,z,t) 

 

In addition to the metal cubes, two large water reservoirs 

are prepared, one kept cold at the temperature Tc and the other 

at the hot temperature Th. 

 
By instantly transferring the test cube from hot reservoir 

to cold reservoir or vice versa and measuring the temperature 

field at different nodes, we get the real-time cooling or heating 

curve function of real time t. 

 

Note that Th and Tc must be calculated in degrees Kelvin 

and one is used as IC and the other as BC when substituting in 

equation 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. EXPERIMENTAL SETUP AND 

EXPERIMENTAL RESULTS 

 

We used a simple preliminary experimental setup that 

approximates Figure 2 which is photographed in Figure 3. 

 

 
Fig 3. Experimental setup 

 

We experimentally tested two metals to find the thermal 

diffusivity of 10 cm cubes of each. The first is high purity 

Egyptian aluminum alloy (purity equal to or above 98%) and 

the second is high grade low carbon Russian steel alloy. The 

resistance thermometers used to measure the temperature were 

TP 300 for the temperature range -50 to 300 C with an error less 
than or equal to 0.5 C. 

 

The experimental results are represented in FIG. 4 (in 

black dots) and the half-period T1/2 is deduced therefrom. 

Meanwhile, the exponential fit curve for the experimental 

results using Equation 3 (shown in red dots) gives the 

compatible RO approximately as follows: 
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Fig 4a. Curve fitting through Equation 3 for the steel cube. 

 

With RO for steal cube =0.22 

 

 
Fig 4b. Curve fitting through Equation 3 for the Aluminum 

cube with RO=0.13. 

 

We calculate the thermal diffusivity α by using Eq 8, 

α = L^2 . Log 2./ (0.5 Pie .T1/2) . . . . . . . . . . . . . . . . (8) 

 

Figure 4a shows that T1/2 for the standard steel cube = 100 

s, so α (steel)=44E-6 m^2 /s. 

 

Figure 4b shows that T1/2for the standard aluminum cube 

= 45 s, so α (aluminum) = 98 E-6 m^2 /s. 
 

Note that: 

  The black and red dots in  curves of 4a and 4b present 

excellent fit which is in a way a validation  for Cairo 

technique equations and prediction of exponential cooling 

curve for any RO element of [0,1]. with RO=0.22 for steal 

and 0.13 for Aluminum. 

 The resulting values of thermal diffusivity α for steal )=44E-

6 m^2 /s.and α  for Aluminum = 98 E-6 m^2 /s are in good 

agreement with their values in thermal tables.[9] 

 

IV. CONCLUSION 

 

We present a new experimental technique to measure the 

thermal diffusivity α and/or the thermal conductivity K of 

metals. The new experimental technique is intended to apply to 

any regular shape, cubic or not, provided that the cooling 

temperature curve is measured precisely at the center of mass 

of the object and that the characteristic length L of the shape of 

the object is correctly evaluated mathematically or 

experimentally. 

 

We applied the new experimental technique based on the 
so-called Cairo numerical method to standard cubes of 

aluminum and steel and the results obtained for the thermal 

diffusivity of aluminum and steel are in good agreement with 

those presented. in the heat tables. 

 

It is recommended to apply the use of the new 

experimental technique to other metals and its extension to non-

metallic objects. 

 

NB. All calculations in this article were produced through the 

author's double precision algorithm to ensure maximum 

accuracy, as followed by Ref. 10 for example 
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