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I. INTRODUCTION 

 

The notion of an ideal topological spaces is introduced 

by Kuratowski, [7]. Many researcher studied about the an 

ideal topological spaces. An ideal I on a topological space 

(X,τ) is a nonempty collection of subsets of X which satisfies 

the following conditions: 

 

1- if A ∈ I and B ⊆ A then B ∈ I, 2- if A ∈ I and B ∈ I 

then A ∪ B ∈ I. 
 

Applications to various fields were further investigated 

by Jankovic and Hamlett [2], Dontchev [6], and Arenas and 

et al. [4]. An ideal topological space is a topological space 

(X,τ) with an ideal I on X and it is denoted by (X,τ,I). 

 

This paper is organized as follows: Section 3 

introduces the concept of generalized Is− open sets in ideal 

topological semigroups with its relationship among other 

known sets. Section 4 introduces the properties of product 

and relativity of generalized Is -open sets. 

 

II. PRELIMINARIES 

 

 Theorem 2.1. 

[5] For a topological space (X,τ) and A,B ⊆ X, if B is an 

open set in X, then Cl(A)∩B ⊆ Cl(A ∩ B). 

 

 Theorem 2.2.  

[5] For a topological space (X,τ), 

 

 Cl(X − A) = X − Int(A) for all A ⊆ X; 

 Int(X − A) = X − Cl(A) for all A ⊆ X. 

 

 

 

 

 

 Definition 2.3.  

[8] A subset A of a topological space (X,τ) is called a 

generalized closed (simply g−closed) set, if Cl(A) ⊆ U 

whenever A ⊆ U and U is an open subset of (X,τ). The 

complement of g−closed set is called a generalized open 

(simply g−open) set. 

 

 Theorem 2.4.  

[8] Every closed set is a g−closed set. 

 

 Definition 2.5.  

A topological space (X,τ) is called: 

 

 a T1/2−space [8] if every g−closed set is a closed set. 

 a T1−space [5] if for each disjoint point x 6= y ∈ X, there 

are two open sets G and H in X such that x ∈ H, y ∈ G, x 

/∈ G and y /∈ H. 

 

 Theorem 2.6.  

[8] A topological space (X,τ) is a T1/2−space if and only 

if every singleton set is either open or a closed set. 

 

 Theorem 2.7.  

[5] A topological space (X,τ) is a T1−space if and only 

if every singleton set is a closed set. 

 

 
 

Is called the local function of A with respect to I and τ, 

[7]. When there is no chance for confusion A∗(I) is denoted 

by A∗. For every ideal topological space (X,τ,I), there exists a 

topology τ∗ finer than τ, generated by the base 

 

β(I,τ) = {U − I : U ∈ τ and I ∈ I}. 

 

Observe additionally that Cl∗(A) = A ∪ A∗, [9] defines a 

Kuratowski closure operator for τ∗. Int∗(A) will denote the 

interior of A in (X,τ∗). If I is an ideal on topological space 

(X,τ), then (X,τ,I) is called an ideal topological space. 
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 Theorem 2.8.  

[3] Let (X,τ,I) be an ideal topological space. Then for 

A,B ⊆ X, the following properties hold: 

 A ⊆ B implies that A∗ ⊆ B∗; 

 G ∈ τ implies that G ∩ A∗ ⊆ (G ∩ A)∗; 

 A∗ = Cl(A∗) ⊆ Cl(A); 

 (A ∪ B)∗ = A∗ ∪ B∗; 

 (A∗)∗ ⊆ A∗. 

 

By topological semigroup (X∗,τ), we mean a 

topological space (X,τ) which is space with associated 

multiplication ∗ : X × X → X such that ∗ is continuous 

function from the product space X × X into X. By an ideal 

topological semigroup (X∗,τ,I), we mean an ideal topological 

space (X,τ,I) with associated multiplication ∗ : X × X → X 

such that ∗ is continuous function from the product space X 

× X into X. A pair (Y,◦) is called I−subspace of an ideal 

topological semigroup (X◦,τ,I) if Y is a subspace of X and the 

continuous function ◦ takes the product Y × Y into Y and 

◦(x,y) = ∗(x,y) for all x,y ∈ Y . We denote the operation of 

any I−subspace with the same symbol used for the operation 

on the an ideal topological semigroup under consideration. 
For any ideal topological space (X,τ,I), we mean by 

 

 Definition 2.9.  

[1] A subset A of an ideal topological semigroup 

(X∗,τ,I) is said to be an Is−open set if A ⊆ Cl[Int∗(Cl∗(A))]. 

The complement of Is−open set is said to be an Is−closed set. 

For an ideal topological semigroup (X∗,τ,I), the set of all Is-

closed sets in X denoted by IsC(X,τ) and the set of all Is-open 

sets in X denoted by IsO(X,τ). 

 
 Theorem 2.10.  

[1] For a subset A ⊆ X of an ideal topological 

semigroup (X∗,τ,I), IsCl(A) = A if and only if A is an 

Is−closed set. 

 

 Theorem 2.11.  

[1] For a subset A ⊆ X of an ideal topological 

semigroup (X∗,τ,I), IsInt(A) = A if and only if A is an Is−open 
set. 

 

 Theorem 2.12.  

[1] For a subsets A,B ⊆ X of an ideal topological 

semigroup (X∗,τ,I), the following hold: 

 

 If A ⊆ B then IsCl(A) ⊆ IsCl(B); 

 IsCl(A) ∪ IsCl(B) ⊆ IsCl(A ∪ B); 

 IsCl(A ∩ B) ⊆ IsCl(A) ∩ IsCl(B); 

 IsCl(A) ⊆ Cl(A). 

 

 Theorem 2.13.  

[1] For a subsets A,B ⊆ X of an ideal topological 

semigroup (X∗,τ,I), the following hold: 

 

 If A ⊆ B then IsInt(A) ⊆ IsInt(B); 

 IsInt(A) ∪ IsInt(B) ⊆ IsInt(A ∪ B); 

 IsInt(A ∩ B) = IsInt(A) ∩ IsInt(B); 

 Int(A) ⊆ IsInt(A) . 

 

 Theorem 2.14.  

[1] For a subset A ⊆ X of an ideal topological 

semigroup (X∗,τ,I), the following hold: 

 

 IsInt(X − A) = (X − IsCl(A); 

 IsCl(X − A) = (X − IsInt(A). 

 

III. GENERALIZED IS-OPEN SETS 

 

 Definition 3.1.  

A subset A of an ideal topological semigroup (X∗,τ,I) is 

called a generalized Isclosed set (simply -closed) if IsCl(A) 

⊆ U whenever A ⊆ U and U is open subset of (X∗,τ,I). The 

complement of -closed set is called a generalized Is-open 

set (simply -open). 

 

For an ideal topological semigroup (X∗,τ,I), the set of 

all -closed sets in X denoted by and the set of 

all -open sets in X denoted by  

 

 Example 3.2.  

In an ideal topological semigroup (Xπ,τ,I), where X = 

{a,b,c}, 

 

τ = {∅,X},I = {∅,{a}},and τ∗ = {∅,X,{b,c}} 

 

, 

 

And 

 

. 

 

 Theorem 3.3.  

Every Is-open set is an Ig
s-open set. 

 

Proof. Let A be an Is-open subset of an ideal 

topological semigroup (X∗,τ,I). Then X−A is Is-closed set. 

Hence X − A = IsCl(X − A) ⊆ U whenever X − A ⊆ U and U 

is open set. That is, -open set.  

 

The converse of Theorem (3.3), no need to be true. In 

example (3.2), -open set but it is not Isopen set. 

 

 Corollary 3.4.  

Every Is-closed set is an Ig
s-closed set. 

 

 Theorem 3.5.  

Let (X∗,τ,I) be an ideal topological semigroup. If (X,τ) 

is a T1/2-space. Then every closed set in X is Is-closed. 

 

Proof. Let A be an -closed set in (X∗,τ,I). Suppose 

that A is not Is-closed set. Then there is at least x ∈ IsCl(A) 

such that x /∈ A. Since (X,τ) is a T1/2space then by Theorem 

(2.6), {x} is an open or closed set in X. If {x} is a closed set 

in X then X − {x} is an open set. Since x /∈ A, we have A ⊆ 

X − {x}. 
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Since -closed set and X −{x} is an open subset 

of X containing A, we get IsCl(A) ⊆ X − {x}. Hence x ∈ X − 

IsCl(A) and this contradiction, because x ∈ IsCl(A). If {x} is 

an open set then it is Is-open set. Since x ∈ IsCl(A) we have 

{x}∩A 6= ∅. That is, x ∈ A and this contradiction. Hence A 

is Is-closed set in (X∗,τ,I).  

 

 Theorem 3.6.  

Let (X∗,τ,I) be an ideal topological semigroup. Every g-

open set in (X∗,τ) is Ig
s-open set. 

 

Proof. Let A be a g-open set in (X,τ). Then X−A is g-

closed set. Hence X−A = Cl(X−A) ⊆ U whenever X − A ⊂ U 

and U is open set. Since IsCl(X − A) ⊆ Cl(X −A), we get 

IsCl(X −A) ⊆ U whenever 

 

X − A ⊆ U and U is open set. Therefore X − A is -

closed set. That is -open set.  

 

The converse of Theorem (3.6,) no need to be true. for 
Example, 

 

 Example 3.7.  

In a ideal topological semigroup 

 

(Xπ,τ,I), where X = {a,b,c}, τ = {∅,X,{a,b}},I = 

{∅,{a}} and τ∗ = {∅,X,{b},{a,b},{b,c}}, 

 

{b,c} is an -open set and it is not g-open set, because 

U = {a,b} is an open set in (X,τ) and {a} ⊆ U but Cl({a}) = 

X * U. 

 

 Theorem 3.8.  

If A is an -closed set in an ideal topological 

semigroup (X∗,τ,I) and B is a closed set in (X,τ) then

-closed set. 

 

Proof. Let U be an open subset of (X,τ) such that A∩B 

⊆ U. Since B is closed set in (X,τ) we obtain U ∪ (X − B) is 

an open set in (X,τ). Since A is an -closed set in X and A ⊆ 

U ∪ (X − B) so on IsCl(A) ⊆ U ∪ (X − B). Hence 
 

 
 

Thus, -closed set.  

 

 Theorem 3.9.  

For any x ∈ X in an ideal topological semigroup 

(X∗,τ,I), either the set {x} is Is-closed or the set

-closed in (X∗,τ,I). 

 

Proof. If {x} is not Is-closed set in (X∗,τ,I) then {x} is 

not closed set in X and so X −{x} is not open set in X. Then 

the set X is only open set in itself containing {x} and hence 

IsCl(X −{x}) ⊆ X. That is, -closed in (X∗,τ,I).  

 

 Theorem 3.10.  

A subset A of an ideal topological semigroup (X∗,τ,I) is 

Ig
s-closed if and only if for each x ∈ IsCl(A), Cl({x}) ∩ A 6= 

∅. 

 

Proof. Suppose that A is an -closed set in (X∗,τ,I) and 

x ∈ IsCl(A) be any point. Let Cl({x})∩A = ∅. Since Cl({x}) 

is a closed set in X we obtain X − Cl({x}) is an open set in X. 

Since A ⊆ X −Cl({x}) and A is Ig
s-closed set we get IsCl(A) 

⊆ X−Cl({x}) but this contradicts with x /∈ X−Cl({x}). Hence 

Cl({x}) ∩ A 6= ∅. 
 

Conversely, suppose that for each x ∈ IsCl(A), Cl({x}) 

∩ A 6= ∅ and U be any open set in X such that A ⊆ U. Let x 

∈ IsCl(A). Then Cl({x})∩A 6= ∅. Then there is at least z ∈ 

Cl({x}) and z ∈ A. Then z ∈ Cl({x}) and z ∈ U. Since U is an 

open set in X we get {x} ∩ U 6= ∅. Hence x ∈ U and so 

IsCl(A) ⊆ U. Hence, -closed set.  

 

 Theorem 3.11.  

A subset A of an ideal topological semigroup (X∗,τ,I) is 

an -open set if and only if F ⊆ IsInt(A) whenever F ⊆ A 

and F is closed subset of (X,τ). 

 

Proof. Let A be an -open subset of X and F be a 

closed subset of (X,τ) such that F ⊆ A. Then 

 

-closed set, X − A ⊆ X − F and X − F is an 

open subset of (X,τ). By Theorem(2.14), we get X − IsInt(A) 

= IsCl(X − A) ⊆ X − F, that is, F ⊆ IsInt(A). 

 

Conversely, suppose that F ⊆ IsInt(A) where F is a 

closed subset of (X,τ) such that F ⊆ A. Then for any open 

subset U of (X,τ) such that X − A ⊆ U, we have X −U ⊆ A 

and X −U ⊆ IsInt(A). Then by Theorem(2.14), X − IsInt(A) = 

IsCl(X − A) ⊆ U. 

 

Hence -closed. That is, -open 

set.  

 

 Theorem 3.12.  

If -closed subset of an ideal topological 

semigroup (X∗,τ,I) then IsCl(A) − A contains no nonempty 

closed set in (X,τ). 
 

Proof. Suppose that IsCl(A)−A contains a nonempty 

closed set F in (X,τ). Then 

 

F ⊆ IsCl(A) − A ⊆ IsCl(A). 

 

Since A ⊆ IsCl(A) we have F ⊆ X − A and so A ⊆ -

closed set and X−F is an open subset of (X,τ), we conclude 

IsCl(A) ⊆ X − F and so F ⊆ X − IsCl(A). Therefore 
 

F ⊆ IsCl(A) ∩ (X − IsCl(A)) = ∅ 
 

 
 

And so F = ∅. Hence IsCl(A) − A contains no 

nonempty closed set in (X,τ).  
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 Corollary 3.13.  

If A is an -closed subset of an ideal topological 

semigroup (X∗,τ,I) then IsCl(A)− A is an -open set. 

 
Proof. By Theorem (3.12), IsCl(A) − A contains no 

nonempty closed set in (X∗,τ) and it is clear that ∅ ⊆ 

IsInt(IsCl(A) − A) then by Theorem (3.11), IsCl(A) − A is an

-open set in (X∗,τ,I).  

 

 Theorem 3.14.  

If A is an -closed subset of an ideal topological 

semigroup (X∗,τ,I) and B ⊆ X. If 

 

A ⊆ B ⊆ IsCl(A) we obtain -closed set. 

 

Proof. Let U be an open set in (X,τ) such that B ⊆ U. 

Then A ⊆ B ⊆ U. Since A is an Ig
s-closed set then IsCl(A) ⊆ 

U. Since B ⊆ IsCl(A) then 

 

IsCl(B) ⊆ IsCl[IsCl(A)] = IsCl(A) ⊆ U. 

 

That is, B is an Ig
s-closed set in (X∗,τ,I).  

 

 Theorem 3.15.  

Let A be an -closed subset of an ideal topological 

semigroup (X∗,τ,I). Then A = IsCl(IsInt(A)) if and only if 

IsCl(IsInt(A)) − A is a closed set in (X,τ). 

 

Proof. Let IsCl(IsInt(A))−A be closed set in (X,τ). Since 

IsInt(A) ⊆ A and A ⊆ IsCl(A), we conclude IsCl(IsInt(A)) ⊆ 

IsCl(A). Then IsCl(IsInt(A)) − A ⊆ IsCl(A) − A, this implies 

IsCl(IsInt(A))−A ⊆ X−A ⇒ A ⊆ X−(IsCl(IsInt(A))−A). 

 

Since A is an -closed set and X−(IsCl(IsInt(A))− A) is 

an open set in (X,τ) containing A,we have IsCl(A) ⊆ X − 

(IsCl(IsInt(A)) − A), this implies 

 

IsCl(IsInt(A)) − A ⊆ X − IsCl(A). 

 

Therefore, 

 

IsCl(IsInt(A))−A ⊆ IsCl(A)∩(X −IsCl(A)) = ∅. 

 

Hence IsCl(IsInt(A)) − A = ∅, that is, IsCl 

(IsInt(A)) = A. 

 

Conversely, if A = IsCl(IsInt(A)) then IsCl(IsInt(A))−A 

= ∅ and hence IsCl(IsInt(A))− A is a closed set in (X,τ).  

 

IV. PRODUCT AND RELATIVELY 

 

For a bitopological semigroup (X∗,τ,ρ) and a subset A 

of X, the τρ-closure set of A is defined as the intersection of 

all τρ-closed sets containing A and it is denoted by τρCl(A). 

The τρ-interior set of A is defined as the union of all τρ-open 

sets of X contained in A and it is denoted by τρInt(A). 

 
 

 

 

 Definition 4.1.  

A subset A ⊆ X is said to be Iτρclosed set in a 

bitopological semigroup (X∗,τ,ρ) if τρCl(A) ⊆ U whenever A 

⊆ U and U is open subset in (X,τ). The complement of Iτρ-

closed set is said to be Iτρ-open set. 

 

 Lemma 4.2.  

For a subset of an ideal topological semigroup (X∗,τ,I), 

 

 ττICl(A) = IsCl(A). 

 ττIInt(A) = IsInt(A). 
 

Proof. It is clear from the definitions.  

 

 Theorem 4.3.  

A subset A ⊆ X is an -closed set in an ideal 

topological semigroup (X∗,τ,I) if and only if it is IττI-closed 

set in bitopological semigroup (X∗,τ,τI). 

 

Proof. It is clear from the definitions and Lemma (4.2).  

 

 Theorem 4.4.  

Let Y be an open subspace of an ideal topological 

semigroup (X∗,τ,I) and A ⊆ Y . If 

 

A is an -closed set in (X∗,τ,I) then A is Iτ|YτI|Y closed set 

in bitopological semigroup (Y◦,τ|Y ,τI|Y ). 

 

Proof. Let O be an open subset in (Y,τ|Y ) such that A ⊆ 

O. Then O = U ∩ Y for some open set U in (X,τ) and so A ⊆ 

U. Since A is an Ig
s-closed set in (X∗,τ,I), we get IsCl(A) ⊆ U. 

By Theorem (4.3) and Lemma (4.2), ττICl|Y (A) = IsCl(A)|Y 

(A) = IsCl(A)∩Y ⊆ U∩Y = O. 
 

Hence A is Iτ|YτI|Y -closed set in (Y◦,τ|Y ,τI|Y ). .  

 

 Theorem 4.5.  

Let Y be an open subspace of an ideal topological space 

(X∗,τ,I) and A ⊆ Y . If A is Iτ|YτI|Y -closed set in bitopological 

semigroup (Y◦,τ|Y ,τI|Y ) and Y is Is-closed set in (X∗,τ,I) then 

-closed set in (X∗,τ,I). 

 

Proof. Let U be an open subset in (X,τ) such that A ⊆ U. 

Then A ⊆ U ∩ Y and U ∩ Y is open set in (Y,τ|Y ). Since A is 

a Iτ|YτI|Y -closed set in bitopological semigroup (Y◦,τ|Y ,τI|Y ), we 

get ττICl|Y (A) ⊆ U ∩ Y . Since Y is an open set in (X,τ) and Y 

is an Is-closed set in (X∗,τ,I) we have By Theorem (4.4) and 

Lemma (4.2), 

 

 
 

Hence -closed set in (X∗,τ,I).  

 
 Lemma 4.6.  

Let (X∗,τ,I) and (Y◦,ρ,I0) be two ideals topological 

semigroup. If A ⊆ X and B ⊆ Y then the following hold: 
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 (τ×ρ)(τI×ρI0)Int(A×B) = IsInt(A)×I0sInt(B). 

 (τ×ρ)(τI×ρI0)Cl(A × B) = IsCl(A) × I0sCl(B). 
 

Proof. 1. Let (x,y) ∈ (τ×ρ)(τI×ρI0)Int(A×B). Then  

 by 

the definition there is at least one a (τ × ρ)(τI × ρI0)-open set 

U ×I in bitopological semigroup (X∗ × Y◦,τ × ρ,τI × ρI0) such 

that (x,y) ∈ U × I ⊆ A × B. Then by Theorem (2.9) A is an Is-

open set in (X∗,τ,I) and B is a Is-open set in (Y◦,ρ,I0). So x ∈ U 

⊆ A and y ∈ I ⊆ B. Then x ∈ IsInt(A) and y ∈ I0sInt(B). This 

implies (x,y) ∈ IsInt(A) × I0sInt(B). Therefore 

 

(τ×ρ)(τI×ρI0)Int(A × B) ⊆ IsInt(A) × I0sInt(B). Similar, 

IsInt(A) × I0sInt(B) ⊆ (τ×ρ)(τI×ρI0)Int(A × B). 

 

2. Let (x,y) ∈/ IsCl(A) × I0sCl(B). Then x /∈ IsCl(A) or y 

/∈ I0sCl(B). If x /∈ IsCl(A) then by Theorem (2.9) there is an 

Is-open set U in (X∗,τ,I) containing x such that A ∩ U = ∅. 

Then by Theorem (4.3) U is a ττI-open set in bitopological 

semigroup (X∗,τ,τI) containing x and Y is a ρρI0-open set in 

bitopological semigroup (Y◦,ρ,ρI0) containing y. Hence U × Y 

is a (ττI)(ρρI0)-open set in bitopological semigroup (X∗×Y◦,τ 

×ρ,τI ×ρI0) containing (x,y) and Then by Lemma (4.6), 

IsCl(A)×I0sCl(B) = (τ×ρ)(τI×ρI0)Cl(A×B) ⊆ U1×U2. 
 

This implies, IsCl(A) ⊆ U1 and IsCl(B) ⊆ U2. Hence A is 

an -closed set in (X∗,τ,I) and B is an -closed set in 

(Y◦,ρ,I0). 

 

Conversely, suppose that A is an I
g

s-closed set in (X∗,τ,I) 

and B is Ig
s-closed set in (Y◦,ρ,I0). Let U1×U2 be an open set in 

(X×Y,τ×ρ) and U1×U2 ⊆ A × B. Then U1 is an open set in (X,τ) 

and U2 is an open set in (Y,ρ) such that U1 ⊆ A and U2 ⊆ B. 

By the hypothesis, IsCl(A) ⊆ U1 and IsCl(B) ⊆ U2. Hence by 

Lemmas (4.6) and (4.2), 
 

(τ×ρ)(τI×ρI0)Cl(A×B) = IsCl(A)×I0sCl(B) ⊆ U1×U2. 

 

Hence A×B is I(τ×ρ)(τI×ρI0)-closed set in bitopological 

semigroup (X∗ × Y◦,τ × ρ,τI × ρI0).  

 

This implies (x,y) ∈/ (τ×ρ)(τI×ρI0)Cl(A × B). Therefore 

 

(τ×ρ)(τI×ρI0)Cl(A × B) ⊆ IsCl(A) × I0sCl(B). 

 

Similar, 

 

IsCl(A) × I0sCl(B) ⊆ (τ×ρ)(τI×ρI0)Cl(A × B). 

 

 Theorem 4.7.  

Let (X∗,τ,I) and (Y◦,ρ,I0) be two ideals topological 

semigroups. A subset A × B ⊆ X × Y is I(τ×ρ)(τI×ρI0)-closed set 

in bitopological semigroup (X∗ × Y◦,τ × ρ,τI × ρI0) if and only 

if A is an Ig
s-closed set in (X∗,τ,I) and B is an Ig

s-closed set in 

(Y◦,ρ,I0). 

 

Proof. Suppose that A×B is I(τ×ρ)(τI×ρI0)-closed set in 

bitopological semigroup (X∗ ×Y◦,τ ×ρ,τI ×ρI0). Let U1 be an 

open set in (X,τ) and U2 be an open set in (Y,ρ) such that U1 ⊆ 

A and U2 ⊆ B. Then U1×U2 be an open set in (X×Y,τ×ρ) and 

U1×U2 ⊆ A × B. Since A × B is I(τ×ρ)(τI×ρI0)-closed set in (X∗ × 

Y◦,τ × ρ,τI × ρI0) we obtain (τ×ρ)(τI×ρI0)Cl(A × B) ⊆ U1 ×U2. 
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