

 Volume 7, Issue 1, January – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

 IJISRT22JAN414 www.ijisrt.com 435

AC Servo Motor Controller Based on TMC4671

Break-Out Board

B. A. V. Perera - LE Robotics (Pvt.) Ltd., J.A.K.S. Jayasinghe – University of Moratuwa

Abstract:- Modern servo motor controllers capable of

precision position, velocity and torque control have

massively boosted up many industries such as robotics,

food production, military, etc. during the past decades [1].

High cost of servo motor control systems due to the

complexity and the high-end technical expertise required

to design, operate and maintain these systems can be a

major problem in certain applications. Therefore, cost

effective and easy-to-operate systems are needed. This

paper presents the use of TMC4671-BOB module based

on the Field Oriented Control (FOC) algorithm from

TRINAMIC Motion Control GmbH & Co. KG for a cost

effective and easy-to-operate servo motor controller.

Configuring the module to operate a servo motor with an

incremental encoder in Velocity and Position control

modes is presented.

Keywords:- Field Oriented Control (FOC), Servo Motor,

Velocity Control, Position Control

I. INTRODUCTION

The concept of Field Oriented Control (FOC) or vector

control was developed independently by K. Hasse [2], and by

Felix Blaschke [3] in late 1960’s and early 1970’s

respectively [4]. The FOC algorithm is a current regulation

scheme for driving AC synchronous motors using two

orthogonal components. One orthogonal component (which

is usually referred to as Iq) generates the torque while the

other orthogonal component (which is usually referred to as

Id) generates the back emf. By using the FOC algorithm, AC

synchronous motors are controlled by regulating the Iq

component (while keeping the Id = 0 usually) to obtain the

required torque like a DC brushed motor. In order to obtain

the Id and Iq, the rotor position and phase currents are

required. The rotor position is usually obtained by an encoder

while the currents of two phases are measured and

transformed into a synchronously rotating frame using well

known Clarke-Park transformation. The Clarke-

transformation transforms the stator current vector (Is̅)
created by the 3 phase currents (Ia̅, Ib̅, Ic̅) into a bi-phased

currents Iα̅, Iβ̅ shown in Fig. 1.

Fig. 1 - abc Frame to αβ Frame Transformation [5]

The Park-transformation transforms the output of the Clarke

transformation into 2-phase synchronous rotating dq frame

which rotates at the electrical speed of the rotor such that the

d axis is aligned with the rotor flux (ψ̅R) as shown in Fig. 2.

(Refer [5] for the respective transformation equations.)

Fig. 2 – αβ Frame to dq Frame Transformation [5]

Fig. 3 shows the FOC control structure for the position

control of an AC servo motor. Clarke and Park transformation

are applied to the measured Ia, Ib phase currents as described

above. Then Id, Iq are compared with reference values 0 and

target torque TT to generate error signals for two independent

PI current controllers. The outputs of these two PI current

controllers are passed through an inverse Clarke-Park

transformation stage to obtain stator voltages Uu, Uv and Uw.

Then, these three stator voltages are taken as reference

waveforms for synthesizing high voltage three phase signals

from a high voltage DC source using the Space Vector

Modulation (SVM) technique [5]. The outer most position

loop drives the velocity target VT and torque target TT to reach

required the position target PT using two more PI controllers

[5].

 Volume 7, Issue 1, January – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

 IJISRT22JAN414 www.ijisrt.com 436

Fig. 3 - PMSM Position Control FOC Structure

The FOC algorithm implementation became more

popularized commercially with the development of DSP

chips such as TMS32010 [6]. With the first generation of DSP

chips, external peripherals such as ADCs were connected and

the algorithm was coded in assembly language to achieve the

required computational speeds. Even with the modern DSP’s

such as dsPIC33F [7] with on-chip ADCs, developing codes

for the FOC algorithm is a tedious task. This issue was

addressed and the control algorithm was implemented in

Application Specific ICs (ASICs) like TMC4671-LA. With

these ASICs, servo motors can be controlled very effectively

by accessing a set of registers for configuring the FOC

algorithm. Use of TMC4671-BOB containing the TMC4671-

LA relieved us form designing a complex PCB for the fine-

pitched package of the TMC4671-LA.

The TMC4671-BOB (see Fig. 4) allows user to connect

incremental encoder or hall sensor to obtain the rotor position

and provides two ADC channels to measure phase currents

and one ADC channel to observe the bus voltage of the motor

driver. Since the TMC4671-LA registers needs to be

programmed when powering up, the TMC4671-BOB module

allows to communicate with the TMC4671-LA chip using

SPI or USART interface. This module is further equipped

with a Real Time Monitoring Interface for debugging and

tuning the PI controllers using Trinamic RTMI adapter and

TMCL IDE software [8].

Fig. 4 - TMC4671-BOB [8]

II. COMMUNICATION WITH THE TMC4671-BOB

AND REGISTER LIST

A protocol with a 5-byte data packet is used with the SPI and

USART interfaces for sending and receiving data to the

TMC4671-LA chip. It always returns a 5-byte packet for each

receiving 5-byte packet. The most significant byte of the data

packet represents the register address and the following 4

bytes contains the data which should be written to the chip in

the write mode or the data read from a specified register in

the read mode. If the data is written to the module, the most

significant bit in the most significant byte (address byte)

should be raised to one (write mode), else it should be zero

(read mode). Hence whenever the data is written to the chip,

0x80 is added to the register address. Before programing the

TMC4671-LA chip, it is essential to check the

communication link and the working condition of the

TMC4671-LA chip. This is done by sending 0x00000000 to

the TMC4671-LA chip which returns 0x0034363731 on

success.

Table 1 describes the register list used in TMC4671-LA for

setting up of position and velocity control modes. Use of

these registers in proper sequence will be described in

Sections III to VIII.

 Volume 7, Issue 1, January – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

 IJISRT22JAN414 www.ijisrt.com 437

 1

Register Description Access Usage
0x04 Used to configure internal ADCs RW Init
0x08 Used to calibrate ADC channel1 RW Init
0x09 Used to calibrate ADC channel0 RW Init
0x0A Used to assign ADC channel to PWM output channel RW Init
0x17 Used to set the polarity of PWM output signal RW Init

0x18 Used to configure PWM output frequency RW Init

0x19 Used to set dead-time RW Init
0x1A Used to enable PWM RW Init
0x1B Used to set motor type and number of pole pairs RW Init
0x1C Used to set electrical angle when the encoder is not connected to TMC4671 during

initialization
RW Test

0x1F Used to change direction of open loop angle RW Init

0x20 Used to change open loop acceleration RW Init

0x21 Used to set target velocity for open loop angle generator RW Init

0x23 Used to displays actual output of open loop angle generator RW Monitor/Test

0x24 Used to set voltages for open loop current control mode RW Init /Test

0x25 Used to configure decoder input signals RW Init

0x26 Used to set PPR value of the encoder RW Init

0x29 Used to set offsets for electrical and mechanical angle calculated from encoder RW Init
0x2A Used to read actual angles from ABN encoder R Monitor

0x50 Used to select the source for velocity measurement RW Init

0x51 Used to select the source for position measurement RW Init

0x52 Used to select an angle signal for FOC transformation RW Init

0x54 Used to set control parameters for flux controller RW Init

0x56 Used to set control parameters for torque controller RW Init

0x58 Used to set control parameters for velocity controller RW Init

0x5A Used to set control parameters for position controller RW Init

0x5E Used to set target current limit for flux and torque controllers RW Init

0x60 Used to set an absolute velocity limit for velocity controller input RW Init

0x63 Used to set motor motion mode RW Init
0x64 Used to set target values for torque and flux controllers RW Control
0x66 Used to set target velocity for velocity controller RW Control
0x68 Used to set target position for position controller RW Control

0x6B Used to read actual position derived from position signal RW Monitor/ Init

0x78 Used to set step width of an actual input step signal on STEP/DIR interface RW Init

Table 1 - Register List Used in Programming TMC4671-LA [4]2

III. MOTOR PARAMETERS AND PWM SETTINGS

The datagrams shown in Table 2 will initialize the motor type

and enable the PWM with dead-time of 25ns.The datagrams

listed in Table 2 is common for Position and Velocity control

mode.

Table 2 - Motor Parameter and PWM Settings

Register Datagram Description

0x1B 0x9B00030004
Motor type = 3 (three phase BLDC motor)

and number of pole pairs = 4

0x17 0x9700000000 Set PWM polarity

0x18 0x9800000F9F PWM frequency = 25kHz

0x19 0x9900001919 Dead-time = 250 ns

 Volume 7, Issue 1, January – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

 IJISRT22JAN414 www.ijisrt.com 438

IV. ADC SETTINGS

The datagrams shown in Table 3 will set the sampling

frequency and assign ADC channels for current

measurement. Current offsets should be measured by using

TMCL IDE and write to the 0x08 and 0x09 registers. The

datagrams listed in Table 3 is common for both operating

modes indicated above.

Table 3 - ADC Settings

V. INCREMENTAL ENCODER INITIALIZATION

SETTINGS

It is essential to bring the rotor to an initial known starting

position and initialize the encoder position correctly for the

incremental encoders, otherwise calculations of angles,

velocity and position will be faulty. By executing the boot

sequence listed in Table 4, the rotor can be aligned with the

magnetic field and initialize the encoder using the open loop

mode. During this initialization process, it is important to set

the exact encoder resolution as well as the encoder rotation

direction. In this table, it is assumed that, a 500 ppr quadrature

encoder is connected. Hence, the number of pulses for a

mechanical revolution becomes 500x4, which is 2000 (7D0

in HEX). The encoder resolution can be set by accessing the

0x26 register. Setting the encoder direction should be done

according to the encoder placement of the motor. Encoder

direction setting can be done by accessing 0x25 register. The

datagrams listed in Table 4 is common for both operating

modes as indicated above. All the datagrams up to the last

two rows in Table 4 are sent as a block and the rotor will be

aligned after sending the command sequence. The

mechanical angle offset should be corrected before activating

the operating mode. This is done by last two commands of

Table 4. Sending the 0x2A00000000 command reads the

electrical (1st & 2nd bytes) and mechanical angle (3rd & 4th

bytes) of the rotor. Then write the 2’s complement of the

mechanical angle to the 3rd and 4th bytes of the last command

of Table 4 to correct the rotor offset. Execute the

0x2A00000000 command again to check whether the

mechanical angle is 0. If the mechanical angle is 0, then the

desired operating mode can be activated.

Register Datagram Description

0x1F 0x9F00000000 Rotation direction

0x20 0xA00000003C Rate of change the velocity = 60 rpm/min

0x21 0xA100000000 Open loop velocity target = 0

0x23 0xA300000000 Open loop angle = 0

0x52 0xD200000000 Default setting

0x63 0xE300000008 Open loop mode selection

0x26 0xA6000007D0 Encoder pulse per mechanical revolution = 2000 ppr

0x29 0xA900000000 Electrical and mechanical angle offset = 0

0x52 0xD200000001 Select phi_e_ext

0x24 0xA400000FA0 Initialization voltage on UD_EXT = 4000

0x1C 0x9C00000000 Set the zero angle

0x25 0xA500001000 Encoder direction clockwise

0x52 0xD200000000
Set PHI_E to 0 so the rotor aligns itself with it once PWM

enabled

0x1A 0x9A00000107 Enable PWM

0x2A 0x2A00000000 Read angles

0x29 0xA90000xxxx 2’s complement of current mechanical angle = xxxx

Table 4 - Incremental Encoder Initialization Settings

Register Datagram Description

0x04 0x8400100010 Delta-Sigma Modulator sampling frequency = 100MHz

0x0A 0x8A24000100 Select physical ADC channels and assign channels

0x08 0x8801007FFF ADC1 offset correction

0x09 0x8901007FFF ADC0 offset correction

 Volume 7, Issue 1, January – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

 IJISRT22JAN414 www.ijisrt.com 439

VI. VELOCITY MODE SETTINGS

The boot sequence listed in Table 5 will control the motor in

velocity control mode for target velocity of 100 rpm. In

velocity control mode, it is essential to have a source to

calculate the velocity. The mechanical encoder angle was

selected as the angle source by accessing the 0x50 register.

The target velocity should be set before the velocity mode

selection to avoid initial unnecessary movements. Setting the

target velocity can be done by accessing 0x66 register.

Setting the motor to velocity control mode can be done by

accessing the 0x63 register. The actual velocity can be read

by accessing the 0x6A register.

Table 5 - Register Accessing in Velocity Mode

VII. POSITION MODE SETTINGS

The boot sequence listed in Table 6 will control the motor in

position control mode. The motor will be held in the position

0 (position after rotor was aligned with the magnetic field for

an incremental encoder) by loading this boot sequence. In

position control mode, it is essential to have both velocity and

position sources properly selected. Encoder mechanical angle

and position was set as velocity and position sources by

accessing 0x50 and 0x51 registers respectively. Position

target can be set by accessing 0x68 register if the position is

written to the chip manually. If the motor is driven by step

and direction signals, step size per pulse input can be set by

using 0x78 register. The direction of the rotation is defined

by XORing the direction pulse and the sign of the step width

input. After the rotor was initiated to the initial position, it is

important to set the new rotor position to zero, by writing zero

to the 0x6B register. The 0x6B register can be used to read

the actual position during the motor operation. The motor

should be set to the position control mode, after setting the

target position value to avoid initial unnecessary movements.

Setting the motor to position control mode can be done by

accessing 0x63 register.

.

Table 6 - Register Accessing in Position Mode

VIII. RESULTS

By programming the TMC4671-BOB using the commands

stated in Section III to VII, the rotor is aligned with the stator

magnet field and the motor is initialized in the desired

operation mode. The performance of the motor is dependent

on the characteristics of the motor as the optimum PI

parameters depend on the motor characteristics. Hence, it is

mandatory to tune the motor to obtain higher efficiency and

accuracy. Fig. 5 and Fig. 6 shows the motor behavior in

velocity control mode for tuned and un-tuned PI parameters

respectively. Fig. 7 and Fig. 8 shows the motor behavior in

position control mode for tuned and un-tuned PI parameters

Register Datagram Description

0x54 0xD400640001 Torque loop P = 100, I = 1

0x56 0xD600640001 Flux loop P = 100, I = 1

0x5E 0xDE000061A8 Torque/Flux limit = 25000

0x60 0xE000000320 Velocity limit = 800 rpm

0x52 0xD200000003 Select encoder electrical angle source

0x50 0xD000000009 Velocity source selection/mechanical

0x58 0xD864000500 Velocity loop P = 25600, I = 1280

0x66 0xE600000064 velocity target = 100 rpm

0x63 0xE300000002 Activate velocity mode

Register Datagram Description

0x54 0xD400640001 Torque loop P = 100, I = 1

0x56 0xD600640001 Flux loop P = 100, I = 1

0x5E 0xDE000061A8 Torque/Flux limit = 25000

0x60 0xE000000320 Velocity limit = 800 rpm

0x52 0xD200000003 Select encoder electrical angle source

0x50 0xD000000009 Velocity source selection/mechanical

0x58 0xD864000500 Velocity loop P = 25600, I = 1280

0x51 0xD100000009 Position source selection/mechanical

0x5A 0xDA08000000 Position loop P = 2048, I = 0

0x6B 0xEB00000000 Clear actual position

0x68 0xE800000000 Position target

0x78 0xF8000007D0 Position loop step size

0x63 0xE300000003 Activate position mode

 Volume 7, Issue 1, January – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

 IJISRT22JAN414 www.ijisrt.com 440

respectively. The PI regulators were tuned by following the

standard procedure described by Trinamic [9].

Fig. 5 – Velocity Mode Behavior for Tuned PI Parameters

Fig. 6 - Velocity Mode Behavior for Un-tuned PI Parameters

Fig. 7 – Position Mode Behavior for Tuned PI Parameters

Fig. 8 - Position Mode Behavior for Un-tuned PI Parameters

IX. CONCLUTION

Unlike complex DSP solutions where the FOC algorithm

needs to be implemented by writing firmware, the utilization

of TMC4671 BOB is an easy and efficient solution as the

FOC algorithm is already implemented in the chip. The user

only needs to configure the registers of TMC4671-LA chip

accordingly. The utilization of TMCL IDE and Trinamic

RTMI adapter has made the motor tuning is an easy task

where the system performance can be increased very

efficiently.

REFERANCES

[1] A. Abdul Ali, F. Abdul Razak and N. Hayima, "A

Review on The AC Servo Motor Control

Systems", ELEKTRIKA- Journal of Electrical Engineering,

vol. 19, no. 2, pp. 22-39, 2020. Available:

10.11113/elektrika.v19n2.214 [Accessed 16 December

2021].

[2] K. Hasse, "Zur dynamik drehzahlgeregelter antriebe mit

stromrichtergespeisten asynchron-

kurzschlussläufermaschinen", Ph.D, T. U. Darmstadt, 1969.

[3]. F. Blaschke. “The principle of field-orientation as

applied to the transvector closed loop control system for

rotating-field machines: Siemens Rev.”, vol. 34, no. 1, pp.

217–220, 1972.

[4] TMC4671 Datasheet. Trinamic, 2021.

[5] Implementation of a Speed Field Oriented Control of 3-

phase PMSM Motor using TMS320F240. Texas Instruments,

1999.

[6] D. Garcia, Precision Digital Sine Wave Generation with

the TMS32010. Texas Instruments, 1989.

[7] dsPIC33F Family Data Sheet. Microchip Technology

Inc., 2006.

[8] TMC4671 BOB Description. Trinamic, 2020.

[9] AN53: TMC4671 PI Tuning. Trinamic, 2020.

