
Volume 7, Issue 12, December – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22DEC1378 www.ijisrt.com 2200

The Anatomy of Blockchain D atabase Systems

Blockchain Database System

Aditi Morey, Akanksha Kulkarni

School of Engineering Ajeenkya DY Patil University,

Pune, India-412105

Abstract:- Blockchains are here for more than ten-

fifteen years and currently, we are adopting the

blockchain techniques in databases, and vice-versa.

Example, A typical blockchain data structures, such as

cryptographically-linked blocks and Merkle trees, have

been interspersed. Into verifiable databases. On the

other hand, database techniques, such as sharding and

concurrency control, have been interspersed. Into

blockchains. In this paper, I am looking at systems that

combine both blockchain and database techniques. I

classify these systems into three types and that is given

below (1) Permissioned Blockchains, (2) Hybrid

Blockchain Database Systems, (3) Ledger Databases. I

also present their anatomy, including the features,

techniques, and design choices, by analyzing a few

representative systems. In the end, I highlight their

challenges and discuss research directions

I. INTRODUCTIONS

In the last many years, the line between blockchain systems

and distributed databases has been disappeared to a certain degree.

We have seen adopting the blockchain techniques in databases.

Example, blockchain data structures, such as cryptographically-

linked blocks and Merkle trees , have been interspersed into

verifiable ledger databases and hybrid blockchain database

systems. And we have also seen the database techniques used in

blockchains. For example, shading is used to scale blockchains,

while the optimistic concurrency control (OCC) is used to decrease
the number of aborted transactions. By focusing on the design and

implementation of systems that combine blockchain and database

techniques, we are classifying them into three categories. Going

from the systems that have strong blockchain features to the

systems that are very closer to the databases, these three categories

are as follows:- (1) permissioned blockchains, (2) hybrid

blockchain database systems, and (3) ledger databases. From a

effective view, all these systems consist of the distributed server

nodes that communicate via a broadcasting service based on some

consensus protocol. Each server node has a ledger (blockchain

data structure) and a local database. Both the server nodes and the

users (or clients) that interact with these nodes need to be
authenticated. The broadcasting service is implemented either with

a Crash Fault Tolerant (CFT) consensus protocol, that is closer to

distributed databases, or a Byzantine Fault Tolerant (BFT)

consensus that resembles typical blockchains. In this paper, we

analyze a few representative systems and present their anatomy in

terms of design, techniques, features, and limitations.

Table 1: Categories, Features and Examples

http://www.ijisrt.com/

Volume 7, Issue 12, December – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22DEC1378 www.ijisrt.com 2201

II. CLASSIFICATION

When analyzing the systems that mix each info and

blockchain techniques, we will distinguish 3 main categories.

First, we've permissioned blockchains (also referred to as non-

public, enterprise, or consortium) that have a lot of blockchain

options than databases. Second, we have hybrid blockchain
database systems which may be more classified into out-of-

blockchain databases and out-of- database blockchains. Third,

we have (centralized) ledger databases. Table a pair of

presents the features of such systems and many samples of the

progressive for every class Permissioned blockchains, as

critical typical permission less or private blockchains

comparable to Bitcoin and Ethereum, use authentication for the

parties using the blockchain (i.e., shoppers and peers). they're

named permissioned or non-public blockchains as a result of

solely echt parties will use them. These blockchains are

generally utilized in enterprise setups and that they are
operated by a association of organizations, hence, they are

known as enterprise or consortium blockchains. In such

setups, a corporation hosts one or a lot of blockchain peers (or

nodes). Since quite one organization is responsible of

administrating and operational the blockchain, a permissioned

blockchain may be a redistributed system wherever the ledger

is replicated on all the nodes (or peers). Initially, a number of

these permissioned blockchains thought of victimisation

Byzantine Fault Tolerant (BFT) agreement protocols to copy the

ledger. For example, Hyperledger material v0.6 used PBFT

and gathering provides support for IBFT . However, these

BFT protocols degrade the performance of a blockchain
regarding outturn and latency. that's why most of this

permissioned blockchains use Crash Fault Tolerant (CFT)

consensus mechanisms, comparable to Raft and Apache

Kafka. Hybrid Blockchain info Systems are terribly similar to

permissioned blockchains however they need totally different

motivations, use cases, and database integration. These
systems are actuated by the necessity of organizations to share

a database or elements of a database. In general, this info

already exists and it's loosely-coupled to the hybrid blockchain

database system. For example, during a provide chain scenario,

there ought to be a shared database with shipping choices

and costs. Shipping corporations update this database, whereas

the opposite parties simply scan the data. In such a case, we

want a ledger to stay track of the updates in a clear and

tamper-evident way. Associate in Nursing authentication

mechanism is required to access the ledger and also the

broadcasting service. Given this, most of the projected hybrid

blockchain database systems think about solely CFT broadcasting
services. As expected, if a BFT agreement is used instead, the

performance of the system considerably degrades.

Ledger Databases are at the opposite finish of the
centralized-decentralized administration spectrum since they're

hosted and operated by one organization. In such a centralized

model, the users have to be compelled to trust that

organization. to extend the trust, ledger knowledgebases use

tamper- evident data structures and publish the hashes of the

append-only ledger or give proofs for current states within the

database. Such systems is also distributed to increase fault

tolerance and improve performance. However, they are not

distributed to increase the trust as is that the case for the

other two categories. Moreover, the database and the ledger

are tightly-coupled to the server nodes. While such systems

require higher trust from the users, they provide higher
performance and zero administration efforts compared to the

other two categories.

Fig. 1: A Generic Hybrid Blockchain Database System

http://www.ijisrt.com/

Volume 7, Issue 12, December – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22DEC1378 www.ijisrt.com 2202

III. TYPES OF BLOCKCHAIN

Fig. 2: The types of blockchain

IV. ANATOMY

In this section, we start with the similarities among the

three categories, and after that we'll present the particularities

of each category together with the details of a few

representative systems.

 Overview

Typically, systems that combines the blockchain and

database features they have the similar architecture to the one

depicted in Figure 1. The system consists the same distributed
server nodes, where each and every node handles user requests

and also coordinates with the other nodes via a broadcasting

service. The clients need to be authenticated before sending the

requests to the nodes. A server node sends local updates and

receives remote updates from the broadcasting service. This

broadcasting service can also be distributed across a few nodes,

it is not necessary that they are same as the server nodes.

Moreover, the broadcasting service is implemented with a CFT

or BFT consensus protocol.

For example, the latest version of Fabric uses Raft, which

is CFT, while Quorum supports, among others, IBFT. Each

server node connects to a local database and keeps a copy of

the distributed ledger. Note that the local database and the

ledger are different. The former keeps the latest version of the
data (e.g., states, accounts, assets), while the latter keeps the

entire update history using tamper-evident data structures. For

example, Fabric uses LevelDB or CouchDB as its local

database, which is also called World State. On the other hand,

the ledger in Fabric is a linked list of blocks where the header

of a block is linked to the header of the previous block using a

cryptographic hash. Other systems use data structures based on

Merkle trees to represent the ledger. Figure 2 shows the types

of blockchain. We briefly compare these two ledger data

structure, as illustrated in Figure 3.

The hashed blocks data structure,

Fig. 3: Ledger Data Structures

http://www.ijisrt.com/

Volume 7, Issue 12, December – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22DEC1378 www.ijisrt.com 2203

As shown in Figure 3 it is a linked list of blocks where

a block points to its predecessor using a cryptographic
pointer, except the first block which is called as the genesis

block. Each block consists of data, metadata, and header

sections. The data section contains all the transactions that

are the part of the block. The header is a digest of the block

add up using a hashing function. Lion's share of the

blockchains use SHA3 or Keccak hashing algorithms. The

header of all the blocks except the first one is added up as

the hash of the concatenation between the hash of the

previous block and the hash of the current block’s data

section. A generic Merkle tree, as shown in Figure 3. It is a

tree where the leaves are data representing transactions and

the internal nodes are hashes. Each parent node contains the
hash of the concatenation of all the hashes of its children.

Hence, the root node contains the hash that represents all the

underlying transactions. We note that Merkle trees can be

combined with hashed blocks: the data section of a block

can be organized as a Merkle tree. For example, Quorum

uses this approach to store transactions in its ledger. In

contrast, Fabric does not use a Merkle tree: it just hashes the

transaction data as a chunk. We direct the reader to for an

analysis of advanced Merkle tree data structures.

V. PERMISSION BLOCKCHAIN

Hyperledger Fabric is a permissioned blockchain

developed by the Linux Foundation with significant input from

IBM. There are three types of nodes in Fabric namely Clients,

Peers and Orderers. A client sends a transaction request to a set

of peers that are subject to an approval policy. For example, the

AND policy includes all peers in the network. That is, a

customer must submit the transaction and receive confirmations

from all peers. A peer runs the transaction request in mock

mode and creates read and write arrays to mark which world
states are affected by the transaction. Because it is in

simulation mode, the peer does not save the changes to its local

database. The client then sends the peer responses to the payers

along with its transaction. These managers pack the transaction

into a block and broadcast the block to all peers in the network.

Fabric is currently taking the Raft CFT consensus between

orders. In the last phase, all peers validate the block and keep

valid transaction changes in the local database. Note that the

peers don't need to redo the transaction: they just keep the write

set. The validation phase also checks the read record to see if

any state has changed since the transaction was simulated. In
such a case, the transaction is aborted. In short, Fabric

implements an Execute-Order-Validate (EOV or XOV)

transaction lifecycle, unlike many other blockchains that adopt

an Order-Execute (OX) lifecycle. Fabric supports Level DB

(default) and CouchDB for world states database. The ledger is

stored in the file system as a linked list of blocks, with the

block headers linked together using hashes. Fabric has been

extensively tested and optimized by the database research

community. Many works compare and analyze fabric

performance bottlenecks. In our recent work, we show that a

fabric with up to 10 peers can achieve around 1,000

transactions per second (TPS). Other work improves the
abandonment rate by relaxing the concurrency model (e.g.

through optimistic concurrency controls) and by rearranging

transactions. Quorum is a permissioned blockchain that gets its

source code from Ethereum (implemented in the Go

programming language). Of course, Quorum supports Solidity's

smart contracts, but it replaces the energy-inefficient proof-of-
work consensus with a few alternatives, of which Raft is the

default. In addition to Raft, Quorum also supports IBFT

(Istanbul BFT), QBFT (Quorum BFT), and Clique Proof- of-

Authority (POA). IBFT is inspired by PBFT, while QBFT is

an optimized version of IBFT that is also interoperable with

Hyperledger Beau, an Ethereum client developed by the

Hyperledger Foundation.

As opposed to Fabric, Quorum has only peers and

clients and adopts the traditional order-execute (OX)

transaction lifecycle. That is, a transaction is first grouped

into a block and then executed by each peer in the

network. Similar to Fabric, Quorum uses Level DB as its

local database, but it adopts Merkle Patricia Trie for the

ledger. In our recent work, we show that Quorum with Raft

exhibits a throughput of 250 TPS, which is relatively
low for a permissioned blockchain. Corda is advertised

as a distributed ledger technology (DLT) for enterprises.

For that reason, it is built on Java and Kotlin so it can

be better integrated with existing Java enterprise systems.

Besides nodes, a Corda network has notaries which are

responsible for validating transactions in terms of

uniqueness and validity. In essence, uniqueness prevents

double-spending, while validity means that the transaction

passes the input-output tests and it has all the required

signatures. Notaries use a consensus protocol which is

Raft-based in the default version of Corda. This default

version uses H2, a relational database management system
written in Java, for the local database. The ledger uses a

custom version of Merkle trees to hide transaction details

from the entities that are not involved in the transaction.

A recent publication shows that the performance of Corda

is very low, at 15 TPS. Even when a single notary is used

to minimize the impact of consensus, the performance is

low due to a synchronous (blocking) transaction

processing mechanism. Diem is a permissioned

blockchain that was developed by a consortium of

companies led by Facebook. It was previously known as

the Libra blockchain. The entire project has been
discontinued in 2022. However, Diem implements some

powerful features which are worth mentioning. For

example, it uses Libra FT , a BFT consensus based on

Hotstuff which further improves PBFT. For the ledger,

Diem uses Jellyfish Merkle tree which is a sparse Merkle

tree inspired by the Merkle Patricia Trie used in

Ethereum. Rocks DB, a fast key-value store derived from

Level DB and developed by Facebook, is used as the

underlying database. A recent study shows that Diem

achieves around 600 TPS on 4 nodes, which is a decent

performance for a BFT-based blockchain.

http://www.ijisrt.com/

Volume 7, Issue 12, December – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22DEC1378 www.ijisrt.com 2204

VI. HYBRID BLOCKCHAIN DATABASE

SYSTEM

 Veritas is an out-of-blockchain database that consists

of a shared database (or table) and a blockchain ledger
for keeping auditable and verifiable updates done on

the shared database. Each node is operated by an

organization. A node uploads its local update logs and

downloads remote update logs to and from a

broadcasting service. Veritas employs a concurrency

control mechanism based on timestamps. The

timestamp of a transaction represents the sequence

number of that transaction in the log. A transaction is

first verified locally by the node receiving it. If it

passes the verification (e.g., multi-version concurrency

control – MVCC), it is included in the logs and sent to
the broadcasting service. Once the other nodes agree to

the updates, they send acknowledgments, and once

every node receives the acknowledgments, it persists

the updates to the local database and appends them to

the ledger. Note that this mechanism incurs O(N2)

communication complexity. The original design of

Veritas uses Redis, an in-memory NoSQL database,

and Apache Kafka, a CFT broadcasting service. The re-

implementation of Veritas in achieves around 30,000

TPS, making it the fastest system among all those

analyzed in this paper.

 Blockchain DB is an out-of-blockchain database with
prominent blockchain features: it is a shared database

built over a blockchain. It is the only hybrid blockchain

database that uses shading to partition the shared

database. Firstly, the blockchain represents the storage

layer of a Blockchain DB node. By default, Blockchain

DB uses Ethereum, but other blockchains can be used

as well via a plugin interface. With Ethereum, the

ledger

The structure is based on Merkle Patricia Trie.

Second, a node has a database layer with a simple key-

value interface. Third, there is a shard manager that

helps the database layer identify the shard where a

particular key is stored. Due to the use of such a slow

blockchain as Ethereum with Proof of Work (Pow) or

Proof of Authority (PoA), Blockchain DB has a
performance of around 50 TPS. Falcon DB is another

off-chain database that starts on a blockchain and

provides clients with a shared database. Unlike other

systems, Falcon DB Clients offers a relational database

interface. In

 Falcon DB, both clients and peers must maintain a

summary of data. The difference is that clients only

keep the blockchain headers to save storage space.

However, these headers are sufficient to verify the

correctness of the requested data from the peers. Falcon

DB uses IntegriDB, an auditable SQL database, for
general ledger storage, Tendermint for consensus, and

MySQL as the local database. System performance on

a write-intensive YCSB workload (50% reads and 50%

writes) is around 3000 TPS. Note that a similar YCSB

workload is used to evaluate Veritas, BigchainDB, and

Blockchain DB. Blockchain Relational Database (BRD)

is similar in design to Veritas, but is part of a

PostgreSQL relational database. In this sense, BRD is an
off-database blockchain. Also, unlike Veritas, the

streaming service orders chunks of transactions (updates)

rather than serializing transactions in a chunk. To

speed up transactional execution, BRD implements

concurrent execution with Serializable Snapshot

Isolation (SSI). Note that BRD uses PostgreSQL as

local database which supports serializable snapshot

isolation. BRD also uses Apache Kafka as a streaming

service. Unlike Veritas, BRD maintains the general ledger

in the same relational database, namely PostgreSQL.

According to the BRD document, the system achieves a

performance of 2500 TPS with a key value utilization.
BigchainDB is another non-database blockchain. It starts

with MongoDB, a NoSQL database used as a local

database. When using MongoDB, the main data

abstraction in BigchainDB is an asset represented in

JSON format. Otherwise, the transaction lifecycle is

similar to Veritas. A transaction is verified locally by a

node, then a request is sent to the streaming service.

 BigchainDB is an asset represented in JSON format.

Otherwise, the transaction lifecycle is similar to Veritas.

A transaction is verified locally by a node, then a

request is sent to the streaming service.

BigchainDB uses a BFT consensus middleware as

streaming service, namely Tendermint. Once the

majority of nodes approve the transaction, it is

committed to the local database.

BigchainDB relies on Tendermint to keep the

ledger in the form of a Merkle tree. Our evaluation of

the open source BigchainDB code shows a peak

performance of around 200 TPS with YCSB workloads.

 ChainifyDB is a chain of blocks outside the database,

starting from a relational database, which can be

PostgreSQL or MySQL. Apache Kafka is used to

stream transactions, which are SQL statements. The

Ledger uses a custom style based on LedgerBlocks.

A LedgerBlock contains all transactions that are

part of a block, where a transaction is in its SQL

format. The LedgerBlock then contains a list of bits

representing successful transactions, a SHA256 hash

digest of the data changed by the transactions, and a

hash value of the previous LedgerBlock that was added

to the Ledger. This representation is similar to that

used by Fabric. ChainifyDB achieves throughput of

around 1000 TPS on three nodes using the SmallBank

workload when all three nodes need to reach
consensus. If only two out of three nodes need to reach

consensus, the throughput increases to around 5000

TPS.

http://www.ijisrt.com/

Volume 7, Issue 12, December – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22DEC1378 www.ijisrt.com 2205

VII. LEDGER DATABASE

Amazon Quantum Ledger Database QLDB is a

verifiable database developed by Amazon and provided

as a cloud service. QLDB follows the structure depicted

in Figure 1 by integrating a relational database and a

ledger in its server node. The database keeps the current
states and the history of those states, while the ledger is

an append-only journal that keeps track of all the

changes done to the database in an immutable way.

While it is not clear what is the underlying database, the
ledger in QLDB is implemented based on Merkle trees.

Our preliminary evaluation of QLDB shows a throughput

of 10,000 TPS, which is relatively low for a centralized

system. However, we note that an update in QLDB

changes both the database and the ledger, and these two

changes are done sequentially.

Table 2: Summary of Systems, Features, and Performance

LedgerDB could be a verifiable info developed by

Alibaba associate degreed provided as a cloud service.

LedgerDB updates the ledger, that is predicated on a

Merkle tree, asynchronously.

Specifically, the transactions are batched and also the

Merkle tree is updated with the batched transactions.

Hence, this approach is named batch accumulated Merkle

tree (bAMT). LedgerDB supports multiple underlying

storage engines, however L-Stream, a custom storage
developed by Alibaba, is that the default one. L-Stream is

an append-only filesystem created specifically for

LedgerDB. In terms of distributed architecture, the server

nodes in LedgerDB are coordinated by a master that

ensures CFT and work balancing. Our preliminary

analysis of LedgerDB shows a turnout of 20,000 TPS,

twice higher compared to QLDB. SQL Ledger could be a

ledger info developed by Microsoft and offered as a

service on its Azure cloud. it's an identical design to

QLDB and Ledger DB, however it uses Microsoft’s SQL

Server because the underlying storage engine. SQL
Ledger keeps a ledger organization supported Merkle trees

and 2 tables, namely, the Ledger Table and also the

History Table. The Ledger Table reflects the most recent

record for a given key, whereas the History Table records

the previous version of that record. It is not clear what

variety of agreement is employed to coordinate among

multiple nodes in SQL Ledger. Moreover, the rumored

analysis was done on one server with seventy two cores.

during this evaluation, SQL Ledger achieves a turnout of

70,000 TPS with TPC-C workloads. it's expected to check

lower SQL Ledger performance in an exceedingly

distributed setting

VIII. CHALLENGS

If we look at systems that combine blockchain and

database functions, we see a lack of open source code for

most hybrid blockchain and ledger databases. Therefore, it

is difficult to understand the exact implementation and

evaluate the performance of these systems. In our previous

work, we reimplemented Veritas and BlockchainDB in a

modular way that allows us to replace some of the

components like the consensus mechanism and the local
database. However, needs to do more to achieve a flexible

and modular open-source hybrid blockchain database

system where consensus and the underlying database can be

replaced in a plug-and-play manner. At the same time, such

systems must provide users with relational and key-value

interfaces.

We have found that most existing systems offer simple

key-value interfaces, with the exception of FalconDB,

ChainifyDB, QLDB and SQL Ledger. What remains to be

seen is the performance impact of a flexible user interface.
For example, what are the implications of a relational

interface when the underlying database is NoSQL? For such

designs, the server node must be flexible enough and at the

same time have good performance

IX. CONCLUSION

In this white paper, we discuss systems that combine

blockchain and database techniques. We classify these

systems into three categories, namely (1) permissioned
blockchains, (2) hybrid blockchain database systems, and

(3) ledger databases. Although they share a similar

architecture, each category and system within a category

has its own unique characteristics. Then we look at

http://www.ijisrt.com/

Volume 7, Issue 12, December – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22DEC1378 www.ijisrt.com 2206

some representative systems, such as Fabric, Quorum,

Veritas, QLDB, and LedgerDB, among others. The exact
performance of these systems is difficult to assess due to

the lack of open source code.

On the other hand, existing implementations are not

flexible and modular enough. By designing and
implementing a modular system where the UI, consensus,

and local storage are plug-and-play, we were able to

answer more existing questions. For example, can we

replace a CFT broadcast framework with a newer BFT

consensus framework without a performance hit? These

questions need to be answered in the future.

REFERENCES

[1.] Z. Amsden, et al., The Diem Blockchain,
https://archive.ph/1xfcy, 2021.

[2.] P. Antonopoulos, R. Kaushik, H. Kodavalla, S.

Rosales Aceves, R. Wong, J. Anderson, J.

Szymaszek, SQL Ledger: Cryptographically

Verifiable Data in Azure SQL Database, page

2437– 2449, 2021.

[3.] M. Baudet, A. Ching, A. Chursin, G. Danezis, F.

Garillot, Z. Li, D. Malkhi, O. Naor, D. Perelman, A.

Sonnino, State Machine Replication in the Libra

Blockchain, https://archive.ph/Uxlb3, 2019.

[4.] E. Buchman, Tendermint: Byzantine Fault
Tolerance in the Age of Blockchains, PhD thesis,

The University of Guelph, 2016.

[5.] V. Buterin, A Next-Generation Smart Contract

and Decentralized Application Platform, http://

archive.fo/Sb4qa, 2013.

[6.] Z. Gao, Y. Hu, Q. Wu, Jellyfish Merkle Tree,

https://archive.ph/s7pPF, 2019.

[7.] M. Hearn, R. G. Brown, Corda: A Distributed

Ledger, https://bit.ly/3iLajrI, 2019

[8.] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C.

Ooi, J. Wang, Untangling Blockchain: A Data
Processing View of Blockchain Systems, IEEE

Transactions on Knowledge and Data Engineering,

30(7):1366–1385, 2018.

[9.] V. Buterin, A Next-Generation Smart Contract

and Decentralized Application Platform, http://

archive.fo/Sb4qa, 2013.

[10.] https://kafka.apache.org/, 2017.

[11.] BigchainDB 2.0 The Blockchain Database,

Technical report, 2018.

https://github.com/ConsenSys/quorum, 2021.

[12.] immudb,

https://codenotary.io/technologies/immudb/, 2021.
[13.] MongoDB, https://www.mongodb.com/, 2021.

[14.] PostgreSQL, https://www.postgresql.org/, 2021.

[15.] Amazon Quantum Ledger Database

https://aws.amazon.com/qldb/, 2022.

https://archive.ph/edzMi, 2022.

http://www.ijisrt.com/
http://www.mongodb.com/
http://www.postgresql.org/

