Union of 4-Total Mean Cordial Graph with the Star $K_{1, N}$

D. SRIRAM
Department of Mathematics P.S.R Engineering College, Sivakasi-626140,Tamilnadu, India.

Abstract

Consider (p, q) graph G and define f from the vertex set $V(G)$ to the set Z_{k} where $k \in$ \mathbf{N} and $k>1$. Foreache $u v$, assign the label $f(u)+f$ $(v) 2$, Then the function f is called as k-total mean cordial labeling of G if number of vertices and edges labelled by i and not labelled by i differ by at most 1 , where $i \in\{0,1,2, \cdots, k-1\}$. Suppose a graph admits a k-total mean cordial labeling then it is called as k total mean cordial graph. In this paper we investigate the 4-total mean cordial labeling of $G \cup K_{1, n}$ where G is a 4-total mean cordial graph.

I. INTRODUCTION

All Graphs in this paper are finite, simple and undirected. In [4] the concept of k-total mean cordial labeling have been introduced. Also, 4-total mean cordial behaviour of several graphs like path, cycle, com-plete graph, star, bistr, comb, crown have been investigated in [4]. In this paper we investigate the 4-total mean cordial labeling of $G \cup K_{1, n}$ where G is a 4-total mean cordial graph. Let x be any real number. Then $\lceil\mathrm{x}\rceil$ stands for the smallest integer greater than or equal to x . Terms are not defined here follow from Harray [3] and Gallian [2].

II. K-TOTAL MEAN CORDIAL LABELING

Definition 2.1. Let G be a (p, q) graph. Let $f: V$ $(G) \rightarrow\{0,1,2, \ldots, k-1\}$ be a function where $k \in \mathrm{~N}$ and $k>1$. For each edge $u v$, assign the label $\vec{f}(u v)=f$ $(u)+f(v) 2 . f$ is called k-total mean cordial labeling 0if $1 \leq i \leq t$ 3if $t+1 \leq i \leq 2 t$ Here $\operatorname{tm}_{f}(0)=\operatorname{tm}_{f}(2)=\operatorname{tm}_{f}(3)$ $=t$ and $\operatorname{tm}_{f}(1)=t+1$. Case 2. n is odd. Take $n=2 t$ +1 . Here $\left(f\left(u_{i}\right)=\right.$ of G if $\left|t m_{f}(i)-t_{f}(j)\right| \leq 1$ for all $\boldsymbol{i}, \boldsymbol{j} \in\{0,1,2, \cdots, k-1\}$ where $\operatorname{tm}_{f}(x)$ denotes the total number of vertices and the edges labeled with $x, x \in\{0,1$, $2, \cdots, k-1\}$. A graph with a k-total mean cordial labeling is called k-total mean cordial graph.
> 2000 Mathematics Subject Classification. 05C78.

- Key words and phrases. Star, bipartite graph, union of graphs and 4-total mean cordial graph.

Definition 2.2. A bipartite graph is a graph whose vertex set $V(G)$ can be partitioned into two subsets V_{1} and V_{2} such that every edge of G joins a vertex of V_{1} with a vertex of V_{2}. If every vertex of V_{1} is adjacent with every vertex of V_{2}, then G is a complete bipartite graph.If $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$, then the complete bipartite graph is denotedby $K_{m, n}$.

- Definition 2.3. $K_{1, n}$ is called a Star.
- Definition 2.4. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V$ $\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

III. PRELIMINARIES

First we reminisce the following theorem on star graph which admitsa 4-total mean cordial labeling given in [4]. Theorem 3.1. [4] The star $K_{1, n}$ is 4 -total mean cordial for all values of n. Proof. Let $V\left(K_{1, n}\right)=\{u\}$ $\cup\left\{u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n}\right)=\left\{u u_{i}: 1 \leq i \leq n\right\}$. Define a vertex labeling f from the set of vertices of star to the set $\{0,1,2,3\}$ as follows: $f(u)=1$ and according to the nature of n, to provide vertex labels to the vertices u_{i}, we may consider the following two cases:

- Case 1. n is even.Let $n=2 t$. In this case

$$
f\left(u_{i}\right)=\begin{array}{ll}
0 & \text { if } 1 \leq i \leq t \\
3 & \text { if } t+1 \leq i \leq 2 t
\end{array}
$$

- Here $\operatorname{tm}_{f}(0)=t m_{f}(2)=t m_{f}(3)=t$ and $t m_{f}(1)=t$ +1 .
- Case 2. n is odd.Take $n=2 t+1$. Here

$$
f\left(u_{i}\right)=\begin{array}{ll}
0 & \text { if } 1 \leq i \leq t \\
3 & \text { if } t+1 \leq i \leq 2 t+1
\end{array}
$$

- Note that $\operatorname{tm}_{f}(1)=\operatorname{tm}_{f}(2)=\operatorname{tm}_{f}(3)=t+1$ and $t m_{f}$ $(0)=t$.
- Hence f is a 4-total mean cordial labeling of $K_{1, n}$. Q

IV. MAIN RESULTS

With the help of the Theorem 3.1, we can now verify the 4-total mean cordiality of the graph $G \cup K_{1, n}$ where G is any 4-total mean cordial graph.

- Theorem 4.1. Let G be any $(p, q)-4$ total mean cordial graph. Then $G \cup K_{1, n}$ is 4 total mean cordial if n is even.
- Proof. As G is 4 total mean cordial, there exists a 4 total mean cordial labeling, say g. We define a function $h: V\left(G \cup K_{1, n}\right) \rightarrow\{0,1,2,3\}$ by

$$
h(x)=\begin{array}{ll}
g(x) & \text { if } x \in V(G) \\
f(x) & \text { if } x \in V\left(K_{1, n}\right)
\end{array}
$$

> Now we Check the Validity of the Above Mentioned Labeling in four Cases.

- Case 1. $p+q \equiv 0(\bmod 4)$.
- Let $p+q=4 r$. In this case $\operatorname{tm}_{g}(0)=t m_{g}(1)=$ $t m_{g}(2)=t m_{g}(3)=r$.
- Note that, here h satisfies the required condition given by $t m_{h}(0)=$
- $t m_{h}(2)=t m_{h}(3)=r+t$ and $t m_{h}(1)=r+t+1$.
- Case 2. $p+q \equiv 1(\bmod 4)$.
$>$ Put $p+q=4 r+1$. Here, the function g should satisfy any one of the following conditions:
- $\operatorname{tm}_{g}(0)=r+1$ and $t m g_{g}(1)=t m_{g}(2)=t m_{g}(3)=r$.
- $t m_{g}(1)=r+1$ and $t m_{g}(0)=t m_{g}(2)=t m_{g}(3)=r$.
- $t m_{g}(2)=r+1$ and $t m_{g}(0)=t m_{g}(1)=t m_{g}(3)=r$.
- $t m_{g}(3)=r+1$ and $t m_{g}(0)=t m_{g}(1)=t m_{g}(2)=r$.
> Now we Divide this Case into the Following Possible Subcases.
- Subcase 2(a). $\operatorname{tm}_{g}(0)=r+1$ and $t m_{g}(1)=t m_{g}(2)$ $=t m_{g}(3)=r$.
- In this case $t m_{h}(0)=t m_{h}(1)=r+t+1, t m_{h}(2)=$ $\operatorname{tm}_{h}(3)=r+t$ and hence h is a 4-total mean cordial labeling.
- Subcase 2(b). $t m_{g}(1)=r+1$ and $t m_{g}(0)=$ $t m_{g}(2)=t m_{g}(3)=r$.
- If $n \equiv 2(\bmod 4)$, then we reconstruct the vertex labeling h as follows
- $h(x)=g(x)$ for all $x \in V(G), h(u)=2$ and

$$
h\left(u_{i}\right)=\begin{array}{lll}
{ }^{0} 0 & \text { if } 1 \leq i \leq 2 t+1 \\
2 & \text { if } 2 t+2 \leq i \leq 3 t+1 \\
{ }^{0} 3 & \text { if } 3 t+2 \leq i \leq 4 t+2
\end{array}
$$

Where $n=4 t+2$. In this case $t m_{h}(0)=t m_{h}(2)=r$ $+2 t+1$ and $t m_{h}(1)=t m_{h}(3)=r+2 t+2$ and hence h is a 4-total mean cordial labeling. Suppose $n \equiv 0(\bmod$ 4), then we redefine the function h as follows $h(x)=$ $g(x)$ for all $x \in V(G), h(u)=2$ and

$$
h\left(u_{i}\right)=\begin{array}{ll}
00 & \text { if } 1 \leq i \leq 2 t \\
2 & \text { if } 2 t+1 \leq i \leq 3 t \\
3 & \text { if } 3 t+1<i<4 t
\end{array}
$$

Where $n=4 t$. Here $t m_{h}(0)=t m_{h}(3)=r+2 t$ and $\operatorname{tm}_{h}(1)=\operatorname{tm}_{h}(2)=r+2 t+1$. Hence h is a required vertex labeling.

- Subcase 2(c). $\operatorname{tm}_{g}(2)=r+1$ and $t m_{g}(0)=t m_{g}(1)$ $=t m_{g}(3)=r$.
- In this case, we have $t m_{h}(0)=t m_{h}(3)=r+t$ and $t m_{h}(1)=t m_{h}(2)=$
- $r+t+1$ and hence h is a 4-total mean cordial labeling.
- Subcase 2(d). $\operatorname{tm}_{g}(3)=r+1$ and $t m_{g}(0)=t m_{g}(1)$ $=t m_{g}(2)=$
- r. Here $t m_{h}(0)=t m_{h}(2)=r+t$ and $t m_{h}(1)=$ $t m_{h}(3)=r+t+1$.
- Thus h should be a 4-total mean cordial labeling.Case 3. $p+q \equiv 2(\bmod 4)$.
$>$ Put $p+q=4 r+2$. Here g should satisfy any one of the following conditions:
- $t m_{g}(0)=t m_{g}(1)=r+1$ and $t m g_{g}(2)=t m_{g}(3)=r$.
- $t m_{g}(0)=t m_{g}(2)=r+1$ and $t m_{g}(1)=t m_{g}(3)=r$.
- $t m_{g}(0)=t m_{g}(3)=r+1$ and $t m_{g}(1)=t m_{g}(2)=r$.
- $t m_{g}(1)=t m_{g}(2)=r+1$ and $t m_{g}(0)=t m_{g}(3)=r$.
- $t m_{g}(1)=t m_{g}(3)=r+1$ and $t m_{g}(0)=t m_{g}(2)=r$.f)
$t m_{g}(2)=t m_{g}(3)=r+1$ and $t m_{g}(0)=t m_{g}(1)=r$.
We define this case into the following possible subcases: Subcase 3(a). $\operatorname{tm}_{g}(0)=t m_{g}(1)=r+1$ and $\operatorname{tm}_{g}(2)=\operatorname{tm}_{g}(3)=r$.If $n \equiv 2(\bmod 4)$, then we reconstruct h as follows $h(x)=g(x)$ for all $x \in V(G)$, $h(u)=2$ and

$$
h\left(u_{i}\right)=\begin{array}{ll}
00 & \text { if } 1 \leq i \leq 2 t \\
2 & \text { if } 2 t+1 \leq i \leq 3 t \\
3 & \text { if } 3 t+1 \leq i \leq 4 t
\end{array}
$$

Where $n=4 t+2$. In this case $t m_{h}(2)=r+2 t+1$ and $t_{h}(0)=t m_{h}(1)=t m_{h}(3)=r+2 t+2$. Suppose n
$\equiv 0(\bmod 4)$, then we redefine h as follows $h(x)=g(x)$ for all $x \in V(G), h(u)=2$ and

Where $n=4 t$. Here $t m_{h}(3)=r+2 t$ and $t m_{h}(0)=$ $\operatorname{tm}_{h}(1)=\operatorname{tm}_{h}(2)=r+2 t+1$. Thus h is a 4 -total mean cordial labeling.

- Subcase 3(b). $\operatorname{tm}_{g}(0)=t m_{g}(2)=r+1$ and $t m_{g}(1)$ $=t m_{g}(3)=r$. Here $t m_{h}(0)=t m_{h}(1)=t m_{h}(2)=r$ $+t+1$ and $t m_{h}(3)=r+t$ andhence h is a 4-total mean cordial labeling.
- Subcase 3(c). $\operatorname{tm}_{g}(0)=t m_{g}(3)=r+1$ and $t m_{g}(1)$ $=t m_{g}(2)=r$.
- In this case $t m_{h}(0)=t m_{h}(1)=t m_{h}(3)=r+t+1$ and $\operatorname{tm}_{h}(2)=r+t$. Thus h satisfies the required condition.
- Subcase $3(\mathrm{~d}) . \operatorname{tm}_{g}(1)=t m_{g}(2)=r+1$ and $\operatorname{tm}_{g}(0)=$ $t m_{g}(3)=r$.
- Suppose $n \equiv 2(\bmod 4)$, then we redefine h as follows $h(x)=g(x)$ forall $x \in V(G), h(u)=2$ and

$$
h\left(u_{i}\right)={ }^{00} \quad \text { if } 1 \leq i \leq 2 t+1
$$

Where $n=4 t+2$. Here $t m_{h}(0)=r+2 t+1$ and $t m_{h}(1)=t m_{h}(2)=t m_{h}(3)=r+2 t+2$. If $n \equiv 0(\bmod 4)$, then we redefine h as follows $h(x)=g(x)$ for all $x \in V$ $(G), h(u)=2$ and

$$
\begin{aligned}
& h\left(u_{i}\right)={ }^{00} \quad \text { if } 1 \leq i \leq t \\
& { }^{0} 3 \text { if } 2 t+1 \leq i \leq 4 t
\end{aligned}
$$

Here $\operatorname{tm}_{h}(0)=t m_{h}(1)=t m_{h}(2)=r+2 t+1$ and $\operatorname{tm}_{h}(3)=r+2 t$.Thus h satisfies the conditions of a 4-total mean cordial labeling.

- Subcase 3(e). $\operatorname{tm}_{g}(1)=t m_{g}(3)=r+1$ and $t m_{g}(0)$ $=t m_{g}(2)=r$.
- If $n \equiv 2(\bmod 4)$, then we redefine h as follows $h(x)=g(x)$ for all
- $\quad x \in V(G), h(u)=2$ and

$$
h\left(u_{i}\right)=\begin{array}{ll}
0 & \text { if } 1 \leq i \leq t \\
1 & \text { if } t+1 \leq i \leq 2 t \\
3 & \text { if } 2 t+1 \leq i \leq 4 t+1
\end{array}
$$

2 if $i=4 t+2$
Where $n=4 t+2$. In this case $t m_{h}(0)=r+2 t+$ 1 and $t m_{h}(1)=t m_{h}(2)=t m_{h}(3)=r+2 t+2$. Suppose $n \equiv 0(\bmod 4)$, then vertex labeling given above for n $\equiv 2(\bmod 4)$, will satisfy the requirementif we take the same label upto $4 t$. It is easy to check that $t_{h}(0)=$ $t m_{h}(1)=t m_{h}(3)=r+2 t+1$ and $t m_{h}(2)=r+2 t$. Hence h is a 4-total mean cordial labeling.

Subcase 3(f). $\quad \operatorname{tm}_{g}(2)=\operatorname{tm}_{g}(3)=r+1$ and $\operatorname{tm}_{g}(0)=\operatorname{tm}_{g}(1)=r$. In this case $t m_{h}(0)=r+t$ and $\operatorname{tm}_{h}(1)=\operatorname{tm}_{h}(2)=\operatorname{tm}_{h}(3)=r+t+1$. Thus h is a 4total mean cordial labeling. Case $4 . p+q \equiv 3(\bmod$ 4).

Put $\mathrm{p}+\mathrm{q}=4 \mathrm{r}+3$. As g is a 4-total mean cordial labeling of G, itshould satisfy any one of the following conditions:

- $t m_{g}(0)=r$ and $t m_{g}(1)=t m_{g}(2)=t m_{g}(3)=r+1$.
- $\quad t m_{g}(1)=r$ and $t m_{g}(0)=t m_{g}(2)=t m_{g}(3)=r+1$.
- $t m_{g}(2)=r$ and $t m_{g}(0)=t m_{g}(1)=t m_{g}(3)=r+1$.
- $t m_{g}(3)=r$ and $t m_{g}(0)=t m_{g}(1)=t m_{g}(2)=r+1$. Consider the following subcases: Subcase 4(a). $\operatorname{tm}_{g}(0)=r$ and $t m_{g}(1)=\operatorname{tm}_{g}(2)=\operatorname{tm}_{g}(3)=r+1$.

Suppose $n \equiv 2(\bmod 4)$, then we redefine h as follows $h(x)=g(x)$ forall $x \in V(G), h(u)=2$ and

$$
\begin{aligned}
h\left(u_{i}\right)=\quad \begin{array}{ll}
00 & \text { if } 1 \leq i \leq 2 t+2 \\
& \text { if } 2 t+3 \leq i \leq 3 t \\
& \text { if } 3 t+1 \leq i \leq 4 t+2
\end{array}
\end{aligned}
$$

Where $\mathrm{n}=4 t+2$. Here $t m_{h}(0)=t m_{h}(1)=$ $\operatorname{tm}_{h}(2)=\operatorname{tm}_{h}(3)=r+2 t+2$. Thus h satisfies the conditions of a 4 -total mean cordial labeling. If $n \equiv 0$ $(\bmod 4)$, then we change h as follows $h(x)=g(x)$ for all $x \in V(G), h(u)=0$ and

$$
h\left(u_{i}\right)=\begin{array}{ll}
0 & \text { if } 1 \leq i \leq t \\
1 & \text { if } t+1 \leq i \leq 2 t \\
3 & \text { if } 2 t+1 \leq i \leq 4 t
\end{array}
$$

Here $\operatorname{tm}_{h}(0)=\operatorname{tm}_{h}(1)=t m_{h}(2)=t m_{h}(3)=r+2 t+1$. Thus h satisfiesthe required property.
Subcase $4(\mathrm{~b}) . t m_{g}(1)=r$ and $t m_{g}(0)=t m_{g}(2)=$ $\operatorname{tm}_{g}(3)=r+1$. Note that $t_{h}(0)=t m_{h}(1)=t m_{h}(2)=$ $\operatorname{tm}_{h}(3)=r+2 t+1$ and hence h is a 4-total mean cordial labeling.
Subcase $4(\mathrm{c}) . t m_{g}(2)=r$ and $t m_{g}(0)=t m_{g}(1)=$ $\operatorname{tm}_{g}(3)=r+1$.
If $n \equiv 2(\bmod 4)$, then we change the map h as follows $h(x)=g(x)$ for all $x \in V(G), h(u)=0$ and

$$
h\left(u_{i}\right)=\begin{array}{ll}
1 & \text { if } 1 \leq i \leq t \\
3 & \text { if } 2 t+1 \leq i \leq 2 t \\
2 & \text { if } i=4 t+2
\end{array}
$$

Here $\operatorname{tm}_{h}(0)=t m_{h}(1)=t m_{h}(2)=t m_{h}(3)=r+2 t$ +2 . If $n \equiv 0(\bmod 4)$, then we redefine h as follows $h(x)=g(x)$ for all $x \in V(G), h(u)=2$ and

$$
h\left(u_{i}\right)=\begin{array}{ll}
00 & \text { if } \quad 1 \leq i \leq 2 t \\
2 & \text { if } 2 t+1 \leq i \leq 3 t \\
3 & \text { if } 3 t+1 \leq i \leq 4 t
\end{array}
$$

In this case $\operatorname{tm}_{h}(0)=t m_{h}(1)=t m_{h}(2)=t m_{h}(3)=r+$ $2 t+1$. Thus h is a 4 -total mean cordial labeling.
Subcase 4(d). $t m_{g}(3)=r$ and $t m_{g}(0)=t m_{g}(1)=t m_{g}(2)$ $=r+1$.
Suppose $n \equiv 0(\bmod 4)$, then we change the map h as follow.

$$
h\left(u_{i}\right)=\begin{array}{lll}
{ }^{0} 0 & \text { if } & 1 \leq i \leq 2 t \\
{ }^{0} & \text { if } & 2 t+1 \leq i \leq 3 t \\
3 & \text { if } & 3 t+1 \leq i \leq 4 t
\end{array}
$$

Here $t m_{h}(0)=t m_{h}(1)=t m_{h}(2)=t m_{h}(3)=r+2 t+$ 1. Suppose $n \equiv 2(\bmod 4)$, then we reconstruct h by $h(x)=g(x)$ for all $x \in V(G), h(u)=2$ and

$$
h\left(u_{i}\right)=\begin{array}{lll}
{ }^{0} & \text { if } 1 \leq i \leq 2 t+1 \\
2 & \text { if } 2 t+2 \leq i \leq 3 t+1 \\
3 & \text { if } 3 t+2 \leq i \leq 4 t+2
\end{array}
$$

In this case $t m_{h}(0)=t m_{h}(1)=t m_{h}(2)=t m_{h}(3)=r$ $+2 t+2$ and hence h is a 4-total mean cordial labeling of $G \cup K_{1, n} . \mathrm{Q}$

Illustration 1. A 4-total mean cordial labeling of H_{8} $\cup K_{1,6}$ is given in Figure 1, where H_{n} is a helm graph obtained from a wheel by appending n pendent vertices to the rim vertices of that wheel.

Fig 1 A 4-total mean cordial labeling of $\mathrm{H} 8 \cup \mathrm{~K} 1,6$
Conclusion. In this manuscript, we discussed 4-total mean cordial labeling behviour of disjoint union of star with a 4-total mean cordial graph. With these idea we can construct new 4-total mean cordial graphs from the existing graphs.

REFERENCES

[1]. I.Cahit, Cordial graphs:A weaker version of graceful and harmonious graphs,
[2]. Ars Combinatoria, 23(1987), 201-207.
[3]. J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2017) \#Ds6.
[4]. F.Harary, Graph theory, Addision wesley, New Delhi (1969).
[5]. R.Ponraj, S.Subbulakshmi and S.Somasundaram, k-total mean cordial graphs,
[6]. J. Math. Comput. Sci, 10(5)(2020), 1697-1711.

