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Abstract:- We provide a scalable GPU code for droplet 

motion in biphasic streams. This code solves the Navier-

Stokes incompressibility equation for two-fluid systems 

with a direct Poisson FFT solver based on the pressure 

equation. The interface between the two fluids is shown 

by the Volume Volume (VoF) method, which is suitable 

for complex flows due to its capacity to manage 

topological changes. The energy equation is explicitly 

solved and coupled with the momentum equation via the 

Bosinsk approximation. This code is modularly designed 

to be able to use different numerical methods 

independently, modify existing procedures, and combine 

new ones simply and consistently. FluTAS is written in 

Fortran and uses the MPI / OpenMP combination in the 

CPU-only version in parallel, accelerating GPU 

execution with OpenACC instructions. The two 

dominant forces affecting droplet fracture, drag force, 

and surface tensile force are confirmed using two 

benchmarks: pressure distribution on a cylindrical 

surface in uniform flow and oscillation of a square drop 

under surface tensile force. The results show that the 

failure process occurs in two steps. During the first stage, 

the droplets are stretched and thinned perpendicular to 

the direction of fluid flow. In the second stage, isolated 

points appear on the surface of the droplets which are 

attributed to the unstable growth of surface waves. The 

topology of the droplet after failure depends on the value 

of the Weber number: the larger the Weber number, the 

more isolated points on the surface of the droplets. 
 

Keywords:- Two-phase flows, Fluid volume method, 

Turbulence in multiphase flows, High-performance 
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I. INTRODUCTION 
 

Multiphase currents exist everywhere in many fields, 

from environmental currents to industrial applications. The 

interaction between phases plays a prominent role in the 

formation and evolution of clouds [2], sediment transport [3, 

4], ocean sprays, and bubble production [5], and genes are 

one of the major challenges of ambient fluid mechanics [6]. 

These currents are also very important in several industrial 

applications, such as pharmacy, transportation, food 

processing, and electricity generation [7]. From a theoretical 

point of view, the main problem in analyzing multiphase 
flows depends on the nature of their multiscale, because the 

longitudinal scale of the interface is the order of the path 

without the mean, while in most applications the normal 

longitudinal scale is several times Of a larger size (-10 105-

106). 
 

In the case of multiphase perturbation, where most of 

our interests and applications are, both experimental 

research and numerical simulations have been widely used 

over the past thirty years and have led to significant 

contributions to a variety of problems and configurations: 

Case in point, filled particles. Flows and sediment transport 

are discussed in [8, 4], bubble and droplet flow are studied 

in [9, 10, 11], and oceanic sprays and bubbles as specified in 

[5]. However, as previously discussed in [10] and despite 

recent advances in instantaneous bubble/drop shape 

measurements [12, 13, 14], there is still a lack of 

experimental data for measuring the instantaneous velocity 
fields of both carriers and scattered phases as well as for 

turbulent kinetic energy and dissipation near the interface 

locations. These constraints disappear when dealing with 

numerical simulations, and so, in recent decades, solved 

simulations of multiphase flow interfaces have become a 

central investigative tool. Despite the advantages, numerical 

simulations continue to be limited to simple configurations 

and medium-scale separations, making it difficult to choose 

the appropriate method for the complete solution of the two-

phase interface. As discussed in [15], there is now a 

consensus that appropriate numerical methods for 
performing simulations solved with a multiphase flow 

interface should have the following characteristics: 

 capable of applying mass, momentum, and kinetic energy 

survival at a discrete surface; 

 mismatch in material properties, the magnitude of which 

depends on the application, and 

 Manage complex and possibly arbitrary topological 

changes. 
 

Among the four groups of numerical methods for 

multiphase currents, front tracking (FT) [16], fluid volume 

(VoF) [17], phase-field (PFM) [18], surface set (LS) [19], 

the minimum There is a type of each that has the above 

numerical properties and gives researchers and scientists the 

freedom to choose their preferred numerical tool (see [17, 

20, 21] for review). 
 

However, it becomes clearer that another desirable 

feature of any numerical method is its simple adaptation to 

allow the implementation of mass parallel simulations, 

especially in accelerated architectures. 
 

As the computing power of GPUs increases, several 

HPCs have now shifted to GPU-only and GPU accelerated 

architectures. This process of parallelization of GPU 

numeric codes makes it a mandatory requirement for fluid 

mechanics rather than a simple advantage. This attempt has 

already been made for single-phase code, where at least 
three open-source codes for incompressible and fully 

compressed simulations can be run on acceleration 

architectures: AFiD [23], STREAMS [24], and the 

accelerated version of CanS [25]. Conversely, in the 

multiphase counterpart, despite the high availability of 

CPU-based open source code, PARIS Simulator [26], 
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TBFsolver [27], FS3D [28], NGA2 [29], Basilisk [30], and 

MFC [31] to name a few, limited effort has been devoted to 
adapting them to hybrid architectures. 

In this work, we aim to fill this gap and provide 

FluTAS (Fluid Accelerator Solver), a code for massive 

direct numerical simulations in multi-GPU and multi-CPU 

architectures that target incompressible multiphase streams, 

optionally with Heat transfer. The numerical solution of 

these flows is usually performed using finite difference 

methods in ambiguous variable arrangement and involves 

solving the Poisson equation to apply constraints on velocity 

divergence. In this context, FluTAS uses the Navier-Stokes 

CanS solver [32] and its GPU extension [25] as a basis, 

whose key feature is a general implementation that includes 
all possible homogeneous pressure boundary conditions that 

can be used FFT-based elliptical solvers [33]. The version in 

our group has been validated in [34] and is widely used in 

various types of multiphase configurations, both for laminar 

flows [35, 36, 37] and for turbulent flows [38, 39, 40, 41 ] 

Used. Note that it extends to phase shift currents [42] as 

well as to handle low-density (almost Mach Mach) multi-

phase currents [43, 44]. 
 

This paper is organized as follows. In §2, we introduce 

the governing equations for an incompressible two-fluid 

system. Details of the VoF discretization method, the energy 

equation, and the Navier-Stokes solver are provided in §3, 

while the standard criteria for code validation are discussed 

in §4. Then, parallelization for GPU acceleration is provided 

along with scaling tests in §5 and §6. The code potentials 
are shown in two requested simulations of multiphase 

turbulence: emulsions in homogeneous isotropic turbulence 

(HIT) and two-phase thermal convection (see § 7).  
 

 

 

 

 

 

 

 

 

 

II. GOVERNING EQUATIONS 
 

We consider a two-phase system of immiscible 

incompressible Newtonian fluids (e.g., a gas-liquid system). 

The two phases are bounded by an extremely small interface 

through which momentum and energy can be transmitted. 

To describe the system, we define a phase H indicator 

function that distinguishes two phases at position x and time 

t: 
 

𝐻(𝑥, 𝑡) = {1   𝑖𝑓 𝑥𝜖𝛺1 0  𝑖𝑓 𝑥𝜖𝛺2         (1) 

 

Where Ω1 and Ω2 are domains corresponding to phases 

1 and 2. We can use H to define the thermophysical 

properties in the whole field Ω = Ω1 ∪ Ω2 as follows: 
 

ξ(x,t) = ξ1H(x,t) + ξ2(1 − H(x,t)), (2) 
 

Where ξi (i = 1,2) can be mass density ρi, dynamic 

viscosity µi, thermal conductivity ki, or specific heat 

capacity at a constant pressure cp, i. Henceforth, unless 

stated otherwise, thermophysical quantities that do not 

specifically refer to one of the phases are defined by the 

equation. (2). The evolution of the indicator function is 

controlled by the following topological equation: 
 

         (3) 
 

Where uΓ is the interface speed. If the phase does not 

change, the velocity of a fluid u is continuous throughout the 

interface and therefore it can be used as the interface 

velocity in relation (3). 
 

The equations governing the motion and energy 

transfer for the liquid and gas phases are coupled through 

suitable surface conditions [45], which are reported below in 

a formula called fluid or whole amplitude, in which each 

transfer equation, defined in Ω, is coupled [ 20]. 
 

 ∇ · u = 0, (4)

 
 

     (6) 

 
Here, u is the velocity of the fluid, which is assumed to 

be continuous in Ω, p is the hydrodynamic pressure, and T is 

the temperature. In relation (5), σ is the surface tension, κ is 

the localized surface curvature and δΓ is the Dirac delta 

function, g is the gravitational acceleration and ˆρ is the 

volume density field that has been changed to explain the 

thermal effects of gravitational forces. Using the Oberbeck-

Boussinesq approximation, ˆρ is pronounced as: 
 

 ρˆ = ρ1,r [1 − βl (T − Tr)]H + ρ2,r [1 − βg (T − Tr)](1 − H), (7) 
 

Where ρi = 1,2, r are the reference phase density and βi = 1,2 are the thermal expansion coefficients of the liquid and gas. 
 

A. Numerical methodology 

The numerical solution of the governing equations (3), 

(4), (5), and (6) presented in Section 2 is shown on a regular 

Cartesian lattice with a constant distance Δx, Δy, and ∆z 

along each direction. Marker and cell arrays are used for 

points of velocity and pressure [46], while all scalar fields 

are defined at cell centers. In each time step, the governing 

equations proceed in terms of time with ∆tn + 1 = tn + 1 - tn, 

where the previous time step is represented by ∆tn = tn − tn − 

1. 
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In the following, we present the numerical 

discretization of the governing equations in the same order 
as their solution. 

 

B. Fluid volume: MTHINC method 

The first step of the time march algorithm involves 

reconstructing the interface and its subsequent advection. As 
mentioned earlier, these tasks are considered in a completely 

Eulerian framework using the Fluid Volume (VoF) method. 

Numerically, this first involves defining the volume fraction 

φ in each cell of the computational domain: 
 

    (8) 

With Vc = ∆x∆y∆z. Next, Equation (3) in terms of 

volume fraction is written as follows: 
 

(9) 
 

The distinctive feature of each category of the VoF 

method lies in the approximate method H. In this work, we 

use the fluid volume algebraic method based on the 

reconstruction of multidimensional tangential hyperbola, 
MTHINC [1], the main idea of which is to approximate H 

with a hyperbolic tangent: 

 
 

, (10) 
 

where βth, dth are the sharpness and the normalization 

parameter, respectively, and (x,˜ y,˜ z˜) a local coordinate 

system x˜ = [(x − 0.5)/∆x,(y − 0.5)/∆y,(z − 0.5)/∆z]. 

Employing equation (10) has two distinct advantages 

concerning a piecewise approximation, commonly 
employed in the geometric VoF methods. First, the phase 

indicator H can be approximated with a reconstructing 

polynomial T of arbitrary order straightforwardly. Then, 

when T is known, the resulting interface at the boundary of 

the two phases has a smooth but controlled thickness (with 

the βth parameter), which also allows the exact calculation 

of the normal vector n and the curvature tensor K directly 

from φ. Further details on the choice of T and the 

calculations of dth, n, and K can be found in the main article 

by Ii et al. [1], but for completeness, we add them with the 

details of the numerical implementation in Appendix A. 
 

After the reconstruction phase, the interface is 

transferred using a directional splitting approach [47, 48], 

which involves evaluating the numerical fluxes sequentially 

in each direction using the latest VoF field estimate for each 
split. Accordingly, the three temporary fields φpi, j, k (with 

p = [x, y, z]) is first calculated: 

 

(11) 

 

 
 

 

 

 

 
 

Where with ± p-th amine component of velocity. The calculation of the numerical fluxes f ± in Equation (11) is evaluated 

using the approximation of the hyperbolic tangent H as described in Appendix A. Then, the divergence correction step is applied 

to impose the survival of the volume of both phases at a separate level : 
 

. (12) 
 

With the above approach, the survival of the offense is 

guaranteed until the conditions without divergence (4) are 

satisfied. Accordingly, if direct methods are used to solve 

the Poisson equation, the mass of each phase will be 

maintained until the machine is accurate. Another method 

with similar properties is presented in [49].In that case, 

however, the expansion of the term is explicitly considered 

at the denominator of Equation (11), whereas here they are 

used in an implicit strategy. This is at the cost of the final 

correction step provided by Equation (12), but with the 

advantage of not creating additional time step constraints 

(except for convection) in the color function advection. 
 

C. Thermal effects 

The next step in the time march algorithm involves 

advancing the temperature field using the explicit second-

order Adams-Bashforth method: 

 
 

, (13) 
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Where ft, 1 = (1 + 0.5∆tn + 1 / ∆tn) and ft, 2 = 0.5∆tn + 1 / ∆tn are the Adams-Bashworth plan coefficients. In Equation (13), the 

MT operator calculates the share of advection and emission and is presented in the following semi-discrete form: 
 

. (14) 
 

All spatial terms in Equation (14) are discrete with second-order central designs, except for the term temperature convection. 

The second discretization is based on the WENO5 order 5, as in reference [50]. 
 

D. Pressure correction algorithm 

As the energy equation progresses, the momentum equation is solved by a second-order pressure correction [51], which is 

reported semi-discretely as follows: 
 

, (15) 
 

 u  , (16) 
 

 , (17) 
 

 u , (18) 
 

 pn+1 = pn + ψn+1,   (19) 
 

Where the operators Mn
u and Mn

u
-1 in equation (15) 

include convective and diffuse terms calculated at the 
current and previous time levels and ignore the surface 

tension and gravitational forces that are then included as the 

source term. Slowly The spatial gradients in the hair are 

discretized with central designs. Your average u** It is then 

updated with the participation of conditions due to the 

division of time pressure, as in (16). Note that ρ0 is the 

minimum value of the density field in the computational 

domain and ˆp represents the time-extrapolated pressure 

between the current and the old-time step, i.e. ˆp = (1 + 

∆tn+1/∆tn)pn − (∆tn+1/∆tn)pn−1. Following [52] and contrary to 

[53, 54], the terms arising from the pressure splittings are 

included in the prediction of the velocity field (see eq. (16) 
before the imposition of the boundary conditions. This 

approach has two distinct benefits. First, it shows an 

incremental pressure prediction that makes it possible to 

achieve an almost second-order accuracy in the time 

pressure field [52]. It then ensures the stability of the 

pressure field near a solid boundary (i.e. un + 1 = u* = 0), in 

which the component of the normal pressure gradient to the 

boundary (i.e. ∇⊥ψn + 1 = 0) disappears independently Be 

Local density (see Equation (18)). 
 

Next, the Poisson equation of constant coefficients (17) 

is solved by a special expansion method that can be used for 

different combinations of homogeneous pressure boundary 

conditions [33]. Finally, the velocity field is corrected as in 

Equation (18) to apply the divergence constraint (i.e., the 
solenoid velocity field) and to update the pressure according 

to Equation (19). 
 

 

 

E. Poisson solvent 

This code uses an FFT-based finite difference solver 
developed and implemented in DNS CanS code; See [32, 

25]. The underlying numerical approach dates back to the 

late 1970s and has regained its popularity in recent years 

thanks to improvements in the hardware and software 

frameworks for mass data communications provided by the 

MPI standard and above  Libraries such as 2DECOMP & 

FFT. In summary, this approach uses Fourier-based 

expansions along with two directions of amplitude that 

reduce the system of equations derived from the Laplace 

three-dimensional finite-difference second-order operator 

(seven non-zero diagonals) to a simple three-diagonal 

system. These Fourier-based expansions depend on system 
boundary conditions and can be calculated using FFTs, 

some of which process FFT pre / after / output processing 

(see, for example, [56]). FFT-based expansions are applied 

along with the x and y directions, and the resulting three-

diagonal system along the z is solved using Gaussian 

omission. For CPU calculations, this method uses the FFTW 

library guru interface [57], which allows all possible 

combinations of discrete conversions to be performed using 

the same method. In GPUs, fast discrete cosine and sine 

transform is implemented using real-to-complex / complex-

to-real FFTs from the CUFFT library, with pre-and post-
processing of input and output signals to calculate the 

desired batch expansion [56, 25]. We refer to Refs. [32, 25] 

For details on this method and its implementation. 
 

Due to the parallelization of the method in a distributed 
memory environment, FFT-based transformations and 

Gaussian deletion steps require that the data be localized 

along each direction for each MPI task. The domain is 
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parsed using two-dimensional pencil parsing, in which mass 

communication is required to move around to parse two-
dimensional data. These transitions are performed using the 

2DECOMP & FFT library [58], which has been modified to 

allow GPU-GPU communication in [23, 25]. 
 

It is worth noting that, in line with recent CanS 
developments, the present method uses the default parsing 

(ie, "outside" of Poisson solver) based on partitioning along 

y and z, resulting in x-aligned pencils. This reduces the total 

number of data transitions that take place while solving the 

Poisson equation from 6 to 4. This approach is adopted for 

both the CPU and the GPU, and the operations required to 

solve the Poisson equation are summarized as follows: 

 Perform forward FFT-based conversions along x. 

 x-to-y displacement. 

 Perform FFT-based conversions forward along y. 

 y-to-z transition. 

 Solve the triangular system using Gaussian removal along 

z. 

 Move z-to-y. 

 Perform FFT-based conversions backward along y. 

 Move y-to-x. 

 Perform FFT-based conversions backward along x. 
 

In addition, to implement the GPU, when the domain is 

not parsed along z, the solvent explicitly reduces the number 

of all-to-all operations (for example, when x-y slash parsing 

is allowed). This effectively reduces the number of group 

operations from 4 to 2 (steps 2 and 8 above are ignored). 

This is the approach taken in the GPU implementations 

presented here - due to the higher memory bandwidth in 

GPUs, slab parsing is sufficient for computing distributed 

memory with a wall clock time small enough at each step. 
Explicit ignoring of the two without operation leads to a 

significant reduction in wall clock time at each stage and an 

overall improvement in the scalability of the parallel 

solvent. 
 

F. Complete Solve Algorithm 

For clarity, a step-by-step description of the entire 

solution procedure is presented in Algorithm 1. 

Validation 
The Zalesak problem represents a classical criterion for 

assessing the accuracy of an interface capture / tracking 

algorithm. It involves the rotation of the solid body of a 

slotted disc embedded in a two-dimensional imposed disc. 

Algorithm 1 Overall solution procedure 

1: φ0, T0, u0, p0 are initialized; 

2: ρ0, µ0, k0 and c0
p are calculated using equation (2) from 

φ0; 

3: n = 0 is set, 

4: while (t < ttot k n < Ntot) do 

5: Set n = n + 1 and ∆tn+1; 
6: φn+1 is calculated from equation (11) and (12); 

7: nn+1 and κn+1 are evaluated using the procedure 

described in Appendix A; 

8: ρn+1, µn+1, kn+1 and  is calculated from equation 

(2); 

9: Tn+1 is calculated from Eq. (13); 

10: u∗ is calculated from Eq. (15) and Eq. (16); 

11: ψn+1 is calculated from Eq. (17); 

12: un+1 is calculated from Eq. (18); 13: pn+1 is 

computed from Eq. (19). 

14: end while 

15: End of simulation. 
 

Velocity field u = (0.5 - y, x - 0.5). The disk can be 

easily defined in the Cartesian two-dimensional domain by 

setting the indicator function Hi, j, k
0 equal to 1 in the ΩH 

range below. 

 

 
 

The criterion involves comparing the deformation of 

the solid disk with respect to the initial shape after a 

complete round. The VoF equation in a two-dimensional 

square domain Ω = [0,1] × [0,1], discrete with four different 

grid distances [∆x, ∆y] = [1 / Nx, 1 / Ny] with Nx × Ny = 

[32 × 32.64 × 64.128 × 128.256 × 256]. Periodic boundary 

conditions are imposed in both directions. The simulations 

are performed up to t = 2π (ie a complete slit disk rotation) 

using a constant time step Δt = t / 3200. Note that this value 

is selected to ensure stable temporal integrity for high-

resolution grids (ie 256 × 256) and is used for larger cases. 

Figure 1 shows the final disk shape for different network 

solutions for two resolution parameters βth = 2 and βth = 3. 

Note that the greatest deviation from the original shape is in 

the corner areas, where the areas with the most curvature are 

located. In addition, the weak solution is dependent on the 

value of βth, and the deviations between the different βths 

used are visible only for larger simulations. 
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Fig. 1: Zalesak gap disk deformation after t = 2π for βth = 2 (left) and βth = 3 (right). 

 

Among the several possible setups to study secondary 

breakup of a drop, the three most popular are (i) shock 

tubes, (ii) continuous jets and (iii) free falling droplets. In 

this study, we use the continuous air jet setup. A drop of 

diameter D0 is placed at t = 0 in a flow with a constant 
farfield velocity field, U∞. We define the aerodynamic 

Weber number based on the relative velocity between the 

liquid drop and the gas stream at t = 0, as 
 

𝑤𝑒 =
𝜌𝑔𝑈∞

2𝐷0

𝛾
 

where ρg is the density of the ambient gas and γ is the 

surface tension coefficient at the drop surface. Assuming 

both the liquid and the ambient gas to be incompressible, the 

continuity equation is given by 
 

∇ · u = 0, 
 

where u is the divergence free velocity field. We use a 

volume of fluid method which is essentially a one-fluid 

model for two phase flows. The governing equations for the 

momentum are given by the Navier–Stokes equations 

augmented with surface forces to implicitly account for the 

interfacial boundary conditions of continuity of velocity, 

and normal and tangential stress balance, 
 

𝜌(𝐹) (
𝑑𝑦

𝑑𝑥
+ 𝛻. 𝑢𝑢) = −𝛻𝑝 + 𝛻. (𝜇(𝐹)𝐷) + 𝛾𝑘𝑛𝛿𝑠 

where F is the volume fraction of liquid and takes 

values between 0 and 1, ρ(F) = ρlF + (1 − F)ρg, μ(F) = μlF + 

(1 − F)μg, with ρl, ρg are liquid and gas densities, 

respectively, and μl and μg are liquid and gas viscosities, 

respectively. The deformation rate tensor is given by D = 

(∇u + ∇uT)/2. 
 

The last term in the equation accounts for the surface 

tension force (γ κ, where κ is the local curvature of the 

interface) on the interface embedded in a Eulerian grid and 

marked with the surface Dirac delta function, δs. The 

direction of the force is along the local normal (n) at the 

interface. The surface tension force is modelled as a 
volumetric force using the continuum surface force 

approach owing to Brackbill et al. [42]. The evolution 

equation for the interface is given as an advection equation 

in terms of the volume fraction, F, 
 

𝜕𝐹

𝜕𝑡
+ 𝑢. 𝛻𝐹 = 0 

 

Bag mode (We ≤ 20) 
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Fig. 2: Droplet motion around Weber number 

Bag mode (We ≤ 40) 

 

 
Fig. 3: Droplet motion around Weber number 

 

Bag mode (We ≤ 80) 

 

 
Fig. 4: Droplet motion around Weber number 

 
Bag mode (We ≤ 120) 
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Fig. 5: Droplet motion around Weber number 

 

Finally, to evaluate the accuracy of the answer, we calculate the L1 norm and the convergence sequence as follows: 

 

 

                  (21) 

 

 

 

(22)            

 

 

 
Where L1, N is the error L1 using the network points 

Nx × Ny and L1,2N is the error L1 which is evaluated with 

the points of the network 2Nx × 2Ny. The results are 

reported in Figure 2, where one degree of convergence 

between the first and second order is obtained for φ, almost 

independent of the value used βth. 
 

To show the accuracy of the code in the presence of 

thermal effects, this section considers the airflow in a closed 

2D square heated cavity. The cavity is heated and cooled by 

the vertical side walls (y-normal), while the horizontal walls 

are adiabatic (z-normal). In this configuration, a blood 

circulation is formed and maintained by a hot ascending 

fluid next to the heated wall and a descending cold fluid 

next to the cooled wall. Therefore, the flow is purely 

thermal and is denoted by the rail number Ra =) and the 
Prandtl number Pr = ν / α. 
 

In these definitions, β is the coefficient of thermal 

expansion of the fluid, ν is the viscosity of the fluid, α is the 

thermal diffusion of the fluid, and ∆T = (Th - Tc) is the 

temperature difference between the heated (Th) and cooled 

(Tc) walls. The height of the hole is usually considered as 

the reference length (lr = Lz), while the reference velocity 

and time are ur = α / lr and. The case simulated here follows 

the setting presented in several studies [61, 62, 60] with Ra 

= 106 and Pr = 0.71. The boundaries of the sphere are solid 

walls and the boundary conditions are non-slip. Depending 

on the temperature field, the constant temperature boundary 
conditions are applied to the vertical walls and a zero 

temperature gradient is applied along the normal direction to 

the horizontal walls. 
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Fig. 3: (A) Temperature field contour diagram at t / tr = 0.5 (steady state) for the heated cavity test, (b) temporal evolution of the 

mean Nusselt number of the wall average on the heated wall. Black integrated line, present results. The red dashed line is the 

result of the reference from [60] 
 

The domain is split in space using a uniform Cartesian 

network with 256 ۵ 256 cells. Initially, the cavity air is 

stationary and isothermal at T0 = Tc. A constant time step 

Δt is used to advance the solution in time, which is obtained 

with Δt / tr = 5.0 × 10-7. (Figure 2a)  The contour shows the 

temperature field at t / tr = 0.5 where the point has reached a 

steady state. The temperature field is characterized by thin, 

spatially developing boundary layers alongside thermally 

active vertical walls and a classified area in the central 

region of the cavity. The rate of heat transfer inside the 
cavity is expressed by the Nusselt number, which is defined 

as follows: 
 

Nu = ,     (23) 
 

Where h is the heat transfer coefficient, k is the 

thermal conductivity of the fluid, the temperature gradient in 
each of the vertically thermally active walls, and nw is the 

normal vector of the corresponding unit on the wall. (Figure 

2b) shows a comparison of the temporal evolution of the 

nusselt hNuiz number with the mean wall on the hot wall 

between the current and reference results from [60]. 

Obviously the present results are in excellent agreement 

with the reference solution for the whole simulation period.

 Vmax/ur Wmax/ur Numax Numin <Nu>z 

Ref.[60] 64.85 220.6 17.58 0.9794 8.830 

Present 64.86 220.3 17.67 0.9773 8.843 

%dev 0.02 0.14 0.51 0.21 0.14 

Table 2: Comparison of the values of the key criteria in the steady state for the test case of the cavity with different heating. Vmax 

is the maximum horizontal velocity along the vertical center plate (y = 0. lr), Wmax is the maximum vertical velocity along the 
horizontal middle plate (z = 0.5lr), Numax and Numin are the maximum and minimum Nusselt values Heated on the wall 

 

III. GPU CODE SYNCHRONIZATION AND GPU 

ACCELERATION 
 

A. Domain parsing 

This code is designed to run on multiple CPU and multi 

GPU architectures. For domain analysis, both slabs (1D) and 

pencils (2D) are allowed through the 2DECOMP library 

[58]. The type of parsing can be implicitly configured in a 
dns.in input file by dimming the two-component array (e.g. 

[1, n] for slabs and [n, m] for pencils). The pencil / slab 

direction can be arbitrarily selected, such as CanS, via the 

preprocessor flags -D DECOMP X, -D DECOMP Y and -D 

DECOMP Z, which specify the direction in which the 

amplitude does not decompose. This flexibility improves 

both CPU and GPU performance. For the CPU, the use of a 

pencil makes it possible to increase the number of processes 

used in each run (ie up to N2 for nx = ny = nz = N), thus 

reducing the solving time. In the GPU implementation, only 

z-pencil and x-slabs decomposition is allowed. It is 
recommended to use x-slabs in the GPU (ie compile with -D 

DECOMP X and use dims = [1, n]) because this 

implementation minimizes the number of all-round calls and 

thus the GPU- Reduces the GPU and improves performance 

in multi-node executables. 
 

B. Code parallelization 

Paralleling is done using MPI. When GPU acceleration 

is enabled, the MPI assigns a rating to each GPU. This code 

assumes that the MPI library is optionally "CUDA-aware", 
meaning that the GPU data is transmitted directly to the MPI 

function call, and the MPI implementation takes care of data 

transfer in the most efficient way. The most efficient way, if 

any, is to connect the GPU to the GPU using NVIDIA 

NVLink, which is a physical GPU-to-GPU connection that 

has a higher bandwidth (at least once as large) than 

Infiniband. Across code, all nested loops, that is, iterations 

across domains, use OpenACC [63], a standard portable 

instruction-based programming model that can execute code 

on multi-core CPUs as well as accelerators such as NVIDIA 

GPUs Run. Such a drain is not used to compile and execute 
only the CPU. To run FluTAS, the platform requires support 
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for NVIDIA integrated memory, which has two main 

advantages:  

 The ability to allocate and manage allocated GPU memory 

more than is physically present on the device; 

 Ability to avoid explicit management of Host-to-Device 

and Device-to-Host data transfer, which makes runtime 

work for developers. 
 

Both features are used in code and have been proven to 

be critical to efficient GPU acceleration. 
 

C. Code performance 
We now present an analysis of code performance in 

standard CPU-based and accelerated GPU-based 

architectures. GPU tests were performed on MeluXina at 

LuxProvide (LXP, Luxembourg) [64] and Berzelius at the 

National Supercomputer Center (NSC, Sweden) [65], while 

tests on CPUs on Tetralith were also performed by the NSC. 
 

D. Poor and strong scaling 

We first discuss the poor scaling tests for the Rayleigh-

B'enard problem with the same configuration as will be 

discussed in .27.2. For this experiment, we start with a 

"base" computing grid Nx × Ny × Nz = 1024 × 512 × 256 

grid points on 2 GPUs. Then, while keeping Nx and Ny 

constant, we increase Nz in proportion to the number of 

GPUs, similar to the method of the spatial group average (ie, 

more simulated structures to improve the convergence of 
large-scale statistics). As discussed in §5, we compile a slab 

parallelism along the z-direction using the -D DECOMP X 

option, which reduces the number of all-in-one operations to 

two. It is worth noting that although both HPCs are 

equipped with NVIDIA A100-40GB cards, the Berzelius 

has 8 GPU / node while the MeluXina has 4 GPU / node. In 
addition, the connection between GPUs is done through 

NVLink, while the node-to-node connection is done through 

Infiniband (IB), which is known for having less bandwidth 

and operating on different protocols. Hence, IB management 

is not easy because it requires more precise configuration 

from a hardware and software perspective. 
 

This requires selecting the appropriate MPI settings 

and selecting compatible communication libraries, resulting 

in performance that may vary significantly across HPCs. For 

these reasons, Berzelius was used to perform low-scale tests 

on a node to prove IB-independent scaling and to maximize 

GPU-to-GPU connectivity. MeluXina, on the other hand, 

was used for multi-node tests to evaluate IB-dependent 

scaling. (Figure 3a )shows that the weak scale is linear when 

constrained by NVLink communications (ie without IB 
communications), as clearly supported by Berzelius 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: For the Rayleigh-B'enard two-layer convection problem discussed in .27.2: a) Code performance in MeluXina and 

Berzelius, b) Speed reduction due to transfer operation. For each data set, we compute tw, min as the time in the time step in the 

minimum number of GPUs tested in tw, that is, the time at any given time in a given number of GPUs. 
 

When IB communications are required (ie, data 

transfer from node to node), code performance is reduced. It 

is worth noting that, while an increasing communication 

overhead is provided by node-to-node communication in the 

IB network, the reduction in additional velocity is caused by 

slab parallelism. As the number of elements along the z 

increases, more data must be transmitted during the x-to-z 

shift, and the communication load increases more. This is 

clearly shown in( Figure 3b, where the deceleration 
increases with the number of GPUs. Strong scaling test 

results are reported in (Figure 4). Here we use two different 

networks, 1024 × 512 × 1024 (network-1) and 1024 × 1024 

× 1024 × 1024 (network-2) for the Rayleigh-B'enard 

problem under discussion. In §7.2. Experiments are 

performed on Meluxina and Berzelius for poor 

massification. By keeping the size of the problem constant, 

the number of GPUs gradually increases to a maximum of 

128, from NGPU = 16, which indicates the minimum value 

required to accommodate the two computing domains in the 

existing GPU memory. 
 

Despite the ever-increasing speed, the code shows a 

gradual reduction in performance, that is, a reduction in the 

benefits of increasing the number of GPUs. Note, however, 

that more network points (eg Grid-2) will result in less 

performance, as higher GPU occupancy can be achieved. 
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The decrease in performance observed in Figure 7 is due to 

two factors: an increase in communication between GPUs 
and a decrease in the size of the local problem, which does 

not affect the full computing capacity of each GPU. While 

these effects are present in a strong scaling test, a weak scale 

allows us to isolate the effects of multi-GPU 

communications while maintaining higher GPU saturation. 

Therefore, we argue that poor scale is a better tool for 

identifying communication bottlenecks across multiple 

GPUs. Conversely, robust scaling is more useful for 

estimating the degree of segmentation of a fixed domain 

while maintaining efficient use of computational resources. 

In general, the previous analysis suggests an important 

guideline for the user: in the presence of computational 
architectures versus an unbalanced network (e.g., a more 

efficient node-to-network network connection than a GPU 

connection in the same node), the optimal number of GPUs 

To be used, it should be selected as close as possible to the 

minimum value required to fit the computational range in 

the existing GPU memory. 
 

In fact, this is not always the case with older HPC 

architectures that use previous generations of GPU 

hardware, where NVLink connections between GPUs within 

a node usually did not exist. For a fixed problem size, 
modern cards with high computing power complete the 

required computations faster, leaving the remainder of the 

computation as limited communication. In older GPUs, 

acceleration is slower and communication becomes the 

dominant component, affecting the scalability of more 

GPUs. Hence, the best practice is to use as few GPUs as 

possible. On modern units with 80GB of HBM memory, it is 

convenient to use an 8-way GPU node (such as the DGX 

A100) where possible, where all GPUs are also connected 

via NVLink, significantly reducing communication costs 

Gives. 

 

 
Fig. 5: Strong scaling experiment was performed on Berzelius (black dashed lines) and MeluXina (red dashed lines) clusters for 

two different networks: 1024 × 512 × 1024 (network-1) and 1024 × 1024 × 1024 × gr-24. The continuous black line indicates the 

ideal behavior desired for the robust scaling test 
 

IV. CPU-GPU COMPARISON 
 

As a result, we make a comparison between the code 

performance of a CPU and a GPU architecture. It is worth 

noting that such a comparison is not obvious. First, no 

precise and standard method has been developed to compare 

the two systems. Next, code performance may show large 

variations between different architectures, and using a 

hybrid CPU-GPU node to perform experiments on both can 

be misleading. CPU-only nodes and CPU-GPU nodes are 
inherently different in terms of network configuration and 

GPU / CPU connectivity, so neutral testing may not be 

performed directly on hybrid architectures (because the 

CPU-GPU cluster is difficult to run on CPU only Used 

jobs). 
 

Therefore, the following analysis should be considered 

as the first approximate estimate. Here we repeat the weak 

scale simulation with nGPU = 8 GPU in Berzelius at nCPU 

= 512 CPU in Tetralith, in both cases we use slab 

parallelism along z. Experiments show that for GPUs the 

average wall clock time per step t8 is GPU = 0.191 seconds, 

while for CPU t512, CPU = 1.075 seconds. This results in 
an equivalent number of GPUs of neq = (t512, CPUnCPU) / 

(t8,GPUnGPU) ≈ 359. 
 

Finally, a comparison in terms of computational load 

percentage for each piece of code is shown in Figure 5. As 
previously predicted, the displacements during the GPU 

simulation (panel a) represent more than half of the 

computational load. The remaining sections consist mainly 

of loop-bound stencil operations, largely utilizing GPU-

offload, while CPUs (panel b) account for more than 70% of 

the total wall clock time at each time stage.
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Fig. 6: Comparison of the percentage of code load in the total simulation time for GPU (panel a) and CPU (panel b). Different 

"slices" represent different pieces of code: 1) VoF (ie, interface reconstruction and advection, upgrade of thermophysical 

properties), 2) RHS (ie, discretization of governing equations), 3) displacement (ie, solver displacement operation), 4) solution (Ie 

Gaussian deletion only) and other items (ie correction step, divergence / time step checks, output and post-processing procedures). 
 

 

 

 

V. CONCLUSIONS AND MORE PROGRESS 
 

We provide the FluTAS code, a numerical framework 

for direct numerical simulations of multiphase currents with 

the option of heat transfer, which can be effectively 

implemented on standard CPU-based architectures and 

GPU-based accelerator machines. The open source version, 

released under the MIT license, includes a pressure 

correction algorithm for two-phase flows developed by the 

fluid volume algebra method (MTHINC) to record interface 

dynamics. 
 

Here we provide a description of the numerical 

algorithm used with details of solving governing equations 

and interface advection. After presenting different validation 

criteria in single-phase and multi-phase configurations, we 

discuss code performance with a focus on two aspects: Has 

a knot, ii. Its advantages over the CPU in terms of "time to 
dissolution" Finally, we report the results of two 

configurations of fundamental benefits in multiphase 

turbulence: emulsions in homogeneous isotropic turbulence 

and rail-binard double layer convection. In the future, our 

goal is to improve the ability to store and carry code (both 

on the CPU and GPU) and to release additional modules 

under development, for example. Poor compressibility and 

phase change [43, 44]. Further efforts will be made to 

improve code performance across multiple GPU nodes, 

reducing current communication bottlenecks. To this end, it 

is a promising strategy proposed in [73], that is, it 

implements a triangular system solution for the third 
direction on distributed memory. The main advantage of this 

approach is the elimination of all-in-one operations in the 

Poisson solver. This development, together with future 

advances in software frameworks for mass data 

communications, will make it possible to address several 

multi-step problems while maintaining efficient use of 

computational resources. 
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