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Abstract:- Basically, Morley's Theorem gives the trisector 

of the angles in all three angles at any ∆ABC so that from 

the points of intersection, three points have obtained that 

form an equilateral triangle. But, if the angle trisector is 

given only at two angles, then an equilateral triangle 

cannot be formed, either using an inner angle trisector, 

an outer angle trisector, or a supplementary angle 

trisector. Based on these problems, it will be shown that 

by providing an inner angle trisector or an outer angle 

trisector at both non-right angles of any right triangle 

ABC an equilateral triangle can be formed. But by 

providing the supplementary angle trisector at a non-

right angle, it will form a rhombus. 
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I. INTRODUCTION 

 

An angle trisector is two lines that divide an angle into 

three equal parts. One theorem that immediately comes to 

mind when discussing angle trisectors is Morley's Theorem 

[1]. Basically, Morley's Theorem gives the trisector of the 

interior angle of any triangle. From the points of intersection, 

three points are obtained that form an equilateral triangle. 

This equilateral triangle became known as the Morley 
Triangle. 

 

 
Fig 1 Equilateral Triangle with Inner Angle Trisector 

 

Since its preface, Morley's Theorem has attracted the 

attention of researchers so many articles have been produced 

that discuss it, both for proof and development. Based on the 

type of angle trisector, there are three fairly easy ways to 

form an equilateral triangle. The first is an equilateral triangle 

formed using an inner angle trisector at all three angles at any 

∆ABC. This is the basis of Morley's Theorem. See Figure 1. 

 
The second is an equilateral triangle formed by giving 

the outer angle trisector all three angles at any ∆ABC [2]. 

From the extension of the outer corner trisector lines, three 

points of intersection are obtained which will form an 

equilateral triangle. See Figure 2. 

 

 
Fig 2 Equilateral Triangle with Outer Angle Trisector 

 

The last one is an equilateral triangle which is formed 

by giving the supplementary angle trisector at all three angles 

of any triangle [3]. By giving the supplementary angle 

trisector at each angle, three intersection points have been 

obtained that form an equilateral triangle. See Figure 3. 

 

 
Fig 3 Equilateral Triangle with Supplementary Angle 

Trisector 
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By three formations of equilateral triangles above, they 

have one thing in common, that is, the three types of angle 

trisectors are given at the three angles of any triangle. 

However, if the angle trisector is given only at two angles 

then an equilateral triangle cannot be formed. Based on this, 

this article discusses the inner angle trisector, the outer angle 

trisector, and the supplementary angle trisector in a right 

triangle with each angle trisector given only two non-right 
angles. 

 

II. LITERATURE REVIEW 

 

Before entering the discussion, it is important to 

understand about the inner angle trisector, outer angle 

trisector, supplementary angle trisector, and several other 

basics first. 

 

A. Inner Angle Trisector 

Given any ∆ABC with BC=a, AC=b, ∠BAC = 3α, ∠ABC 

= 3β, and ∠BCA = 3γ. In ∆ABC there are ∠BAC facing to a, 

∠ABC facing to b, and ∠BCA facing to c. These three angles 

are called the interior angles of a triangle [4]. If the angle 

trisector is given to ∠BAC, it will divide ∠BAC into three 

equal parts, that is α. This angle trisector is then called the 

inner angle trisector. The inner angle trisector on ∠BAC is 

denoted by Ti1∠A and Ti2∠A in clockwise notation order. See 

Figure 4 below. 
 

 
Fig 4 Inner Angle Trisector on ∠BAC 

 

B. Outer Angle Trisector 
In addition to the interior angle, there is also an 

explementary angle [2]. An explementary angle is an angle 

that completes the inside angle to make one complete rotation. 

For example, on ∆ABC with one of the interior angles, that is 

∠BAC = 3α, then there is an explementary angle with an angle 

of 360° - 3α. If the explementary angle is given an angle 

trisector then this angle trisector will divide the explementary 

angle BAC into three equal sizes, that is 120° - α. This angle 

trisector became known as the outer angle trisector. In this 

article, the outer angle trisector on ∠BAC will be denoted by 

To1∠A and To2∠A. See Figure 5. 

 

 
Fig 5 Outer Angle Trisector at ∠BAC 

 

Furthermore, if the outer angle trisector at ∠BAC is 

extended through point A then it will form an angle of 60° – 

2α concerning the nearest side ∆ABC, as shown in Figure 6. 

 

 
Fig 6 Extension of the Outer Angle Trisector at ∠BAC 

 

C. Supplementary Angle Trisector 

In addition to the interior and explementary angles, there 

are also exterior angles or supplementary angles [3]. A 

supplementary angle is an angle that completes an angle to 

form a half-turn angle or 180°. At ∆ABC with ∠BAC = 3α, 

side BA is extended through point A and stops at a point 

(namely point P). Then the CA side is also extended through 

point A and stops at a point (namely point Q). Because BP and 

CQ intersect at A, ∠CAP and ∠BAQ have the same angles 

(vertical angles). These two angles are called supplementary 

angles. Because ∠CAP and ∠BAQ are supplementary angles, 

they have an angle measure of 180° – 3α. If an angle trisector 

is given to these two angles, then this angle trisector will 

divide the angles into three equal parts, that is 60° – α. This 

angle trisector is known as the supplementary angle trisector. 

In this article, the supplementary angle trisector at ∠BAC will 

be denoted by Ts1∠A and Ts2∠A. This can be seen in the 

following figure. 
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Fig 7 Supplementary Angle Trisector at ∠BAC 

 

D. Sine Rule 

In any ∆ABC with BC = a, AC = b, AB = c, ∠BAC = α, 

∠ABC = β, and ∠BCA = γ we can form the circumcircle. Each 

side and angle leading to it has the same ratio, which is twice 

the radius of the circumcircle ∆ABC (2R). This has been 

stated in the following theorem [5-7]. 

 

 Ttheorem 2.1. (Sine Rule) Suppose a, b, and c are side 
lengths on ∆ABC, then 

 

R
cba

2
sinsinsin




 

 

 
Fig 8 Sine Rule 

Proof. See [5-7] 

 

E. Morley’s Theorem 

In the previous discussion, it can be seen that the inner 

angle trisector is given to ∠BAC. Furthermore, by giving the 

inner angle trisector on ∠BAC, ∠ABC, and ∠BCA three 

intersection points are obtained which produce an equilateral 

triangle. This condition is mentioned in a theorem, namely 

Morley's Theorem [3]. Here's the theorem. 
 

 Theorem 2.1. (Morley’s Theorem) In any triangle the 

trisectors of its angles, proximal to the three sides 

respectively, meet at the vertices of an equilateral. 

 

 
Fig 9 Morley’s Theorem 

 

 Proof. Various proof methods can be seen in [18–31], so 

that the side length ∆DEF = 8R sin (α) sin (β) sin (γ) is 

obtained. 

 

III. EQUILATERAL TRIANGLE WITH THE 

INNER AND OUTER TRISECTORS IN A RIGHT 

TRIANGLE 

 

Suppose a ∆ABC with BC = a, AC = b, AB = c, ∠BAC 

= 3α, ∠ABC = 90°, and ∠BCA = 3γ. Because ∠BAC + ∠ABC 

+ ∠BCA = 180° we get ∠BCA = 3(30° – α) or γ = 30° – α. By 

giving the inner angle trisector and outer angle trisector on 

∠BCA, the inner angle trisector is 30° – α, the outer angle 
trisector is 90° + α, and the angle formed by the extension of 

the outer angle trisector with side AC or BC that is 2α. This 

can be seen in the Figure 10. 

 

 
Fig 10 Inner Angle Trisector at ∠BCA 
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Fig 11 Outer Angle Trisector at ∠BCA 

 

Furthermore, by applying the inner angle trisector to 

∠BAC and ∠BCA, the first equilateral triangle is obtained. 

Here's the theorem. 

 

 Theorem 3.1. On ∆ABC with right angles at B, given the 

inner angle trisectors at A (Ti1∠A and Ti2∠A) and C 

(Ti1∠C and Ti2∠C). Ti1∠A and Ti2∠C intersect at D, 

Ti2∠A and BC intersect at E, Ti1∠C and BA intersect at F. 

Points D, E, and F form an equilateral. 

 

 
Fig 12 Equilateral Triangle with Inner Angle Trisectors at A 

and C 

 

 Proof. The proof is done by showing two things, there are 

ED = EF and FD = FE. Based on the inner angle trisector 

discussed earlier, we have ∠DAC = α and ∠DCA = 30° – 

α, so we get ∠ADC = 150°. By using the sine rule on 

∆ADC is obtained 

 

AD = 2b sin(30° – α)                                                            (1) 

 
Furthermore, by paying attention to ∆AFC, because 

∠FAC = 3α and ∠FCA = 2(30° – α) it is easy to obtain ∠AFC 

= 120° – α. By using the sine rule is obtained 

 

AF = 2b sin(30° – α)                                                             (2) 

From equations (1) and (2) it can be seen that AD = AF. 

Next, by paying attention to ∆ADE and ∆AFE we have AD = 

AF, ∠DAE = ∠DAF, AE = AE so that based on the 

congruence of the side-angle-side, we get that ∆ADE ≅ 

∆AFE. Since the two triangles are congruent, ED = EF. 

 

By doing the same for ∆ADC and ∆AEC we get 
 

CD = 2b sin α                                                             (3) 

 

CE = 2b sin α                                                                        (4) 

 

From equations (3) and (4) it can be seen that CD = CE. 

Next, by paying attention to ∆CEF and ∆CDF, we have CE = 

CD, ∠ECF = ∠DCF, CF = CF so that based on the 

congruence of the side-angle-side, it is obtained that ∆CEF ≅ 

∆CDF. Since the two triangles are congruent, then FD = FE. 
With two conditions fulfilled (ED = EF and FD = FE), then 

∆DEF is an equilateral triangle. Thus, Theorem 3.1 is proven. 

 
 

Furthermore, the second equilateral triangle is obtained 

by giving the outer angle trisectors to ∠BAC and ∠BCA. This 

can be seen in the following theorem. 

 

 Theorem 3.2. On ∆ABC with the right angle at B, given 

the outer angle trisectors at A (To1∠A and To2∠A) and C 

(To1∠C  and To2∠C). To2∠A and To1∠C  intersect at D, 

To1∠A and BC side extensions intersect at E, To2∠C and 

BA side extensions intersect at F. Points D, E, and F form 

an equilateral. 

 

 Proof. The proof is done by showing two things, there are 

ED = EF and FD = FE. Based on the outer angle trisector 

discussed earlier, we have ∠DAC = 60° + α and ∠DCA = 

90° – α, so we can easily obtain ∠ADC = 30°. By using 

the sine rule on ∆ADC is obtained 

 

AD = 2b cos α                                                                      (5) 

 

 
Fig 13 Equilateral Triangle with Outer Angle Trisectors at A 

and C 
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Furthermore, by paying attention to ∆AFC, because 

∠FAC = 180° – 3α and ∠FCA = 2α, it is easy to obtain ∠AFC 

= α. By using the sine rule is obtained 

 

AF = 2b cos α                                                              (6) 

 

From equations (5) and (6) it can be seen that AD = AF. 

Next, by paying attention to ∆ADE and ∆AFE we get AD = 

AF, ∠DAE = ∠FAE, AE = AE so that based on the 

congruence of the side-angle-side, we get that ∆ADE ≅ 

∆AFE. Since the two triangles are congruent, so ED = EF. 

  

By doing the same for ∆ADC and ∆AEC we get 

 

CD = 2b cos (30° – α)                                                 (7) 

 

CE = 2b cos(30° – α)                                                 (8) 

 
From equations (7) and (8) it can be seen that CD = CE. 

Next, by paying attention to ∆CEF and ∆CDF, CE = CD, 

∠ECF = ∠DCF, CF = CF so that based on the congruence of 

the side-angle-side, it is obtained that ∆CEF ≅ ∆CDF. Since 

the two triangles are congruent, then FD = FE. With two 

conditions fulfilled (ED = EF and FD = FE), then ∆DEF is 

an equilateral triangle. Thus, Theorem 3.2 is proven.  

 

IV. ROMBUS WITH THE SUPPLEMENTARY 

TRISECTOR IN A RIGHT TRIANGLE 

 

In the previous discussion, we discussed the angle 

trisector at ∠BAC in any triangle. Furthermore, on ∆ABC 

with a right angle at B, a supplementary angle trisector is 

formed on ∠BCA which divides the supplementary angle into 

three equal parts, that is 30° + α. This supplementary angle 

trisector is denoted by Ts1∠C and Ts2∠C. By giving the 

supplementary angle trisector at A and C, an equilateral 

triangle cannot be formed. However, from this supplementary 

angle trisector produces points that form a rhombus. This can 

be seen in the following theorem. 

 

 Theorem 4.1. On ∆ABC with right angles at B, given 

trisectors with right angles at A (Ts1∠A dan Ts2∠A) and 

at C (Ts1∠C dan Ts2∠C). Ts1∠A and Ts1∠C intersect at 

D, Ts2∠A and Ts2∠C intersect at E. Points A, C, E, and D 

form a rhombus. 

 

 
Fig 14 Rhombus with Angle Trisector at A and C 

Proof. The proof is done by showing two things, there 

are AC = CE = ED = DA and the opposite angles are equal. 

At ∆ACF, based on the supplementary angle trisector 

discussed earlier, we have obtained ∠CAF = 60° – α and 

∠ACF = 30° + α then obtained ∠AFC = 90°. Because AE is a 

straight line, ∠EFC = ∠AFC = 90°. By paying attention to 

∆AFC and ∆EFC we get ∠AFC = ∠EFC, CF = CF, and 

∠ACF = ∠ECF so that based on the congruence of the angle-

side-angle we get ∆AFC ≅ ∆EFC. Since the two triangles are 

congruent then AC = CE and AF = EF. In the same way on 

∆CFA and ∆DFA also obtained AC = DA and CF = DF. 

 

Furthermore, by considering ∆AFC and ∆EFD, ∠AFC 

and ∠EFD are vertical angles so that ∠AFC = ∠EFD. 

Because AF = EF, ∠AFC = ∠EFD, and CF = DF, based on 

the congruence of the side-angle-side, we get ∆AFC ≅ 

∆EFD. Since the two triangles are congruent then ED = AC. 

Since AC = CE = ED = DA, the first condition is satisfied. 

 

Previously we obtained ∆AFC ≅ ∆EFC so that ∠CAF = 

∠CEF. For the same reasons, ∠DAF = ∠DEF, so ∠CAF = 

∠DAF = ∠CEF + ∠DEF, or in other words ∠CAD = ∠CED. 

In the same way, ∠ACE = ∠ADE is also obtained, so that the 

second condition is fulfilled. With both conditions fulfilled, 

the quadrilateral ACED is a rhombus, and Theorem 4.1 is 

proven.  

 

V. CONCLUTION 

 
On Morley's Theorem, an equilateral triangle can be 

formed by giving each angle trisector at all three angles of 

any triangle. If an equilateral triangle cannot be formed by 

giving each angle trisector at only two angles of any triangle, 

then by giving an inner angle trisector and an outer angle 

trisector to any right triangle, an equilateral triangle still can 

be formed. Slightly different for the supplementary angle 

trisector, from the points of intersection a rhombus can be 

formed. 
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