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Abstract:- In this article, we studied the transient stability 

for a system composed asynchronous generators and 

synchronous connecting to a power network infinite using 

the method of Lyapunov. The idea is researching the 

possibility of using the Hamiltonian energy function as a 

Lyapunov function one by one for our generators. After 

having verified the three criteria of Lyapunov's method, 

we have the possibility for using Hamiltonian energy as a 

Lyapunov function.   According to the results of the 

simulations on matlab software plus these three criteria, 

we could affirm that the two machines as well as the 

complete system, synchronous generator with 

asynchronous generator connected to a SMIB network are 

stable in the sense of Lyapunov. In addition, the simulation 

results show us that all the saddle knots point are on the 

positive side of the axis, except one which is on the negative 

side; the latter situation is due to the absence of the wind 

(case of an asynchronous generator driven by a wind 

turbine).   

 

Keywords:- Transient Stability, Hamiltonian Energy, Wind, 

Lyapunov Function. 

 

I. INTRODUCTION 
 

One of the most important problem when studying an 

Electric Power Grid (R.E.E) complex is a stability. This is due 

to the significant development of networks in recent years. 

Thus, the objective of this study is to examine the behavior for 

a system composed of a small power synchronous generator 
driven by a motor, and a high-power asynchronous generator 

driven by a wind turbine; these two generators are connected 

to an infinite power network (SMIB) and subjected to weak or 

significant disturbances. Continuous load variations are 

examples of small disturbances, faults such as short circuits 

and loss of synchronism to the high-power generator are 

examples of large disturbances. These disturbances are at the 

origin of the appearance of a difference between mechanical 

power (production) and electrical power (consumption). This 

gap must be absorbed in the form of energy. The presence of 

this gap in terms of power results in change in the rotational 

speed of the alternator or, in other words, in variations in its 

speed around the synchronous speed. After elimination of the 

disturbance, the network will be stable if the average value of 

the speed differences is zero. In this case, the network 

continues to operate in satisfying its operating limits and 

supplying consumers. In this work, we propose to study the 

stability based on the Lyapunov function for each of the 

generators, then the complete system. In this case the 

Hamiltonian energy is used as a Lyapunov function. Figure 1 
shows the complete study system. 

 

 
Fig 1: Representation of the complete system 

 

II. DETERMINATION OF HAMILTONIAN 

FUNCTION 
 

The determination of a Hamilton function is a necessary 

phase for the transient stability study because it represents an 

energy function for system studied. This energy is a quadratic 
scalar function. Moreover, Lyapunov's theory is essentially 

based on the existence of a scalar function (Lyapunov energy) 

which establishes sufficient stability of the function with the 

conditions of the dynamic system in question. In addition, the 

properties of the Lyapunov function and its derivative provide 

auxiliary information about the region of attraction from 

equilibrium point [1,2] 

 

A. Hamiltonian function of synchronous generator 

The equation of state with a synchronous generator is 

given by relations (1). With some assumptions, the 
synchronous generator provided with a voltage regulator can 

be modeled by the following differential equations [3]: 
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Consider the third equation of our system; as the 

variation of the mechanical phenomenon is very slow 

compared to that of the electrical phenomenon, we can assume 

that:
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'

qE  the second equation of our system by its 
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The Hamiltonian system given by (6) constitute a very 

important class of differential equations whose Hamiltonian H 
is always a first integral (i.e., is a constant along solutions) [4] 

as shown in Figure’s phase plan. We can pose: 
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Where Hm1 is the Hamiltonian function. 

Therefore, 
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The simulation (8) allows for the phase diagram given in 

Figure 2. 

 

 
Fig 2: The phase portrait for the synchronous generator 

 

By successive integrations of the second term (8), we 

finally expression of the Hamilton function as follows: 
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This function has the dimension of energy. Indeed, the 

first term (
𝑇𝑚𝛿

2𝐻
) represents the energy expended by the 

mechanical torque of the system, the second term 
𝑣𝑡2𝑐𝑜𝑠𝛿

2𝐻𝑋𝑑
′ +

𝑣𝑡2𝑐𝑜𝑠2𝛿

2𝐻𝑋𝑑
′   is the potential energy, and the third term 

𝐷𝜔2

4𝐻
 is the 

kinetic energy. Figure 3 shows the Hamiltonian energy level 

curves of synchronous generator. 
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Fig 3: Curve to the energy level for the synchronous 

generator 

 
By simulating the Lyapunov function for different 

initial conditions for (, ), we obtain the curves of the speed 

relative to the position  . Clearly some curves exhibit a 

circular path and curl around a periodic trajectory. This 

system therefore has attractive points of equilibrium, point A 

(1.75, 0) is an example; it is also the saddle knot point. In 

addition, there is a closed orbit which is attractive: this is 

called a limit cycle [5]. 

 

B. Determination a critical point of the synchronous 

generator 

By definition, the critical points are the points where the 

derivatives are zero [6,7, 8, 9, 10, 11]. In our case, we have: 
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The first expressions (8) and (10) gives that: 0  . 

Therefore, the second expressions of (8) and (10) are 

equivalent to: 

 
2 2

' '

sin sin 2
0t t

m

d d

v v
T

x x

 
                         (11) 

 

For a small angle δ, sin δ = δ;  

2

sin 2 2 1
2


 

 
  

 
. 
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Cardan's method solves all third-degree equations. This 

method makes it possible to set up formulas called Cardan 
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C. Search the Lyapunov function for the synchronous 

generator 
Lyapunov functions are a mathematical generalization 

of the concept of dispersive energy physics. The Lyapunov 

functions are the centerpiece stability theory of Lyapunov for 

dynamic systems in general.  Here, we present a simple 

method to check the validity of a quadratic Lyapunov 

function that is built for the linearization of a nonlinear 

system [16]. Since the function in question is based on a 

function of energy, we will then see if the Hamilton function 

can meet the conditions of stability in the sense of Lyapunov. 

The stability conditions within the meaning of Lyapunov 

[6,13,14,15] are: 

 
The thirst condition: V (xs) = 0, xs being the equilibrium point 

The second condition: V (x) > 0, Lyapunov function 

 

The third condition: 
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For    infinitely small: 
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As we have seen that the Hamiltonian energy function 

is always positive, these three conditions met and enable us 

to say that we can determine the Lyapunov function from a 

Hamiltonian function and also confirm that our system is 

stable in the Lyapunov senses.  

 

D. Hamiltonian function of asynchronous generator 

For this type of generator, the state equations can be 

written as follows: 
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The principles of the calculations are the same as before, 

but for the determination of the Lyapunov function, we adopt 
the real case, that is to say that there is a friction torque when 

a machine is subjected to a load. Let us denote by: 
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To simplify the calculations, let's set: 
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The system of our state equation reduces to: 
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As the variation of mechanical phenomenon is very 

slow compared to that of the electric phenomenon, we can ask 

that 

'

0mdE

dt
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For large values of η4, the internal voltage E (t) is 

primarily determined by the ratio η1 / η4. According to [17], 

for typical parameter values of wind turbines in the range 500 
kilowatts to 1 MW, the values of η4 are in the range [11.1 

28.9 It is recalled that η1 is linearly proportional to the 

terminal voltage of the asynchronous generator. It can be 

concluded that the variations of E (t) follow closely the 

variations in terminal voltage [2]. 

We then have: 
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Let us carry the relation (18) in the first two equations 

of our system: 
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By analogy of Hamilton function: 
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The corresponding curves are given according to figures 

4-a and 4-b. 
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(a)                                                                            (b) 

 

Fig 4: Phase portrait of GAS from Hamiltonian method in plan (a) and in the space (b)

The expression of the Hamilton function will be 

determined by successive integrations and we finally have the 

following relation 
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where H0, the value of energy at the instant φ0 and ω0 

 
Fig 5: Curve to the energy level for the asynchronous 

generator 

 

The graph in Figure 5 shows trajectories in the phase 

plane, that is to say, the Cartesian plane whose coordinate 

axes are  and m   . Some trajectories revolve around (0, 

0) while remaining in a bounded region of the plane ( m , 
); this region is also called the region of attraction. Outside 

this domain, the curves present limit values, i.e., each present 

a minimum value for  positive and a maximum value for  

negative. In this figure, point B (-3.15, 0) represents a saddle 

knot point. 

 

 

E. Determination a critical point for asynchronous 

generator 
As for the synchronous generator, the critical points are 

determined by: 
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These relationships allow us to write: 
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After having linearized the sine and tangent functions, these 

equations reduce to: 
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By applying Cardan's method for this equation, we have 

the three values 1 2 3,  et    , and for the critical points of the 

asynchronous generator. 

 

F. Stability Lyapunov for asynchronous generator 

The three Lyapunov stability conditions must be checked. 

For this it is necessary that: 
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In the case of a real machine, the study is very complex, 

which requires us to conduct numerical solutions of problems 

[2]. For this, we assume that Da = 1. Then equation (30) will 

be written as follows:  
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Finally, we can say that our machine is therefore stable 
in the sense of Lyapunov. 

 

G. Hamiltonian function of the system composed with a 

synchronous and asynchronous generator 

For our system consisting of a synchronous and 

asynchronous generator which have been coupled to a infinite 

network, Hamilton function is determined by the sum of the 

two generators Hamilton were considered and discussed 

above, which ultimately gives us the following expression: 
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              (35) 

 
 

Figures 6 and 7 show the energy level curves of the GAS 

versus the internal angle of the GS, respectively and the 

energy level curves of the GS versus the internal angle of the 

GAS 

 

 
Fig 6: Curve to the energy level of the asynchronous 

generator versus the angle of the synchronous generator 

 

 
Fig 7: Curve to the energy level of the synchronous 

generator versus the angle of the asynchronous generator 

 

The function derived from our energy is: 

1 2es m mdH dH dH

dt dt dt
                                         (36) 

 

Or: 1 0mdH

dt
  et  2 0mdH

dt
  

 

so we have: 

1 2 0es m mdH dH dH

dt dt dt
                                     (37) 

 

Since the derivative of our function is non-zero, we need 

to compute the Hessian matrix to find the extremes. 
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The eigenvalues of this matrix are calculated from the 

following determinant: 

2 2

1' '

3 1
2

4

3

4

cos cos 2
0 0 0

( ) 0 cos 2 0 0

0 0 0

0 0 0

t t

d d

e

a

v v

x x

dét H I

D

D

 


 
  







  
   

  
 

   
 
 
 

  

     

                                     (39) 

 

Analysis of this key assures us that all eigenvalues are 

positive, which allows us to say that our function has a 

minimum. 

 

H. Results interpretation 

Equations (8) and (23) physically represent the total 
energy of the synchronous respectively asynchronous 

generator.  Since the Hamiltonian does not explicitly depend 

on time, it constitutes a constant of movements. It represents 

the dynamic behavior of our system. In the case of figures (2, 

3, 4, 5, 6, 7), the contour lines for each energy are presented 

so that the potential and kinetic energies vary inversely in 

proportion: when one is maximum, the other is minimal. For 

the case of Figures 3 and 5, the respective points A and B, the 

potential energy is maximum and the kinetic energy is zero. 

These points represent the saddle knot points. In figures (3, 6, 

7), the saddle knot points are on the positive side of the axis, 

unlike their position in figure 5, this is due to the absence of 
wind, that is to say – it’s means instead of producing, the 

asynchronous generator consumes energy. Given the nature 

of our Hamiltonian, it represents the total energy of the 

system. For sufficient values of this energy, the trajectory of 

the system in the state space (δ; ) is a closed curve to thus 

translate a stable system and, otherwise, the level lines 

diverge. 

 

III. CONCLUSION 

 

To conclude, the study for the stability to a system 

composed of asynchronous and synchronous generators 

connected together with an infinite network is very complex. 
Its realization for a multi-machine electrical system is an 

important phase in ensuring the proper functioning of a 

network. Such a system requires the determination of the 

energy function to better explain its behavior. In the present 

work, the choice is pointed at the Hamilton function as an 

energy function. In the present case, the energy function taken 

from the state equation of the system can be used as a 

Lyapunov function. The Hamiltonian function for the 

synchronous generator, and then that of the asynchronous 

generator. On the basis of these two functions, it has been 

shown that they meet the criteria of Lyapunov functions for 
the GS, for the GAS and finally for the synchronous 

generator-asynchronous system connected to the SMIB. The 

stability Lyapunov are verified which shows the reliability of 

the emitted proposal. 
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