Union of 4-Total Mean Cordial Graph with the Star $K_{1, N}$

D. SRIRAM Department of Mathematics P.S.R Engineering College, Sivakasi-626140,Tamilnadu, India.

Abstract:- Consider (p, q) graph G and define f from the vertex set V(G) to the set Z_k where $k \in$ N and k > 1. Foreache uv, assign the label $\underline{f(u)+f}(\underline{v})$ 2, Then the function f is called as k-total mean cordial labeling of G if number of vertices and edges labelled by i and not labelled by i differ by at most 1, where $i \in \{0, 1, 2, \dots, k-1\}$. Suppose a graph admits a k-total mean cordial labeling then it is called as ktotal mean cordial graph. In this paper we investigate the 4-total mean cordial labeling of $G \cup K_{1,n}$ where Gis a 4-total mean cordial graph.

I. INTRODUCTION

All Graphs in this paper are finite, simple and undirected. In [4] the concept of k-total mean cordial labeling have been introduced. Also, 4-total mean cordial behaviour of several graphs like path, cycle, com-plete graph, star, bistr, comb, crown have been investigated in [4]. In this paper we investigate the 4-total mean cordial labeling of $G \cup K_{1,n}$ where G is a 4-total mean cordial graph. Let x be any real number. Then [x] stands for the smallest integer greater than or equal to x. Terms are not defined here follow from Harray [3] and Gallian [2].

II. K-TOTAL MEAN CORDIAL LABELING

Definition 2.1. Let *G* be a (p, q) graph. Let f : V $(G) \rightarrow \{0, 1, 2, ..., k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \underline{f}(\underline{u}) + \underline{f}(v) = f$ is called *k*-total mean cordial labeling 0 if $1 \le i \le t$ 3 if $t+1 \le i \le 2t$ Here $tm_f(0) = tm_f(2) = tm_f(3) = t$ and $tm_f(1) = t+1$. Case 2. *n* is odd. Take n = 2t+ 1. Here $(f(u_i) = \text{ of } G \text{ if } |tm_f(i) - tm_f(j)| \le 1$ for all $i, j \in \{0, 1, 2, \cdots, k-1\}$ where $tm_f(x)$ denotes the total number of vertices and the edges labeled with $x, x \in \{0, 1, 2, \cdots, k-1\}$. A graph with a *k*-total mean cordial labeling is called *k*-total mean cordial graph.

- > 2000 Mathematics Subject Classification. 05C78.
- Key words and phrases. Star, bipartite graph, union of graphs and 4-total meancordial graph.

Definition 2.2. A bipartite graph is a graph whose vertex set V(G) can be partitioned into two subsets V_1 and V_2 such that every edge of G joins a vertex of V_1 with a vertex of V_2 . If every vertex of V_1 is adjacent with every vertex of V_2 , then G is a complete bipartite graph.If $|V_1| = m$ and $|V_2| = n$, then the complete bipartite graph is denoted by $K_{m,n}$.

- Definition 2.3. $K_{1,n}$ is called a Star.
- Definition 2.4. The union of two graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$.

III. PRELIMINARIES

First we reminisce the following theorem on star graph which admits 4-total mean cordial labeling given in [4]. Theorem 3.1. [4] The star $K_{1,n}$ is 4-total mean cordial for all values of *n*. *Proof.* Let $V(K_{1,n}) = \{u\}$ $\cup \{u_i : 1 \le i \le n\}$ and $E(K_{1,n}) = \{uu_i : 1 \le i \le n\}$. Define a vertex labeling *f* from the set of vertices of star to the set {0, 1, 2, 3} as follows: f(u) = 1 and according to the nature of *n*, to provide vertex labels to the vertices u_i , we may consider the following two cases:

• Case 1. *n* is even.Let n = 2t. In this case

$$f(u_i) = \begin{array}{cc} 0 & \text{if } 1 \le i \le t \\ 3 & \text{if } t+1 \le i \le 2t \end{array}$$

ISSN No:-2456-2165

- Here $tm_f(0) = tm_f(2) = tm_f(3) = t$ and $tm_f(1) = t + 1$.
- Case 2. *n* is odd. Take n = 2t + 1. Here

$$f(u_i) = \begin{array}{ll} 0 & \text{if } 1 \le i \le t \\ 3 & \text{if } t+1 \le i \le 2t+1 \end{array}$$

- Note that $tm_f(1) = tm_f(2) = tm_f(3) = t + 1$ and $tm_f(0) = t$.
- Hence f is a 4-total mean cordial labeling of $K_{1,n}$.Q

IV. MAIN RESULTS

With the help of the Theorem 3.1, we can now verify the 4-total mean cordiality of the graph $G \cup K_{1,n}$ where G is any 4-total mean cordial graph.

- Theorem 4.1. Let G be any (p, q)-4 total mean cordial graph. Then $G \cup K_{1,n}$ is 4 total mean cordial if n is even.
- Proof. As G is 4 total mean cordial, there exists a 4 total mean cordial labeling, say g. We define a function h: V(G ∪ K_{1,n}) → {0, 1, 2, 3} by

$$h(x) = \begin{array}{cc} g(x) & \text{if } x \in V(G) \\ f(x) & \text{if } x \in V(K_{1,n}) \end{array}$$

- Now we Check the Validity of the Above Mentioned Labeling in four Cases.
- Case 1. $p + q \equiv 0 \pmod{4}$.
- Let p + q = 4r. In this case $tm_g(0) = tm_g(1) = tm_g(2) = tm_g(3) = r$.
- Note that, here *h* satisfies the required condition given by $tm_h(0) =$
- $tm_h(2) = tm_h(3) = r + t$ and $tm_h(1) = r + t + 1$.
- Case 2. $p + q \equiv 1 \pmod{4}$.
- > Put p + q = 4r + 1. Here, the function g should satisfy any one of the following conditions:
- $tm_g(0) = r + 1$ and $tm_g(1) = tm_g(2) = tm_g(3) = r$.
- $tm_g(1) = r + 1$ and $tm_g(0) = tm_g(2) = tm_g(3) = r$.
- $tm_g(2) = r + 1$ and $tm_g(0) = tm_g(1) = tm_g(3) = r$.
- $tm_g(3) = r + 1$ and $tm_g(0) = tm_g(1) = tm_g(2) = r$.
- Now we Divide this Case into the Following Possible Subcases.
- Subcase 2(a). $tm_g(0) = r + 1$ and $tm_g(1) = tm_g(2)$ = $tm_g(3) = r$.
- In this case $tm_h(0) = tm_h(1) = r + t + 1$, $tm_h(2) = tm_h(3) = r + t$ and hence *h* is a 4-total mean cordial labeling.
- Subcase 2(b). $tm_g(1) = r + 1$ and $tm_g(0) = tm_g(2) = tm_g(3) = r$.

- If $n \equiv 2 \pmod{4}$, then we reconstruct the vertex labeling *h* as follows
- h(x) = g(x) for all $x \in V(G)$, h(u) = 2 and

$$h(u_i) = \begin{bmatrix} 0 & \text{if } 1 \le i \le 2t + 1 \\ 2 & \text{if } 2t + 2 \le i \le 3t + 1 \end{bmatrix}$$

Where n = 4t + 2. In this case $tm_h(0) = tm_h(2) = r + 2t + 1$ and $tm_h(1) = tm_h(3) = r + 2t + 2$ and hence *h* is a 4-total mean cordial labeling. Suppose $n \equiv 0 \pmod{4}$, then we redefine the function *h* as follows h(x) = g(x) for all $x \in V(G)$, h(u) = 2 and

$$h(u_i) = \begin{bmatrix} 0 & \text{if } 1 \le i \le 2t \\ 2 & \text{if } 2t+1 \le i \le 3t \\ 3 & \text{if } 3t+1 \le i \le 4t \end{bmatrix}$$

Where n = 4t. Here $tm_h(0) = tm_h(3) = r + 2t$ and $tm_h(1) = tm_h(2) = r + 2t + 1$. Hence *h* is a required vertex labeling.

- Subcase 2(c). $tm_g(2) = r + 1$ and $tm_g(0) = tm_g(1)$ = $tm_g(3) = r$.
- In this case, we have $tm_h(0) = tm_h(3) = r + t$ and $tm_h(1) = tm_h(2) =$
- r + t + 1 and hence h is a 4-total mean cordial labeling.
- Subcase 2(d). $tm_g(3) = r + 1$ and $tm_g(0) = tm_g(1)$ = $tm_g(2) =$
- *r*. Here $tm_h(0) = tm_h(2) = r + t$ and $tm_h(1) = tm_h(3) = r + t + 1$.
- Thus *h* should be a 4-total mean cordial labeling.Case 3. $p + q \equiv 2 \pmod{4}$.
- > Put p + q = 4r + 2. Here g should satisfy any one of the following conditions:
- $tm_g(0) = tm_g(1) = r + 1$ and $tm_g(2) = tm_g(3) = r$.
- $tm_g(0) = tm_g(2) = r + 1$ and $tm_g(1) = tm_g(3) = r$.
- $tm_g(0) = tm_g(3) = r + 1$ and $tm_g(1) = tm_g(2) = r$.
- $tm_g(1) = tm_g(2) = r + 1$ and $tm_g(0) = tm_g(3) = r$.
- $tm_g(1) = tm_g(3) = r + 1$ and $tm_g(0) = tm_g(2) = r$.f) $tm_g(2) = tm_g(3) = r + 1$ and $tm_g(0) = tm_g(1) = r$.

We define this case into the following possible subcases: Subcase 3(a). $tm_g(0) = tm_g(1) = r + 1$ and $tm_g(2) = tm_g(3) = r$. If $n \equiv 2 \pmod{4}$, then we reconstruct *h* as follows h(x) = g(x) for all $x \in V(G)$, h(u) = 2 and

$$h(u_i) = \begin{bmatrix} 0 & \text{if } 1 \le i \le 2t \\ 2 & \text{if } 2t+1 \le i \le 3t \\ 3 & \text{if } 3t+1 \le i \le 4t \end{bmatrix}$$

Where n = 4t + 2. In this case $tm_h(2) = r + 2t + 1$ and $tm_h(0) = tm_h(1) = tm_h(3) = r + 2t + 2$. Suppose *n* $\equiv 0 \pmod{4}$, then we redefine *h* as follows h(x) = g(x) for all $x \in V(G)$, h(u) = 2 and

Where n = 4t. Here $tm_h(3) = r + 2t$ and $tm_h(0) = tm_h(1) = tm_h(2) = r + 2t + 1$. Thus *h* is a 4-total mean cordial labeling.

- Subcase 3(b). $tm_g(0) = tm_g(2) = r + 1$ and $tm_g(1)$ = $tm_g(3) = r$. Here $tm_h(0) = tm_h(1) = tm_h(2) = r$ + t + 1 and $tm_h(3) = r + t$ and hence h is a 4-total mean cordial labeling.
- Subcase 3(c). $tm_g(0) = tm_g(3) = r + 1$ and $tm_g(1) = tm_g(2) = r$.
- In this case $tm_h(0) = tm_h(1) = tm_h(3) = r + t + 1$ and $tm_h(2) = r + t$. Thus *h* satisfies the required condition.
- Subcase 3(d). $tm_g(1) = tm_g(2) = r + 1$ and $tm_g(0) = tm_g(3) = r$.
- Suppose $n \equiv 2 \pmod{4}$, then we redefine *h* as follows h(x) = g(x) for all $x \in V(G)$, h(u) = 2 and

$$h(u_i) = \begin{bmatrix} 0 & \text{if } 1 \le i \le 2t + 1 \\ 2 & \text{if } 2t + 2 \le i \le 3t + 1 \end{bmatrix}$$

Where n = 4t + 2. Here $tm_h(0) = r + 2t + 1$ and $tm_h(1) = tm_h(2) = tm_h(3) = r + 2t + 2$. If $n \equiv 0 \pmod{4}$, then we redefine *h* as follows h(x) = g(x) for all $x \in V$ (*G*), h(u) = 2 and

$$h(u_i) = \begin{bmatrix} 0 & \text{if } 1 \le i \le t \\ 1 & \text{if } t + 1 \le i \le 2t \\ 3 & \text{if } 2t + 1 \le i \le 4t \end{bmatrix}$$

Here $tm_h(0) = tm_h(1) = tm_h(2) = r + 2t + 1$ and $tm_h(3) = r + 2t$. Thus *h* satisfies the conditions of a 4-total mean cordial labeling.

- Subcase 3(e). $tm_g(1) = tm_g(3) = r + 1$ and $tm_g(0) = tm_g(2) = r$.
- If $n \equiv 2 \pmod{4}$, then we redefine h as follows h(x) = g(x) for all
- $x \in V(G)$, h(u) = 2 and

$$\begin{array}{c} 0 \quad \text{if } 1 \leq i \leq t \\ h(u_i) = \begin{array}{c} 1 \quad \text{if } t+1 \leq i \leq 2t \\ 3 \quad \text{if } 2t+1 \leq i \leq 4t+1 \end{array} \end{array}$$

2 if i = 4t + 2

Where n = 4t + 2. In this case $tm_h(0) = r + 2t + 1$ and $tm_h(1) = tm_h(2) = tm_h(3) = r + 2t + 2$. Suppose $n \equiv 0 \pmod{4}$, then vertex labeling given above for $n \equiv 2 \pmod{4}$, will satisfy the requirementif we take the same label upto 4t. It is easy to check that $tm_h(0) = tm_h(1) = tm_h(3) = r + 2t + 1$ and $tm_h(2) = r + 2t$. Hence *h* is a 4-total mean cordial labeling.

Subcase 3(f). $tm_g(2) = tm_g(3) = r + 1$ and $tm_g(0) = tm_g(1) = r$. In this case $tm_h(0) = r + t$ and $tm_h(1) = tm_h(2) = tm_h(3) = r + t + 1$. Thus *h* is a 4-total mean cordial labeling. Case 4. $p + q \equiv 3 \pmod{4}$.

Put p + q = 4r + 3. As g is a 4-total mean cordial labeling of G, itshould satisfy any one of the following conditions:

- $tm_g(0) = r$ and $tm_g(1) = tm_g(2) = tm_g(3) = r + 1$.
- $tm_g(1) = r$ and $tm_g(0) = tm_g(2) = tm_g(3) = r + 1$.
- $tm_g(2) = r$ and $tm_g(0) = tm_g(1) = tm_g(3) = r + 1$.
- $tm_g(3) = r$ and $tm_g(0) = tm_g(1) = tm_g(2) = r + 1$. Consider the following subcases: Subcase 4(a). $tm_g(0) = r$ and $tm_g(1) = tm_g(2) = tm_g(3) = r + 1$.

Suppose $n \equiv 2 \pmod{4}$, then we redefine *h* as follows h(x) = g(x) for all $x \in V(G)$, h(u) = 2 and

$$h(u_i) = \begin{bmatrix} 0 & \text{if } 1 \le i \le 2t + 2 \\ 2 & \text{if } 2t + 3 \le i \le 3t \end{bmatrix}$$

$$u_i = \begin{bmatrix} 0 & \text{if } 1 \le i \le 2t + 2 \\ 3 & \text{if } 3t + 1 \le i \le 4t + 2 \end{bmatrix}$$

Where n = 4t + 2. Here $tm_h(0) = tm_h(1) = tm_h(2) = tm_h(3) = r + 2t + 2$. Thus *h* satisfies the conditions of a 4-total mean cordial labeling. If $n \equiv 0 \pmod{4}$, then we change *h* as follows h(x) = g(x) for all $x \in V(G)$, h(u) = 0 and

$$h(u_i) = \begin{bmatrix} 0 & \text{if } 1 \le i \le t \\ 1 & \text{if } t+1 \le i \le 2t \end{bmatrix}$$

Here $tm_h(0) = tm_h(1) = tm_h(2) = tm_h(3) = r + 2t + 1$. Thus *h* satisfies the required property.

Subcase 4(b). $tm_g(1) = r$ and $tm_g(0) = tm_g(2) = tm_g(3) = r + 1$. Note that $tm_h(0) = tm_h(1) = tm_h(2) = tm_h(3) = r + 2t + 1$ and hence *h* is a 4-total mean cordial labeling.

Subcase 4(c). $tm_g(2) = r$ and $tm_g(0) = tm_g(1) = tm_g(3) = r + 1$.

If $n \equiv 2 \pmod{4}$, then we change the map *h* as follows h(x) = g(x) for all $x \in V(G)$, h(u) = 0 and

$$\begin{array}{c} \underset{B}{\oplus} 0 & \text{if } 1 \leq i \leq t \\ h(u_i) = \begin{array}{c} 1 & \text{if } t+1 \leq i \leq 2t \\ \underset{B}{\oplus} 3 & \text{if } 2t+1 \leq i \leq 4t+1 \\ 2 & \text{if } i = 4t+2 \end{array}$$

Here $tm_h(0) = tm_h(1) = tm_h(2) = tm_h(3) = r + 2t + 2$. If $n \equiv 0 \pmod{4}$, then we redefine *h* as follows h(x) = g(x) for all $x \in V(G), h(u) = 2$ and

$$h(u_i) = \begin{bmatrix} 0 & \text{if } 1 \le i \le 2t \\ 2 & \text{if } 2t + 1 \le i \le 3t \\ 3 & \text{if } 3t + 1 \le i \le 4t \end{bmatrix}$$

In this case $tm_h(0) = tm_h(1) = tm_h(2) = tm_h(3) = r + 2t + 1$. Thus *h* is a 4-total mean cordial labeling. Subcase 4(d). $tm_g(3) = r$ and $tm_g(0) = tm_g(1) = tm_g(2) = r + 1$.

Suppose $n \equiv 0 \pmod{4}$, then we change the map *h* as follow.

$$h(u_i) = \begin{bmatrix} 0 & \text{if } 1 \le i \le 2t \\ 2 & \text{if } 2t+1 \le i \le 3t \\ 3 & \text{if } 3t+1 \le i \le 4t \end{bmatrix}$$

Here $tm_h(0) = tm_h(1) = tm_h(2) = tm_h(3) = r + 2t + 1$. Suppose $n \equiv 2 \pmod{4}$, then we reconstruct *h* by h(x) = g(x) for all $x \in V(G)$, h(u) = 2 and

$$h(u_i) = \begin{bmatrix} 0 & \text{if } 1 \le i \le 2t+1 \\ 2 & \text{if } 2t+2 \le i \le 3t+1 \end{bmatrix}$$

In this case $tm_h(0) = tm_h(1) = tm_h(2) = tm_h(3) = r$ + 2t + 2 and hence *h* is a 4-total mean cordial labeling of $G \cup K_{1,n}$.Q

Illustration 1. A 4-total mean cordial labeling of $H_8 \cup K_{1,6}$ is given in Figure 1, where H_n is a helm graph obtained from a wheel by appending *n* pendent vertices to the rim vertices of that wheel.

Fig 1 A 4-total mean cordial labeling of H8 U K1,6

Conclusion. In this manuscript, we discussed 4-total mean cordial labeling behviour of disjoint union of star with a 4-total mean cordial graph. With these idea we can construct new 4-total mean cordial graphs from the existing graphs.

REFERENCES

- [1]. I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs,
- [2]. Ars Combinatoria, 23(1987), 201-207.
- [3]. J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2017) #Ds6.
- [4]. F.Harary, Graph theory, Addision wesley, New Delhi (1969).
- [5]. R.Ponraj, S.Subbulakshmi and S.Somasundaram, k-total mean cordial graphs,
- [6]. J. Math. Comput. Sci, 10(5)(2020), 1697-1711.