The Engineering Process Design for a Dual-Axes Solar Power Generating System

¹Onawumi Ayodele Samuel, ¹Akinrinade Nathaniel Abidemi, ¹Olojede, Moses Abiodun, ¹Ajayeoba Abiola Olufemi, ²Sanyaolu Olufemi Oluseun ¹Department of Mechanical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

² Department of Mechanical Engineering, Redeemer's University, Ede, Nigeria. *Corresponding Author:* Sanyaolu Olufemi Oluseun: sanyaolufemi@run.edu.ng

Abstract:- Detailed technical feasibility study can be achieved with effective process design of a product or system. The tool has the capacity of enhancing the profitability as well as improving the productivity in the arears of design, construction/fabrication of equipment, engineering facilities or devices to specification and standards. This study aimed at the development of engineering process design for a dual axes solar power generating system. The method analyses the process design concept used in the production which involves: process selection, operation determination, and product design and analysis. The results obtained revealed that the dual-axes solar power generating system has twenty-two (22) parts assembled together in ten (10) identified major assemblies, out of which thirteen could be fabricated in the local workshop, while are to be procured as specified from the market. The study presents a viable, and economically feasible techniques for the manufacture of the dual-axes solar power generating system.

Keywords:- Design Process, Product Analysis, Process Selection, Product Determination, Dual Axes Solar Power System, Components.

I. INTRODUCTION

Solar power system has contributed significantly to the provision of safe and affordable energy needed to power several electrical infrastructures in any economy. Amidst the typical sustainable energy sources, solar energy system offers a huge prospect for the generation of electric power, capable of ensuring a significant fraction of the electrical energy requirements of the planet [1] This alternate source of power is constantly achieving admirable fame especially since the discovery of fossil fuel limitations for sustainable energy has generated much research interest in many countries of the world in line with the Sustainable Development Goal [2]. The abundance of solar energy in the template zones suggests a concerted effort and investment in facilities for conversion of the sustainable source to valuable energy for several uses. A productive and sustainable product design and process development are complex acts that are multifactorial. Factor such as cost, layout of plant and equipment requirement, skill. Health, safety, and type of production.

A. Process Design

Process design is a general term for a specialised planning procedure for manufacturing or service operations that integrates production service location and capacity decisions with subsequent layout, scheduling, and execution action by specifying the essential sequence of the production phases. [2]. According to [3] further explained that process design can be the design of new facilities or it can be the modification or expansion of existing facilities. The design process starts with an idea and concludes with manufacturing and construction plans. Equipment design is distinct from process design, which is conceptually closer to unit operation design. Many unit operations are frequently included in processes. [4] revealed that process design manages the production process's combination of machines, equipment, and materials. [5] noted that the process and product design's primary goal is to increase product quality and meet consumer wants. It is critical to emphasize that, while businesses must maximize profits, the time lag between the design process and actual production is lengthy, resulting in higher costs. As a result, the overall assessment of design effectiveness should include the element of product quality as a primary goal. The three main steps of process design are: product analysis process selection and operation determination [6].

B Product Analysis

Product analysis is an excellent exercise to conduct before filing a product design and/or development technology for a patent [7]. The main output of product analysis is the product specification. A lot of decisions such as the purchase of materials, selection of equipment, assignment of workers, and the size and layout of the production facility depend on the product specification made [8]. The breaking down of the product into its components to identify the components and their relations to each other is known as product analysis [4].

C. Process Selection

This may be considered as a series of decisions encompassing the theoretical feasibility of making the product, the general nature of the processing style, the specific equipment to be employed, and the specific routine through which the product must flow (9). There are four categories by which process selection decisions are made: major technological choice, minor technological choice, specific components choice, and specific process flow choice [3].

D. Operation Determination

These are the methods or steps to be taken in realizing a process, and this can be carried out using the results obtained from the product analysis and process selection phase. These include; determination and statement of the operations required to accomplish each process, determination and numbering of the sequence of operation, chronological specification of the raw material, machine name [10].

E. Dual Axes Solar Power Generating System

Dual Axes Solar Power Generating System (DASPGS) possess two degrees of freedom that act as rotation axes which are usually orthogonal to one another [11]. The principal axis is the one that is grounded. The secondary axis is the only one that refers to the primary axis. Dual trackers are commonly used in a variety of ways. Their classification is determined by the orientation of their primary axes to the ground [12]. DASPGS change both altitude (vertical) and azimuthal (horizontal) degrees of solar panels. They rotate and tilt to track the sun in both east to west and north to south directions to maximize the power output [13]. Research conducted by [14], stated that DASPGS outperform Fixed Axis Solar Power Generating System (FASPGS) because the earth has two kinds of motion: daily motion and annual motion. [15], explained further that, DASPGS combine the two motions (North to South and East to West) to track sunlight optimally. They adapt to the daily trajectory of the sun with seasonal tilting. The power output of the panels is maximized by using DASPGS because it can keep the panel perpendicular to the sun anywhere around the world and for a longer duration than FASPGS. Therefore, using DASPGS would boost solar panel efficiency.

II. MATERIALS AND METHODS

A. Materials

The material selection that was used for fabrication and production of the DASPGS include the following: mild steel rod, mild steel pipe, mild steel bar, mild steel plate, galvanized steel pipe, chrome steel, aluminum pipe, carbon steel, and teflon. During the design process of the DASPGS components, three main steps were involved which include; product analysis process selection, and operation determination.

B. Product Design and Analysis

The following steps were followed in product analysis for the study of DASPGS which include: a detailed drawing of the DASPGS, an assembly drawing of the product, identification of all sub-assemblies and parts not attached to any particular assemblies, list of sub-assemblies and independent parts, list of parts on each of sub-assembly, list of material types for each identified type, drawing of the product structure tree chart, conducting a modify or buy analysis, and preparation of a Bill of Material (BOM) for product and assemblies.

C. Process Selection

The steps adopted in the process selection of DASPGS were highlighted in the following

• All features to be processed on each part were itemized,

- The surfaces to be created for each feature were also itemized
- For each surface itemized, all possible processes that could be used to create it were stated.
- Estimation of cost of processing, buying special jigs and fixtures for each stated process was made.

D. Operation Determination

The procedural steps that were adopted in the operation determination of the DASPGS are itemized and these include the following. Determination and statement of the operation required to accomplish each process selected. Determination numbering of the sequence of operations, Chronological specification of the raw materials, machine name, machine setup time, any special tools, jigs and fixtures, machine rate, etc. Superimposition of the above information on production identification number and product drawing number to obtain the process route sheet.

III. RESULTS AND DISCUSSION

A. Product Analysis

The result of the product analysis of DASPGS was obtained mainly from the engineering drawings of parts and products. The major output of this product analysis is the product specifications of the DASPGS. Fig 1 and Fig 2 show the various drawings of DASPGS used in achieving the required result. Table 1 shows the list of identified components and types of material used in producing DASPGS. Table 2 shows the list of material specification numbers for easy identification of material in the production system. Table 3 is the alpha-numerical coding list that shows the product, unit, sub-assembly, and alpha-code columns of the components. Table 4 shows the list of parts and letter code. Table 5 shows the list of parts alpha-numerical code and materials specifications. Haven considered the procedural steps conducted on product analysis of the DASPGS, a product tree structure diagram was drawn and represented with different letter codes and material specification numbers for better specification and easy identification as represented in Figure 5.

Fig 1: A Dual-Axes Solar Power Generating System

IJISRT22DEC946

Fig 2: Part List of the Dual-Axes Solar Power Generating System

S/N	Component Name	Material Type
1	Base Stand	Mild Steel
2	Base Sensor Pipes	Aluminum
3	Base Bearing Housing	Mild Steel
4	Base Bearing	Chrome Steel
5	Base Bolts	Mild Steel
6	Base Nuts	Mild Steel
7	Base Motor Support	Mild Steel
8	Sensor Dual axis Pipe	Aluminum
9	Sensor Coordinate Pipe	Aluminum
10	Sensor Tilting pipe	Aluminum
11	Upper Bearings Housing	Mild Steel
12	Upper Bearings	Chrome Steel
13	Upper Bolts	Mild Steel
14	Upper Nuts	Mild Steel
15	Shaft	Galvanized Mild Steel
16	Supporting Shaft	Galvanized Mild Steel
17	Gear	Teflon
18	Pinion	Teflon
19	Screws	Carbon Steel
20	Cover Plate	Mild Steel
21	Threading Shaft	Mild Steel
22	Panel Support	Mild Steel
18 19 20 21 22	Pinion Screws Cover Plate Threading Shaft Panel Support	Teflon Carbon Steel Mild Steel Mild Steel Mild Steel

TABLE 1: LIST OF MECHANICAL COMPONENTSAND MATERIAL TYPE OF DASPG

TABLE 2: LIST OF MECHANICAL COMPONENTS
AND MATERIAL TYPE OF DASPGS

S/N	Material Type	Alphanumeric
		Code
1	Mild Steel Rod	MSR 100
2	Mild Steel Pipe	MSP 100
3	Mild Steel Bar	MSB 100
4	Mild Steel Plate	MSP 100
5	Galvanized Steel Plate	GSP 150
6	Chrome Steel	CS 200
7	Carbon Steel Pipe	CBP 200
8	Aluminum Pipe	AP 300
9	Teflon	TF 400

TABLE 3: LIST OF PRODUCTS, SUB-ASSEMBLYAND ALPHA-CODE

Unit	Code	Sub-assembly	Code	Alpha- Code
Base	В	Stand	S	BS
		Sensor Pipes	Р	BP
		Bearing	В	BH
		Housing		
		Bearing	В	BB
		Bolts	0	BO
		Nuts	N	BN
		Motor Support	М	BM
Sensor	S	Dual axis Pipe	R	SR
		Coordinate	C	SC
		Pipe		

		Tilting pipe	Т	ST
Upper U Bearing		Bearing	Н	UH
		Housing		
		Bearings	В	UB
		Bolts	0	UO
		Nuts	Ν	UN
Shaft	S			S
Supporting	Н			Н
Shaft				
Gear	G			G
Pinion	Р			Р
Screw	W			W
Cover	С			С
Plate				
Threading	Т			Т
Shaft				
Panel	V			V
Support				

TABLE 4: LIST OF COMPONENT PARTS AND LETTER CODE

S/N	Component Name	Letter Code
1	Base Stand	BS01001
2	Base Sensor Pipe	BP01001
3	Base Bearing Housing	BH01001
4	Base Bearing	BB01001
5	Base Bolts	BO01001
6	Base Nuts	BN01001
7	Base Motor Support	BM01001
8	Sensor Dual axis Pipe	SR01001
9	Sensor Coordinate Pipe	SS01001
10	Sensor Tilting Pipe	ST01001
11	Upper Bearing Housing	UP01001
12	Upper Bearings	UB01001
13	Upper Bolts	UO01001
14	Upper Nuts	UN01001
15	Shaft	S01001
16	Supporting Shaft	H01001
17	Gear	G01001
18	Pinion	P01001
19	Screws	W01001
20	Cover Plate	C01001
21	Threading Shaft	T01001
22	Panel Support	V01001

B. Process Selection

The results of the selection process for the manufacturing of a DASPGS are as follow drilling, lathe

ISSN No:-2456-2165

turning, facing, chiseling, sawing, punching, bending, rolling, and cutting. For each of the following processes selected, urgent attention was given to having the ability to produce parts to specifications. The process selected were those which simplified the operations while they also produce good surface finished. Table 6 represent process identification and selection. The completion was based on insight, experience, and expert opinion.

C. Operation Determination

The result of operation determination was derived and obtained using product analysis and process selection phases. The result of the tree structure diagram of DASPGS is represented in Figure 4. Also, Table 7 depicts the bill of material for DASPGS with parts letter code, required quantity, material specification number, and selected option between buying and modifying parts. Finally, Table 8 shows a long list of processes identified in the manufacture of DASPGS and the selected best process for each operation.

Fig 3: Three Structure Diagram of DASPGS

TABLE 0. LIST OF TAKIS TO MODIFT AND TAKIS TO BOT					
Parts to modify		Parts to buy			
Part	Code	Part	Code		
Base Stand	BS01001	Base Bearing	BB01001		
Base Sensor Pipe	BP01001	Base Bolts	BO01001		
Base Bearing Housing	BH01001	Base Nuts	BN01001		
Base Motor Support	BM01001	Upper Bearings	UB01001		
Sensor Dual axis Pipe	SR01001	Upper Bolts	UO01001		
Sensor Coordinate Pipe	SS01001	Upper Nuts	UN01001		
Sensor Tilting Pipe	ST01001	Gear	G01001		

TABLE 6: LIST OF PARTS TO MODIFY AND PARTS TO BUY

Upper Bearing Housing	UH01001	Pinion	P01001
Shaft	S01001	Screws	W01001
Supporting Shaft	H01001		
Cover Plate	C01001		
Threading Shaft	T01001		
Panel Support	U01001		

Fig 4: Model Procedure showing Process Design of DASPGS Manufacture

TABLE 7: BILL	OF MATERIAL	L TO DASPGS

S/N	Component Part (Part Code)	Quantity	Material Specification No.	Make (M) or Buy (B)
1.	BS01001	1	MSP 100	М
2.	BP01001	4	AP 300	М
3.	BH01001	1	MSPL 100	М
4.	BB01001	1	CS 200	В
5.	BO01001	6	MSR 100	В
6.	BN01001	6	MSR 100	В
7.	BM01001	1	MSB 100	М
8.	SR02002	2	AP 300	М
9.	SS01001	1	AP 300	М
10.	ST01001	1	AP 300	М
11.	UH01001	2	MSPL 100	М
12.	UB01001	2	CS 200	В
13.	UO01001	4	MSR 100	В

14.	UN01001	4	MSR 100	В
15.	S01001	1	GSP 150	М
16.	H01001	2	GSP 150	М
17.	G01001	1	TF 400	В
18.	P01001	1	TF 400	В
19.	W01001	6	CSP 200	В
20.	C01001	1	MSPL 100	М
21.	T01001	1	MSR 100	М
22.	U01001	1	MSR 100	М

TABLE 8: PROCESS IDENTIFICATION AND SELECTION

S/N	Part Code	Measure and Surface to be	Possible Process of	Selected Process	Reasons
		Processed	Manufacture		
1	BS01001	Flat Surface	Electric Arc Cutting,	Arc Sawing	Most appropriate
			Sawing		since the plate is
					thick
2	BP01001	Flat Surface	Sawing, Cutting	Sawing	Most appropriate
3	BH01001	Flat Surface	Electric Arc Cutting,	Electric arc	Easier and faster
			Sawing	sawing	
4	BM01001	Flat Surface	Sawing	Sawing	Most appropriate
5	SR01001	Flat Surface	Sawing	Sawing	Appropriate, easier
					and economical
6	SS01001	Flat Surface	Sawing, Drilling,	Sawing, Drilling	Most appropriate
		Circular Holes	Sawing		Easy and Economical
7	ST01001	Flat Surface	Sawing	Sawing	Most appropriate
8	UH01001	Circular Hole	Facing	Facing	Easy and Economical
9	S01001	Circular Hole	Lathe Turning, Facing	Lathe	Easy and Economical
10	H01001	Flat Surface	Cutting, Sawing	Sawing	Simple and Easy
		Circular Hole			
11	C01001	Flat Surface	Rolling, Bending	Rolling	Produce a well round
					part
12	T01001	Circular Flat Surface	Lathe Cutting, Cutting	Lathe Turning	Most appropriate
13.	U01001	Flat Surface	Cutting, Sawing	Sawing	Produce good finish
			_		surface

IV. CONCLUSION

This study has revealed the activities involved in each process design phase of DASPGS taken into consideration the fundamental situations in Nigeria. The review procedure of process design was then applied to the design of the DASPGS manufacturing process model. The tools used in process design and all the available procedures were utilized to achieve the stated objectives. The method has proven that using alpha-numeric codes for naming the component has made the components easy for recognition. The study has revealed the process design techniques that should be adopted in advancing and enhancing large-scale manufacturing of DASPGS.

ACKNOWLEDGMENT

The authors wish to acknowledge the workshop staff members of Mechanical Engineering Department LAUTECH, Ogbomoso for the technical supports in the course of the fabrication of the solar systems. Also appreciated is the management of LAUTECH, Ogbomoso for granting the use of some her facilities for this research.

REFERENCES

- [1]. Deb, G., and Roy, A. B. (2012). Use of solar tracking system for extracting solar energy. *International Journal of Computer and Electrical Engineering*, 4(1), 42.
- [2]. SDG. "The Sustainable Development Goals Report," United nations, New York, 2017.
- [3]. Glavič, P., Pintarič, Z. N., and Bogataj, M. (2021). Process Design and Sustainable Development—A European Perspective. *Processes*, 9(1), 148.
- [4]. Bagshaw, K. B. (2017). Process and product design: production efficiency of manufacturing firms in Rivers State, Nigeria. *Engineering Management Research*, 6(1), 49-55.
- [5]. Patil, H. M., Sirsikar, S. S., and Gholap, N. N. (2017). Product design and development: phases and approach. *International Journal of Engineering Research and Technology*, 6(7), 180-187.
- [6]. Innella, G., and Anthony Rodgers, P. (2017). The commodity of trade in contemporary design. *The Design Journal*, 20(sup1), S647-S668.

- [7]. O. Diego, S. Valley, S. Dallas, and County, "What is the Purpose of Product Analysis?," no. 858, pp. 1–5, 2020.
- [8]. Lundgren, M., Hedlind, M., and Kjellberg, T. (2016). Model driven manufacturing process design and managing quality. *Proceedia CIRP*, 50, 299-304.
- [9]. Martínez-Rivero, M. D., Hernández-Castellano, P., Marrero-Alemán, M. D., and Suárez-García, L. (2019). Manufacturing process selection integrated in the design process: Test and results. *Procedia Manufacturing*, 41, 827-834.
- [10]. Alix, T., and Vallespir, B. (2009, September). A framework for product-service design for manufacturing firms. In *IFIP International Conference* on Advances in Production Management Systems (pp. 644-651). Springer, Berlin, Heidelberg.
- [11]. Johnson-Hoyte, D., How, M. L. S., Rossi, D., and Thaw, M. (2013). Dual-Axis Solar Tracker: Functional Model Realization and Full-Scale Simulations. *Dual-Axis Sol. tracker*, 1-81.
- [12]. OTIENO, O. R. (2015). Faculty Of Engineering Department Of Electrical And Information Engineering Solar Tracker For Solar Panel (Doctoral dissertation, Doctoral dissertation, University of Nairobi).
- [13]. Vastav, B. K. S., Nema, S., Swarnkar, P., and Rajesh, D. (2016, December). Automatic solar tracking system using DELTA PLC. In 2016 International Conference on Electrical Power and Energy Systems (ICEPES) (pp. 16-21). IEEE.
- [14]. Okhaifoh, J. E., and Okene, D. E. (2016). Design and Implementation of a microcontroller based dual axis solar radiation tracker. *Nigerian Journal of Technology*, 35(3), 584-592.
- [15]. H. Abjeg, "Concentrated Photovotaic Tracker Component Stability and Economic Study," Al Alkhawayn University School of Science and Engineering, 2016.