
Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 882

Algorithm for Droplet Motion around

Weber Number with Fortran

Masood Hemati, Nikolay Alekseevich Zabelin

Abstract:- We provide a scalable GPU code for droplet

motion in biphasic streams. This code solves the Navier-

Stokes incompressibility equation for two-fluid systems

with a direct Poisson FFT solver based on the pressure

equation. The interface between the two fluids is shown

by the Volume Volume (VoF) method, which is suitable

for complex flows due to its capacity to manage

topological changes. The energy equation is explicitly

solved and coupled with the momentum equation via the

Bosinsk approximation. This code is modularly designed

to be able to use different numerical methods

independently, modify existing procedures, and combine

new ones simply and consistently. FluTAS is written in

Fortran and uses the MPI / OpenMP combination in the

CPU-only version in parallel, accelerating GPU

execution with OpenACC instructions. The two

dominant forces affecting droplet fracture, drag force,

and surface tensile force are confirmed using two

benchmarks: pressure distribution on a cylindrical

surface in uniform flow and oscillation of a square drop

under surface tensile force. The results show that the

failure process occurs in two steps. During the first stage,

the droplets are stretched and thinned perpendicular to

the direction of fluid flow. In the second stage, isolated

points appear on the surface of the droplets which are

attributed to the unstable growth of surface waves. The

topology of the droplet after failure depends on the value

of the Weber number: the larger the Weber number, the

more isolated points on the surface of the droplets.

Keywords:- Two-phase flows, Fluid volume method,

Turbulence in multiphase flows, High-performance

computing, OpenACC instructions.

I. INTRODUCTION

Multiphase currents exist everywhere in many fields,

from environmental currents to industrial applications. The

interaction between phases plays a prominent role in the

formation and evolution of clouds [2], sediment transport [3,

4], ocean sprays, and bubble production [5], and genes are

one of the major challenges of ambient fluid mechanics [6].

These currents are also very important in several industrial

applications, such as pharmacy, transportation, food

processing, and electricity generation [7]. From a theoretical

point of view, the main problem in analyzing multiphase
flows depends on the nature of their multiscale, because the

longitudinal scale of the interface is the order of the path

without the mean, while in most applications the normal

longitudinal scale is several times Of a larger size (-10 105-

106).

In the case of multiphase perturbation, where most of

our interests and applications are, both experimental

research and numerical simulations have been widely used

over the past thirty years and have led to significant

contributions to a variety of problems and configurations:

Case in point, filled particles. Flows and sediment transport

are discussed in [8, 4], bubble and droplet flow are studied

in [9, 10, 11], and oceanic sprays and bubbles as specified in

[5]. However, as previously discussed in [10] and despite

recent advances in instantaneous bubble/drop shape

measurements [12, 13, 14], there is still a lack of

experimental data for measuring the instantaneous velocity
fields of both carriers and scattered phases as well as for

turbulent kinetic energy and dissipation near the interface

locations. These constraints disappear when dealing with

numerical simulations, and so, in recent decades, solved

simulations of multiphase flow interfaces have become a

central investigative tool. Despite the advantages, numerical

simulations continue to be limited to simple configurations

and medium-scale separations, making it difficult to choose

the appropriate method for the complete solution of the two-

phase interface. As discussed in [15], there is now a

consensus that appropriate numerical methods for
performing simulations solved with a multiphase flow

interface should have the following characteristics:

 capable of applying mass, momentum, and kinetic energy

survival at a discrete surface;

 mismatch in material properties, the magnitude of which

depends on the application, and

 Manage complex and possibly arbitrary topological

changes.

Among the four groups of numerical methods for

multiphase currents, front tracking (FT) [16], fluid volume

(VoF) [17], phase-field (PFM) [18], surface set (LS) [19],

the minimum There is a type of each that has the above

numerical properties and gives researchers and scientists the

freedom to choose their preferred numerical tool (see [17,

20, 21] for review).

However, it becomes clearer that another desirable

feature of any numerical method is its simple adaptation to

allow the implementation of mass parallel simulations,

especially in accelerated architectures.

As the computing power of GPUs increases, several

HPCs have now shifted to GPU-only and GPU accelerated

architectures. This process of parallelization of GPU

numeric codes makes it a mandatory requirement for fluid

mechanics rather than a simple advantage. This attempt has

already been made for single-phase code, where at least
three open-source codes for incompressible and fully

compressed simulations can be run on acceleration

architectures: AFiD [23], STREAMS [24], and the

accelerated version of CanS [25]. Conversely, in the

multiphase counterpart, despite the high availability of

CPU-based open source code, PARIS Simulator [26],

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 883

TBFsolver [27], FS3D [28], NGA2 [29], Basilisk [30], and

MFC [31] to name a few, limited effort has been devoted to
adapting them to hybrid architectures.

In this work, we aim to fill this gap and provide

FluTAS (Fluid Accelerator Solver), a code for massive

direct numerical simulations in multi-GPU and multi-CPU

architectures that target incompressible multiphase streams,

optionally with Heat transfer. The numerical solution of

these flows is usually performed using finite difference

methods in ambiguous variable arrangement and involves

solving the Poisson equation to apply constraints on velocity

divergence. In this context, FluTAS uses the Navier-Stokes

CanS solver [32] and its GPU extension [25] as a basis,

whose key feature is a general implementation that includes
all possible homogeneous pressure boundary conditions that

can be used FFT-based elliptical solvers [33]. The version in

our group has been validated in [34] and is widely used in

various types of multiphase configurations, both for laminar

flows [35, 36, 37] and for turbulent flows [38, 39, 40, 41]

Used. Note that it extends to phase shift currents [42] as

well as to handle low-density (almost Mach Mach) multi-

phase currents [43, 44].

This paper is organized as follows. In §2, we introduce

the governing equations for an incompressible two-fluid

system. Details of the VoF discretization method, the energy

equation, and the Navier-Stokes solver are provided in §3,

while the standard criteria for code validation are discussed

in §4. Then, parallelization for GPU acceleration is provided

along with scaling tests in §5 and §6. The code potentials
are shown in two requested simulations of multiphase

turbulence: emulsions in homogeneous isotropic turbulence

(HIT) and two-phase thermal convection (see § 7).

II. GOVERNING EQUATIONS

We consider a two-phase system of immiscible

incompressible Newtonian fluids (e.g., a gas-liquid system).

The two phases are bounded by an extremely small interface

through which momentum and energy can be transmitted.

To describe the system, we define a phase H indicator

function that distinguishes two phases at position x and time

t:

𝐻(𝑥, 𝑡) = {1 𝑖𝑓 𝑥𝜖𝛺1 0 𝑖𝑓 𝑥𝜖𝛺2 (1)

Where Ω1 and Ω2 are domains corresponding to phases

1 and 2. We can use H to define the thermophysical

properties in the whole field Ω = Ω1 ∪ Ω2 as follows:

ξ(x,t) = ξ1H(x,t) + ξ2(1 − H(x,t)), (2)

Where ξi (i = 1,2) can be mass density ρi, dynamic

viscosity µi, thermal conductivity ki, or specific heat

capacity at a constant pressure cp, i. Henceforth, unless

stated otherwise, thermophysical quantities that do not

specifically refer to one of the phases are defined by the

equation. (2). The evolution of the indicator function is

controlled by the following topological equation:

 (3)

Where uΓ is the interface speed. If the phase does not

change, the velocity of a fluid u is continuous throughout the

interface and therefore it can be used as the interface

velocity in relation (3).

The equations governing the motion and energy

transfer for the liquid and gas phases are coupled through

suitable surface conditions [45], which are reported below in

a formula called fluid or whole amplitude, in which each

transfer equation, defined in Ω, is coupled [20].

 ∇ · u = 0, (4)

 (6)

Here, u is the velocity of the fluid, which is assumed to

be continuous in Ω, p is the hydrodynamic pressure, and T is

the temperature. In relation (5), σ is the surface tension, κ is

the localized surface curvature and δΓ is the Dirac delta

function, g is the gravitational acceleration and ˆρ is the

volume density field that has been changed to explain the

thermal effects of gravitational forces. Using the Oberbeck-

Boussinesq approximation, ˆρ is pronounced as:

 ρˆ = ρ1,r [1 − βl (T − Tr)]H + ρ2,r [1 − βg (T − Tr)](1 − H), (7)

Where ρi = 1,2, r are the reference phase density and βi = 1,2 are the thermal expansion coefficients of the liquid and gas.

A. Numerical methodology

The numerical solution of the governing equations (3),

(4), (5), and (6) presented in Section 2 is shown on a regular

Cartesian lattice with a constant distance Δx, Δy, and ∆z

along each direction. Marker and cell arrays are used for

points of velocity and pressure [46], while all scalar fields

are defined at cell centers. In each time step, the governing

equations proceed in terms of time with ∆tn + 1 = tn + 1 - tn,

where the previous time step is represented by ∆tn = tn − tn −

1.

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 884

In the following, we present the numerical

discretization of the governing equations in the same order
as their solution.

B. Fluid volume: MTHINC method

The first step of the time march algorithm involves

reconstructing the interface and its subsequent advection. As
mentioned earlier, these tasks are considered in a completely

Eulerian framework using the Fluid Volume (VoF) method.

Numerically, this first involves defining the volume fraction

φ in each cell of the computational domain:

 (8)

With Vc = ∆x∆y∆z. Next, Equation (3) in terms of

volume fraction is written as follows:

(9)

The distinctive feature of each category of the VoF

method lies in the approximate method H. In this work, we

use the fluid volume algebraic method based on the

reconstruction of multidimensional tangential hyperbola,
MTHINC [1], the main idea of which is to approximate H

with a hyperbolic tangent:

, (10)

where βth, dth are the sharpness and the normalization

parameter, respectively, and (x,˜ y,˜ z˜) a local coordinate

system x˜ = [(x − 0.5)/∆x,(y − 0.5)/∆y,(z − 0.5)/∆z].

Employing equation (10) has two distinct advantages

concerning a piecewise approximation, commonly
employed in the geometric VoF methods. First, the phase

indicator H can be approximated with a reconstructing

polynomial T of arbitrary order straightforwardly. Then,

when T is known, the resulting interface at the boundary of

the two phases has a smooth but controlled thickness (with

the βth parameter), which also allows the exact calculation

of the normal vector n and the curvature tensor K directly

from φ. Further details on the choice of T and the

calculations of dth, n, and K can be found in the main article

by Ii et al. [1], but for completeness, we add them with the

details of the numerical implementation in Appendix A.

After the reconstruction phase, the interface is

transferred using a directional splitting approach [47, 48],

which involves evaluating the numerical fluxes sequentially

in each direction using the latest VoF field estimate for each
split. Accordingly, the three temporary fields φpi, j, k (with

p = [x, y, z]) is first calculated:

(11)

Where with ± p-th amine component of velocity. The calculation of the numerical fluxes f ± in Equation (11) is evaluated

using the approximation of the hyperbolic tangent H as described in Appendix A. Then, the divergence correction step is applied

to impose the survival of the volume of both phases at a separate level :

. (12)

With the above approach, the survival of the offense is

guaranteed until the conditions without divergence (4) are

satisfied. Accordingly, if direct methods are used to solve

the Poisson equation, the mass of each phase will be

maintained until the machine is accurate. Another method

with similar properties is presented in [49].In that case,

however, the expansion of the term is explicitly considered

at the denominator of Equation (11), whereas here they are

used in an implicit strategy. This is at the cost of the final

correction step provided by Equation (12), but with the

advantage of not creating additional time step constraints

(except for convection) in the color function advection.

C. Thermal effects

The next step in the time march algorithm involves

advancing the temperature field using the explicit second-

order Adams-Bashforth method:

, (13)

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 885

Where ft, 1 = (1 + 0.5∆tn + 1 / ∆tn) and ft, 2 = 0.5∆tn + 1 / ∆tn are the Adams-Bashworth plan coefficients. In Equation (13), the

MT operator calculates the share of advection and emission and is presented in the following semi-discrete form:

. (14)

All spatial terms in Equation (14) are discrete with second-order central designs, except for the term temperature convection.

The second discretization is based on the WENO5 order 5, as in reference [50].

D. Pressure correction algorithm

As the energy equation progresses, the momentum equation is solved by a second-order pressure correction [51], which is

reported semi-discretely as follows:

, (15)

 u , (16)

 , (17)

 u , (18)

 pn+1 = pn + ψn+1, (19)

Where the operators Mn
u and Mn

u
-1 in equation (15)

include convective and diffuse terms calculated at the
current and previous time levels and ignore the surface

tension and gravitational forces that are then included as the

source term. Slowly The spatial gradients in the hair are

discretized with central designs. Your average u** It is then

updated with the participation of conditions due to the

division of time pressure, as in (16). Note that ρ0 is the

minimum value of the density field in the computational

domain and ˆp represents the time-extrapolated pressure

between the current and the old-time step, i.e. ˆp = (1 +

∆tn+1/∆tn)pn − (∆tn+1/∆tn)pn−1. Following [52] and contrary to

[53, 54], the terms arising from the pressure splittings are

included in the prediction of the velocity field (see eq. (16)
before the imposition of the boundary conditions. This

approach has two distinct benefits. First, it shows an

incremental pressure prediction that makes it possible to

achieve an almost second-order accuracy in the time

pressure field [52]. It then ensures the stability of the

pressure field near a solid boundary (i.e. un + 1 = u* = 0), in

which the component of the normal pressure gradient to the

boundary (i.e. ∇⊥ψn + 1 = 0) disappears independently Be

Local density (see Equation (18)).

Next, the Poisson equation of constant coefficients (17)

is solved by a special expansion method that can be used for

different combinations of homogeneous pressure boundary

conditions [33]. Finally, the velocity field is corrected as in

Equation (18) to apply the divergence constraint (i.e., the
solenoid velocity field) and to update the pressure according

to Equation (19).

E. Poisson solvent

This code uses an FFT-based finite difference solver
developed and implemented in DNS CanS code; See [32,

25]. The underlying numerical approach dates back to the

late 1970s and has regained its popularity in recent years

thanks to improvements in the hardware and software

frameworks for mass data communications provided by the

MPI standard and above Libraries such as 2DECOMP &

FFT. In summary, this approach uses Fourier-based

expansions along with two directions of amplitude that

reduce the system of equations derived from the Laplace

three-dimensional finite-difference second-order operator

(seven non-zero diagonals) to a simple three-diagonal

system. These Fourier-based expansions depend on system
boundary conditions and can be calculated using FFTs,

some of which process FFT pre / after / output processing

(see, for example, [56]). FFT-based expansions are applied

along with the x and y directions, and the resulting three-

diagonal system along the z is solved using Gaussian

omission. For CPU calculations, this method uses the FFTW

library guru interface [57], which allows all possible

combinations of discrete conversions to be performed using

the same method. In GPUs, fast discrete cosine and sine

transform is implemented using real-to-complex / complex-

to-real FFTs from the CUFFT library, with pre-and post-
processing of input and output signals to calculate the

desired batch expansion [56, 25]. We refer to Refs. [32, 25]

For details on this method and its implementation.

Due to the parallelization of the method in a distributed
memory environment, FFT-based transformations and

Gaussian deletion steps require that the data be localized

along each direction for each MPI task. The domain is

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 886

parsed using two-dimensional pencil parsing, in which mass

communication is required to move around to parse two-
dimensional data. These transitions are performed using the

2DECOMP & FFT library [58], which has been modified to

allow GPU-GPU communication in [23, 25].

It is worth noting that, in line with recent CanS
developments, the present method uses the default parsing

(ie, "outside" of Poisson solver) based on partitioning along

y and z, resulting in x-aligned pencils. This reduces the total

number of data transitions that take place while solving the

Poisson equation from 6 to 4. This approach is adopted for

both the CPU and the GPU, and the operations required to

solve the Poisson equation are summarized as follows:

 Perform forward FFT-based conversions along x.

 x-to-y displacement.

 Perform FFT-based conversions forward along y.

 y-to-z transition.

 Solve the triangular system using Gaussian removal along

z.

 Move z-to-y.

 Perform FFT-based conversions backward along y.

 Move y-to-x.

 Perform FFT-based conversions backward along x.

In addition, to implement the GPU, when the domain is

not parsed along z, the solvent explicitly reduces the number

of all-to-all operations (for example, when x-y slash parsing

is allowed). This effectively reduces the number of group

operations from 4 to 2 (steps 2 and 8 above are ignored).

This is the approach taken in the GPU implementations

presented here - due to the higher memory bandwidth in

GPUs, slab parsing is sufficient for computing distributed

memory with a wall clock time small enough at each step.
Explicit ignoring of the two without operation leads to a

significant reduction in wall clock time at each stage and an

overall improvement in the scalability of the parallel

solvent.

F. Complete Solve Algorithm

For clarity, a step-by-step description of the entire

solution procedure is presented in Algorithm 1.

Validation
The Zalesak problem represents a classical criterion for

assessing the accuracy of an interface capture / tracking

algorithm. It involves the rotation of the solid body of a

slotted disc embedded in a two-dimensional imposed disc.

Algorithm 1 Overall solution procedure

1: φ0, T0, u0, p0 are initialized;

2: ρ0, µ0, k0 and c0
p are calculated using equation (2) from

φ0;

3: n = 0 is set,

4: while (t < ttot k n < Ntot) do

5: Set n = n + 1 and ∆tn+1;
6: φn+1 is calculated from equation (11) and (12);

7: nn+1 and κn+1 are evaluated using the procedure

described in Appendix A;

8: ρn+1, µn+1, kn+1 and is calculated from equation

(2);

9: Tn+1 is calculated from Eq. (13);

10: u∗ is calculated from Eq. (15) and Eq. (16);

11: ψn+1 is calculated from Eq. (17);

12: un+1 is calculated from Eq. (18); 13: pn+1 is

computed from Eq. (19).

14: end while

15: End of simulation.

Velocity field u = (0.5 - y, x - 0.5). The disk can be

easily defined in the Cartesian two-dimensional domain by

setting the indicator function Hi, j, k
0 equal to 1 in the ΩH

range below.

The criterion involves comparing the deformation of

the solid disk with respect to the initial shape after a

complete round. The VoF equation in a two-dimensional

square domain Ω = [0,1] × [0,1], discrete with four different

grid distances [∆x, ∆y] = [1 / Nx, 1 / Ny] with Nx × Ny =

[32 × 32.64 × 64.128 × 128.256 × 256]. Periodic boundary

conditions are imposed in both directions. The simulations

are performed up to t = 2π (ie a complete slit disk rotation)

using a constant time step Δt = t / 3200. Note that this value

is selected to ensure stable temporal integrity for high-

resolution grids (ie 256 × 256) and is used for larger cases.

Figure 1 shows the final disk shape for different network

solutions for two resolution parameters βth = 2 and βth = 3.

Note that the greatest deviation from the original shape is in

the corner areas, where the areas with the most curvature are

located. In addition, the weak solution is dependent on the

value of βth, and the deviations between the different βths

used are visible only for larger simulations.

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 887

Fig. 1: Zalesak gap disk deformation after t = 2π for βth = 2 (left) and βth = 3 (right).

Among the several possible setups to study secondary

breakup of a drop, the three most popular are (i) shock

tubes, (ii) continuous jets and (iii) free falling droplets. In

this study, we use the continuous air jet setup. A drop of

diameter D0 is placed at t = 0 in a flow with a constant
farfield velocity field, U∞. We define the aerodynamic

Weber number based on the relative velocity between the

liquid drop and the gas stream at t = 0, as

𝑤𝑒 =
𝜌𝑔𝑈∞

2𝐷0

𝛾

where ρg is the density of the ambient gas and γ is the

surface tension coefficient at the drop surface. Assuming

both the liquid and the ambient gas to be incompressible, the

continuity equation is given by

∇ · u = 0,

where u is the divergence free velocity field. We use a

volume of fluid method which is essentially a one-fluid

model for two phase flows. The governing equations for the

momentum are given by the Navier–Stokes equations

augmented with surface forces to implicitly account for the

interfacial boundary conditions of continuity of velocity,

and normal and tangential stress balance,

𝜌(𝐹) (
𝑑𝑦

𝑑𝑥
+ 𝛻. 𝑢𝑢) = −𝛻𝑝 + 𝛻. (𝜇(𝐹)𝐷) + 𝛾𝑘𝑛𝛿𝑠

where F is the volume fraction of liquid and takes

values between 0 and 1, ρ(F) = ρlF + (1 − F)ρg, μ(F) = μlF +

(1 − F)μg, with ρl, ρg are liquid and gas densities,

respectively, and μl and μg are liquid and gas viscosities,

respectively. The deformation rate tensor is given by D =

(∇u + ∇uT)/2.

The last term in the equation accounts for the surface

tension force (γ κ, where κ is the local curvature of the

interface) on the interface embedded in a Eulerian grid and

marked with the surface Dirac delta function, δs. The

direction of the force is along the local normal (n) at the

interface. The surface tension force is modelled as a
volumetric force using the continuum surface force

approach owing to Brackbill et al. [42]. The evolution

equation for the interface is given as an advection equation

in terms of the volume fraction, F,

𝜕𝐹

𝜕𝑡
+ 𝑢. 𝛻𝐹 = 0

Bag mode (We ≤ 20)

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 888

Fig. 2: Droplet motion around Weber number

Bag mode (We ≤ 40)

Fig. 3: Droplet motion around Weber number

Bag mode (We ≤ 80)

Fig. 4: Droplet motion around Weber number

Bag mode (We ≤ 120)

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 889

Fig. 5: Droplet motion around Weber number

Finally, to evaluate the accuracy of the answer, we calculate the L1 norm and the convergence sequence as follows:

 (21)

(22)

Where L1, N is the error L1 using the network points

Nx × Ny and L1,2N is the error L1 which is evaluated with

the points of the network 2Nx × 2Ny. The results are

reported in Figure 2, where one degree of convergence

between the first and second order is obtained for φ, almost

independent of the value used βth.

To show the accuracy of the code in the presence of

thermal effects, this section considers the airflow in a closed

2D square heated cavity. The cavity is heated and cooled by

the vertical side walls (y-normal), while the horizontal walls

are adiabatic (z-normal). In this configuration, a blood

circulation is formed and maintained by a hot ascending

fluid next to the heated wall and a descending cold fluid

next to the cooled wall. Therefore, the flow is purely

thermal and is denoted by the rail number Ra =) and the
Prandtl number Pr = ν / α.

In these definitions, β is the coefficient of thermal

expansion of the fluid, ν is the viscosity of the fluid, α is the

thermal diffusion of the fluid, and ∆T = (Th - Tc) is the

temperature difference between the heated (Th) and cooled

(Tc) walls. The height of the hole is usually considered as

the reference length (lr = Lz), while the reference velocity

and time are ur = α / lr and. The case simulated here follows

the setting presented in several studies [61, 62, 60] with Ra

= 106 and Pr = 0.71. The boundaries of the sphere are solid

walls and the boundary conditions are non-slip. Depending

on the temperature field, the constant temperature boundary
conditions are applied to the vertical walls and a zero

temperature gradient is applied along the normal direction to

the horizontal walls.

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 1

Fig. 3: (A) Temperature field contour diagram at t / tr = 0.5 (steady state) for the heated cavity test, (b) temporal evolution of the

mean Nusselt number of the wall average on the heated wall. Black integrated line, present results. The red dashed line is the

result of the reference from [60]

The domain is split in space using a uniform Cartesian

network with 256 ۵ 256 cells. Initially, the cavity air is

stationary and isothermal at T0 = Tc. A constant time step

Δt is used to advance the solution in time, which is obtained

with Δt / tr = 5.0 × 10-7. (Figure 2a) The contour shows the

temperature field at t / tr = 0.5 where the point has reached a

steady state. The temperature field is characterized by thin,

spatially developing boundary layers alongside thermally

active vertical walls and a classified area in the central

region of the cavity. The rate of heat transfer inside the
cavity is expressed by the Nusselt number, which is defined

as follows:

Nu = , (23)

Where h is the heat transfer coefficient, k is the

thermal conductivity of the fluid, the temperature gradient in
each of the vertically thermally active walls, and nw is the

normal vector of the corresponding unit on the wall. (Figure

2b) shows a comparison of the temporal evolution of the

nusselt hNuiz number with the mean wall on the hot wall

between the current and reference results from [60].

Obviously the present results are in excellent agreement

with the reference solution for the whole simulation period.

 Vmax/ur Wmax/ur Numax Numin <Nu>z

Ref.[60] 64.85 220.6 17.58 0.9794 8.830

Present 64.86 220.3 17.67 0.9773 8.843

%dev 0.02 0.14 0.51 0.21 0.14

Table 2: Comparison of the values of the key criteria in the steady state for the test case of the cavity with different heating. Vmax

is the maximum horizontal velocity along the vertical center plate (y = 0. lr), Wmax is the maximum vertical velocity along the
horizontal middle plate (z = 0.5lr), Numax and Numin are the maximum and minimum Nusselt values Heated on the wall

III. GPU CODE SYNCHRONIZATION AND GPU

ACCELERATION

A. Domain parsing

This code is designed to run on multiple CPU and multi

GPU architectures. For domain analysis, both slabs (1D) and

pencils (2D) are allowed through the 2DECOMP library

[58]. The type of parsing can be implicitly configured in a
dns.in input file by dimming the two-component array (e.g.

[1, n] for slabs and [n, m] for pencils). The pencil / slab

direction can be arbitrarily selected, such as CanS, via the

preprocessor flags -D DECOMP X, -D DECOMP Y and -D

DECOMP Z, which specify the direction in which the

amplitude does not decompose. This flexibility improves

both CPU and GPU performance. For the CPU, the use of a

pencil makes it possible to increase the number of processes

used in each run (ie up to N2 for nx = ny = nz = N), thus

reducing the solving time. In the GPU implementation, only

z-pencil and x-slabs decomposition is allowed. It is
recommended to use x-slabs in the GPU (ie compile with -D

DECOMP X and use dims = [1, n]) because this

implementation minimizes the number of all-round calls and

thus the GPU- Reduces the GPU and improves performance

in multi-node executables.

B. Code parallelization

Paralleling is done using MPI. When GPU acceleration

is enabled, the MPI assigns a rating to each GPU. This code

assumes that the MPI library is optionally "CUDA-aware",
meaning that the GPU data is transmitted directly to the MPI

function call, and the MPI implementation takes care of data

transfer in the most efficient way. The most efficient way, if

any, is to connect the GPU to the GPU using NVIDIA

NVLink, which is a physical GPU-to-GPU connection that

has a higher bandwidth (at least once as large) than

Infiniband. Across code, all nested loops, that is, iterations

across domains, use OpenACC [63], a standard portable

instruction-based programming model that can execute code

on multi-core CPUs as well as accelerators such as NVIDIA

GPUs Run. Such a drain is not used to compile and execute
only the CPU. To run FluTAS, the platform requires support

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 2

for NVIDIA integrated memory, which has two main

advantages:

 The ability to allocate and manage allocated GPU memory

more than is physically present on the device;

 Ability to avoid explicit management of Host-to-Device

and Device-to-Host data transfer, which makes runtime

work for developers.

Both features are used in code and have been proven to

be critical to efficient GPU acceleration.

C. Code performance
We now present an analysis of code performance in

standard CPU-based and accelerated GPU-based

architectures. GPU tests were performed on MeluXina at

LuxProvide (LXP, Luxembourg) [64] and Berzelius at the

National Supercomputer Center (NSC, Sweden) [65], while

tests on CPUs on Tetralith were also performed by the NSC.

D. Poor and strong scaling

We first discuss the poor scaling tests for the Rayleigh-

B'enard problem with the same configuration as will be

discussed in .27.2. For this experiment, we start with a

"base" computing grid Nx × Ny × Nz = 1024 × 512 × 256

grid points on 2 GPUs. Then, while keeping Nx and Ny

constant, we increase Nz in proportion to the number of

GPUs, similar to the method of the spatial group average (ie,

more simulated structures to improve the convergence of
large-scale statistics). As discussed in §5, we compile a slab

parallelism along the z-direction using the -D DECOMP X

option, which reduces the number of all-in-one operations to

two. It is worth noting that although both HPCs are

equipped with NVIDIA A100-40GB cards, the Berzelius

has 8 GPU / node while the MeluXina has 4 GPU / node. In
addition, the connection between GPUs is done through

NVLink, while the node-to-node connection is done through

Infiniband (IB), which is known for having less bandwidth

and operating on different protocols. Hence, IB management

is not easy because it requires more precise configuration

from a hardware and software perspective.

This requires selecting the appropriate MPI settings

and selecting compatible communication libraries, resulting

in performance that may vary significantly across HPCs. For

these reasons, Berzelius was used to perform low-scale tests

on a node to prove IB-independent scaling and to maximize

GPU-to-GPU connectivity. MeluXina, on the other hand,

was used for multi-node tests to evaluate IB-dependent

scaling. (Figure 3a)shows that the weak scale is linear when

constrained by NVLink communications (ie without IB
communications), as clearly supported by Berzelius

experiments.

Fig. 4: For the Rayleigh-B'enard two-layer convection problem discussed in .27.2: a) Code performance in MeluXina and

Berzelius, b) Speed reduction due to transfer operation. For each data set, we compute tw, min as the time in the time step in the

minimum number of GPUs tested in tw, that is, the time at any given time in a given number of GPUs.

When IB communications are required (ie, data

transfer from node to node), code performance is reduced. It

is worth noting that, while an increasing communication

overhead is provided by node-to-node communication in the

IB network, the reduction in additional velocity is caused by

slab parallelism. As the number of elements along the z

increases, more data must be transmitted during the x-to-z

shift, and the communication load increases more. This is

clearly shown in(Figure 3b, where the deceleration
increases with the number of GPUs. Strong scaling test

results are reported in (Figure 4). Here we use two different

networks, 1024 × 512 × 1024 (network-1) and 1024 × 1024

× 1024 × 1024 (network-2) for the Rayleigh-B'enard

problem under discussion. In §7.2. Experiments are

performed on Meluxina and Berzelius for poor

massification. By keeping the size of the problem constant,

the number of GPUs gradually increases to a maximum of

128, from NGPU = 16, which indicates the minimum value

required to accommodate the two computing domains in the

existing GPU memory.

Despite the ever-increasing speed, the code shows a

gradual reduction in performance, that is, a reduction in the

benefits of increasing the number of GPUs. Note, however,

that more network points (eg Grid-2) will result in less

performance, as higher GPU occupancy can be achieved.

2 1 2 2 2 3 2 4 2 5 2 6 2 7
NumberofGPUs

0.00

0.40

0.60

0.80

1.00

1.20

ideal
MeluXina
Berzelius

2 3 2 4 2 5 2 6 2 7
NumberofGPUs

1.0

1.25

1.5

1.75

2.0

2.25

2.5

2.75 MeluXina (a () b)

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 2

The decrease in performance observed in Figure 7 is due to

two factors: an increase in communication between GPUs
and a decrease in the size of the local problem, which does

not affect the full computing capacity of each GPU. While

these effects are present in a strong scaling test, a weak scale

allows us to isolate the effects of multi-GPU

communications while maintaining higher GPU saturation.

Therefore, we argue that poor scale is a better tool for

identifying communication bottlenecks across multiple

GPUs. Conversely, robust scaling is more useful for

estimating the degree of segmentation of a fixed domain

while maintaining efficient use of computational resources.

In general, the previous analysis suggests an important

guideline for the user: in the presence of computational
architectures versus an unbalanced network (e.g., a more

efficient node-to-network network connection than a GPU

connection in the same node), the optimal number of GPUs

To be used, it should be selected as close as possible to the

minimum value required to fit the computational range in

the existing GPU memory.

In fact, this is not always the case with older HPC

architectures that use previous generations of GPU

hardware, where NVLink connections between GPUs within

a node usually did not exist. For a fixed problem size,
modern cards with high computing power complete the

required computations faster, leaving the remainder of the

computation as limited communication. In older GPUs,

acceleration is slower and communication becomes the

dominant component, affecting the scalability of more

GPUs. Hence, the best practice is to use as few GPUs as

possible. On modern units with 80GB of HBM memory, it is

convenient to use an 8-way GPU node (such as the DGX

A100) where possible, where all GPUs are also connected

via NVLink, significantly reducing communication costs

Gives.

Fig. 5: Strong scaling experiment was performed on Berzelius (black dashed lines) and MeluXina (red dashed lines) clusters for

two different networks: 1024 × 512 × 1024 (network-1) and 1024 × 1024 × 1024 × gr-24. The continuous black line indicates the

ideal behavior desired for the robust scaling test

IV. CPU-GPU COMPARISON

As a result, we make a comparison between the code

performance of a CPU and a GPU architecture. It is worth

noting that such a comparison is not obvious. First, no

precise and standard method has been developed to compare

the two systems. Next, code performance may show large

variations between different architectures, and using a

hybrid CPU-GPU node to perform experiments on both can

be misleading. CPU-only nodes and CPU-GPU nodes are
inherently different in terms of network configuration and

GPU / CPU connectivity, so neutral testing may not be

performed directly on hybrid architectures (because the

CPU-GPU cluster is difficult to run on CPU only Used

jobs).

Therefore, the following analysis should be considered

as the first approximate estimate. Here we repeat the weak

scale simulation with nGPU = 8 GPU in Berzelius at nCPU

= 512 CPU in Tetralith, in both cases we use slab

parallelism along z. Experiments show that for GPUs the

average wall clock time per step t8 is GPU = 0.191 seconds,

while for CPU t512, CPU = 1.075 seconds. This results in
an equivalent number of GPUs of neq = (t512, CPUnCPU) /

(t8,GPUnGPU) ≈ 359.

Finally, a comparison in terms of computational load

percentage for each piece of code is shown in Figure 5. As
previously predicted, the displacements during the GPU

simulation (panel a) represent more than half of the

computational load. The remaining sections consist mainly

of loop-bound stencil operations, largely utilizing GPU-

offload, while CPUs (panel b) account for more than 70% of

the total wall clock time at each time stage.

2 4 2 5 2 6 2 7

NumberofGPUs

1.0

2.0

4.0

8.0
Berzelius,grid-1
Berzelius,grid-2
MeluXina,grid-1
MeluXina,grid-2
Ideal

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 2

Fig. 6: Comparison of the percentage of code load in the total simulation time for GPU (panel a) and CPU (panel b). Different

"slices" represent different pieces of code: 1) VoF (ie, interface reconstruction and advection, upgrade of thermophysical

properties), 2) RHS (ie, discretization of governing equations), 3) displacement (ie, solver displacement operation), 4) solution (Ie

Gaussian deletion only) and other items (ie correction step, divergence / time step checks, output and post-processing procedures).

V. CONCLUSIONS AND MORE PROGRESS

We provide the FluTAS code, a numerical framework

for direct numerical simulations of multiphase currents with

the option of heat transfer, which can be effectively

implemented on standard CPU-based architectures and

GPU-based accelerator machines. The open source version,

released under the MIT license, includes a pressure

correction algorithm for two-phase flows developed by the

fluid volume algebra method (MTHINC) to record interface

dynamics.

Here we provide a description of the numerical

algorithm used with details of solving governing equations

and interface advection. After presenting different validation

criteria in single-phase and multi-phase configurations, we

discuss code performance with a focus on two aspects: Has

a knot, ii. Its advantages over the CPU in terms of "time to
dissolution" Finally, we report the results of two

configurations of fundamental benefits in multiphase

turbulence: emulsions in homogeneous isotropic turbulence

and rail-binard double layer convection. In the future, our

goal is to improve the ability to store and carry code (both

on the CPU and GPU) and to release additional modules

under development, for example. Poor compressibility and

phase change [43, 44]. Further efforts will be made to

improve code performance across multiple GPU nodes,

reducing current communication bottlenecks. To this end, it

is a promising strategy proposed in [73], that is, it

implements a triangular system solution for the third
direction on distributed memory. The main advantage of this

approach is the elimination of all-in-one operations in the

Poisson solver. This development, together with future

advances in software frameworks for mass data

communications, will make it possible to address several

multi-step problems while maintaining efficient use of

computational resources.

REFERENCES

[1.] S. Ii, K. Sugiyama, S. Takeuchi, S. Takagi, Y.

Matsumoto, F. Xiao, An interface capturing method

with a continuous function: the thinc method with

multi-dimensional reconstruction, Journal of

Computational Physics 231 (5) (2012) 2328–2358.

[2.] W. W. Grabowski, L.-P. Wang, Growth of cloud

droplets in a turbulent environment, Annual review

of fluid mechanics 45 (2013) 293–324.

[3.] G. Seminara, Fluvial sedimentary patterns, Annual

Review of Fluid Mechanics 42 (2010) 43–66.

[4.] L. Brandt, F. Coletti, Particle-laden turbulence:

Progress and perspectives, Annual Review of Fluid
Mechanics 54 (2021).

[5.] F. Veron, Ocean spray, Annual Review of Fluid

Mechanics 47 (2015) 507–538.

[6.] T. Dauxois, T. Peacock, P. Bauer, C.-c. P. Caulfield,

C. Cenedese, C. Gorl´e, G. Haller, G. N. Ivey, P. F.

Linden, E. Meiburg, et al., Confronting grand

challenges in environmental fluid mechanics,

Physical review fluids 6 (2) (2021) 020501.

[7.] C. T. Crowe, Multiphase flow handbook, CRC press,

2005.

[8.] G. A. Voth, A. Soldati, Anisotropic particles in
turbulence, Annual Review of Fluid Mechanics 49

(2017) 249–276.

[9.] F. Risso, Agitation, mixing, and transfers induced by

bubbles, Annual Review of Fluid Mechanics 50

(2018) 25–48.

[10.] S. Elghobashi, Direct numerical simulation of

turbulent flows laden with droplets or bubbles,

Annual Review of Fluid Mechanics 51 (2019) 217–

244.

[11.] V. Mathai, D. Lohse, C. Sun, Bubbly and buoyant

particle–laden turbulent flows, Annual Review of
Condensed Matter Physics 11 (2020) 529–559.

[12.] A. U. M. Masuk, A. Salibindla, R. Ni, A robust

virtual-camera 3d shape reconstruction of deforming

bubbles/droplets with additional physical constraints,

International Journal of Multiphase Flow 120 (2019)

103088.

[13.] A. K. Salibindla, A. U. M. Masuk, S. Tan, R. Ni, Lift

and drag coefficients of deformable bubbles in

intense turbulence determined from bubble rise

velocity, Journal of Fluid Mechanics 894 (2020).

[14.] A. U. M. Masuk, A. K. Salibindla, R. Ni,

Simultaneous measurements of deforming hinze-

VoF
37.5

RHS

9.1
Transposes

37.5

Solver

11.0
5.0

VoF
56.4

RHS

16.0

Transposes 7.9

Solver

15.4
4.3

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 894

scale bubbles with surrounding turbulence, Journal of

Fluid Mechanics 910 (2021).
[15.] S. Mirjalili, S. S. Jain, M. Dodd, Interface-capturing

methods for twophase flows: An overview and recent

developments, Center for Turbulence Research

Annual Research Briefs 2017 (117-135) (2017) 13.

[16.] S. O. Unverdi, G. Tryggvason, A front-tracking

method for viscous, incompressible, multi-fluid

flows, Journal of computational physics 100 (1)

(1992) 25–37.

[17.] R. Scardovelli, S. Zaleski, Direct numerical

simulation of free-surface and interfacial flow,

Annual review of fluid mechanics 31 (1) (1999) 567–

603.
[18.] D. M. Anderson, G. B. McFadden, A. A. Wheeler,

Diffuse-interface methods in fluid mechanics,

Annual review of fluid mechanics 30 (1) (1998) 139–

165.

[19.] J. A. Sethian, P. Smereka, Level set methods for fluid

interfaces, Annual review of fluid mechanics 35 (1)

(2003) 341–372.

[20.] A. Prosperetti, G. Tryggvason, Computational

methods for multiphase flow, Cambridge university

press, 2009.

[21.] G. Soligo, A. Roccon, A. Soldati, Turbulent flows
with drops and bubbles: What numerical simulations

can tell us—freeman scholar lecture, Journal of

Fluids Engineering 143 (8) (2021).

[22.] A. Khan, H. Sim, S. S. Vazhkudai, A. R. Butt, Y.

Kim, An analysis of system balance and architectural

trends based on top500 supercomputers, in: The

International Conference on High Performance

Computing in Asia-Pacific Region, 2021, pp. 11–22.

[23.] X. Zhu, E. Phillips, V. Spandan, J. Donners, G.

Ruetsch, J. Romero, R. Ostilla-Mo´nico, Y. Yang, D.

Lohse, R. Verzicco, et al., Afid-gpu: a versatile

navier–stokes solver for wall-bounded turbulent
flows on gpu clusters, Computer physics

communications 229 (2018) 199–210.

[24.] M. Bernardini, D. Modesti, F. Salvadore, S.

Pirozzoli, Streams: A highfidelity accelerated solver

for direct numerical simulation of compressible

turbulent flows, Computer Physics Communications

263 (2021) 107906.

[25.] P. Costa, E. Phillips, L. Brandt, M. Fatica, Gpu

acceleration of cans for massively-parallel direct

numerical simulations of canonical fluid flows,

Computers & Mathematics with Applications 81
(2021) 502–511.

[26.] W. Aniszewski, T. Arrufat, M. Crialesi-Esposito, S.

Dabiri, D. Fuster, Y. Ling, J. Lu, L. Malan, S. Pal, R.

Scardovelli, et al., Parallel, robust, interface

simulator (paris), Computer Physics Communications

263 (2021) 107849.

[27.] P. Cifani, J. Kuerten, B. Geurts, Highly scalable dns

solver for turbulent bubble-laden channel flow,

Computers & Fluids 172 (2018) 67–83.

[28.] K. Eisenschmidt, M. Ertl, H. Gomaa, C. Kieffer-

Roth, C. Meister, P. Rauschenberger, M. Reitzle, K.
Schlottke, B. Weigand, Direct numerical simulations

for multiphase flows: An overview of the multiphase

code fs3d, Applied Mathematics and Computation

272 (2016) 508–517.
[29.] O. Desjardins, G. Blanquart, G. Balarac, H. Pitsch,

High order conservative finite difference scheme for

variable density low mach number turbulent flows,

Journal of Computational Physics 227 (15) (2008)

7125– 7159.

[30.] S. Popinet, An accurate adaptive solver for surface-

tension-driven interfacial flows, Journal of

Computational Physics 228 (16) (2009) 5838– 5866.

[31.] S. H. Bryngelson, K. Schmidmayer, V. Coralic, J. C.

Meng, K. Maeda, T. Colonius, Mfc: An open-source

high-order multi-component, multiphase, and multi-

scale compressible flow solver, Computer Physics
Communications (2020)

107396doi:10.1016/j.cpc.2020.107396.

[32.] P. Costa, A fft-based finite-difference solver for

massively-parallel direct numerical simulations of

turbulent flows, Computers & Mathematics with

Applications 76 (8) (2018) 1853–1862.

[33.] U. Schumann, R. A. Sweet, Fast fourier transforms

for direct solution of poisson’s equation with

staggered boundary conditions, Journal of

Computational Physics 75 (1) (1988) 123–137.

[34.] M. E. Rosti, F. De Vita, L. Brandt, Numerical
simulations of emulsions in shear flows, Acta

Mechanica 230 (2) (2019) 667–682.

[35.] F. De Vita, M. E. Rosti, S. Caserta, L. Brandt, On the

effect of coalescence on the rheology of emulsions,

Journal of Fluid Mechanics 880 (2019) 969–991.

[36.] F. De Vita, M. E. Rosti, S. Caserta, L. Brandt,

Numerical simulations of vorticity banding of

emulsions in shear flows, Soft matter 16 (11) (2020)

2854–2863.

[37.] M. E. Rosti, S. Takagi, Shear-thinning and shear-

thickening emulsions in shear flows, Physics of

Fluids 33 (8) (2021) 083319.
[38.] M. E. Rosti, Z. Ge, S. S. Jain, M. S. Dodd, L. Brandt,

Droplets in homogeneous shear turbulence, Journal

of Fluid Mechanics 876 (2019) 962–984.

[39.] M. Kozul, P. S. Costa, J. R. Dawson, L. Brandt,

Aerodynamically driven rupture of a liquid film by

turbulent shear flow, Physical Review Fluids 5 (12)

(2020) 124302.

[40.] M. Crialesi-Esposito, M. E. Rosti, S. Chibbaro, L.

Brandt, Modulation of homogeneous and isotropic

turbulence in emulsions, Journal of Fluid Mechanics

940 (2022).
[41.] I. Cannon, D. Izbassarov, O. Tammisola, L. Brandt,

M. E. Rosti, The effect of droplet coalescence on

drag in turbulent channel flows, Physics of Fluids 33

(8) (2021) 085112.

[42.] N. Scapin, P. Costa, L. Brandt, A volume-of-fluid

method for interfaceresolved simulations of phase-

changing two-fluid flows, Journal of Computational

Physics 407 (2020) 109251.

[43.] F. Dalla Barba, N. Scapin, A. D. Demou, M. E.

Rosti, F. Picano, L. Brandt, An interface capturing

method for liquid-gas flows at lowmach number,
Computers & Fluids 216 (2021) 104789.

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 895

[44.] N. Scapin, F. Dalla Barba, G. Lupo, M. E. Rosti, C.

Duwig, L. Brandt, Finite-size evaporating droplets in
weakly compressible homogeneous shear turbulence,

Journal of Fluid Mechanics 934 (2022).

[45.] M. Ishii, T. Hibiki, Thermo-fluid dynamics of two-

phase flow, Springer Science & Business Media,

2010.

[46.] F. H. Harlow, J. E. Welch, Numerical calculation of

time-dependent viscous incompressible flow of fluid

with free surface, The physics of fluids 8 (12) (1965)

2182–2189.

[47.] E. G. Puckett, A. S. Almgren, J. B. Bell, D. L.

Marcus, W. J. Rider, A high-order projection method

for tracking fluid interfaces in variable density
incompressible flows, Journal of computational

physics 130 (2) (1997) 269–282.

[48.] E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski,

A geometrical areapreserving volume-of-fluid

advection method, Journal of Computational Physics

192 (1) (2003) 355–364.

[49.] G. D. Weymouth, D. K.-P. Yue, Conservative

volume-of-fluid method for free-surface simulations

on cartesian-grids, Journal of Computational Physics

229 (8) (2010) 2853–2865.

[50.] M. Castro, B. Costa, W. S. Don, High order weighted
essentially nonoscillatory weno-z schemes for

hyperbolic conservation laws, Journal of

Computational Physics 230 (5) (2011) 1766–1792.

[51.] A. J. Chorin, Numerical solution of the navier-stokes

equations, Mathematics of computation 22 (104)

(1968) 745–762.

[52.] C. Frantzis, D. G. Grigoriadis, An efficient method

for two-fluid incompressible flows appropriate for

the immersed boundary method, Journal of

Computational Physics 376 (2019) 28–53.

[53.] S. Dong, J. Shen, A time-stepping scheme involving

constant coefficient matrices for phase-field
simulations of two-phase incompressible flows with

large density ratios, Journal of Computational

Physics 231 (17) (2012) 5788–5804.

[54.] M. S. Dodd, A. Ferrante, A fast pressure-correction

method for incompressible two-fluid flows, Journal

of Computational Physics 273 (2014) 416–434.

[55.] P. N. Swarztrauber, The methods of cyclic reduction,

fourier analysis and the facr algorithm for the

discrete solution of poisson’s equation on a rectangle,

Siam Review 19 (3) (1977) 490–501.

[56.] J. Makhoul, A fast cosine transform in one and two
dimensions, IEEE Transactions on Acoustics,

Speech, and Signal Processing 28 (1) (1980) 27–34.

[57.] M. Frigo, S. G. Johnson, Fftw: An adaptive software

architecture for the fft, in: Proceedings of the 1998

IEEE International Conference on Acoustics, Speech

and Signal Processing, ICASSP’98 (Cat. No.

98CH36181), Vol. 3, IEEE, 1998, pp. 1381–1384.

[58.] N. Li, S. Laizet, 2decomp & fft-a highly scalable 2d

decomposition library and fft interface, in: Cray user

group 2010 conference, 2010, pp. 1–13.

[59.] S. Turek, O. Mierka, K. B¨aumler, Numerical
benchmarking for 3d multiphase flow: New results

for a rising bubble, in: European Conference on

Numerical Mathematics and Advanced Applications,

Springer, 2017, pp. 593–601.
[60.] J. Armengol, F. Bannwart, J. Xam´an, R. Santos,

Effects of variable air properties on transient natural

convection for large temperature differences,

International Journal of Thermal Sciences 120 (2017)

63–79.

[61.] G. de Vahl Davis, I. Jones, Natural convection in a

square cavity: a comparison exercise, International

Journal for numerical methods in fluids 3 (3) (1983)

227–248.

[62.] M. Leal, H. Machado, R. Cotta, Integral transform

solutions of transient natural convection in

enclosures with variable fluid properties,
International Journal of Heat and Mass Transfer 43

(21) (2000) 3977–3990.

[63.] Openacc.URL

 https://www.openacc.org/sites/default/files/ inline-

files/OpenACC.2.7.pdf

[64.] Meluxina. URL https://luxprovide.lu/technical-

structure/

[65.] Berzelius. URL

https://www.nsc.liu.se/systems/berzelius/

[66.] On the non-linear stability of the 1:1:1 ABC flow,

Physica D: Nonlinear Phenomena 75 (4) (1994) 471–
508. doi:10.1016/0167-2789(94) 00031-X.

[67.] P. D. Mininni, A. Alexakis, A. Pouquet, Large-scale

flow effects, energy transfer, and self-similarity on

turbulence, Physical Review E Statistical, Nonlinear,

and Soft Matter Physics 74 (1) (2006) 1–13.

doi:10.1103/PhysRevE.74.016303.

[68.] C. Garrett, M. Li, D. Farmer, The connection

between bubble size spectra and energy dissipation

rates in the upper ocean, Journal of Physical

Oceanography 30 (9) (2000) 2163–2171.

doi:10.1175/ 1520-

0485(2000)030<2163:TCBBSS>2.0.CO;2.
[69.] G. B. Deane, M. D. Stokes, Scale dependence of

bubble creation mechanisms in breaking waves,

Nature 418 (6900) (2002) 839–844. doi:

10.1038/nature00967.

[70.] F. H. Busse, On the aspect ratios of two-layer mantle

convection, Physics of the Earth and Planetary

Interiors 24 (4) (1981) 320–324.

[71.] F. Wilczynski, D. W. Hughes, Stability of two-layer

miscible convection, Physical Review Fluids 4 (10)

(2019) 103502.

[72.] H.-R. Liu, K. L. Chong, Q. Wang, C. S. Ng, R.
Verzicco, D. Lohse, Twolayer thermally driven

turbulence: mechanisms for interface breakup,

Journal of Fluid Mechanics 913 (2021).

[73.] S. Ha, J. Park, D. You, A multi-gpu method for adi-

based fractional-step integration of incompressible

navier-stokes equations, Computer Physics

Communications 265 (2021) 107999.

[74.] D. L. Youngs, Time-dependent multi-material flow

with large fluid distortion, Numerical methods for

fluid dynamics (1982).

[75.] D. L. Youngs, An interface tracking method for a 3d
eulerian hydrodynamics code, Atomic Weapons

http://www.ijisrt.com/

Volume 7, Issue 7, July – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22JUL118 www.ijisrt.com 896

Research Establishment (AWRE) Technical Report

44 (92) (1984) 35.
[76.] G. Strang, On the construction and comparison of

difference schemes, SIAM journal on numerical

analysis 5 (3) (1968) 506–517.

http://www.ijisrt.com/

