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Abstract:  In this paper, we discuss the structure and 

implementations of the planar graph coloring problem 

(PGCP). We briefly look at well-known classical 

algorithms used to solve the PGCP but primarily focus 

on the quantum computational angle. Grover’s search is 

a well-known quantum algorithm that offers a quadratic 

advantage relative to its classical counterparts. 

Traditionally, this algorithm is used for search and 

sorting; in this paper, we inspect its application to the 

PGCP and build a corresponding quantum circuit. 

While we take a specific case of specialists in Nepalese 

hospitals and optimize their placements, the approach 

we have shown in this paper has wide implications for 

efficiently solving a huge range of optimization problems 

in health, transport, and so on.  

 

I. INTRODUCTION 

 

Mathematical and computational methods of problem-

solving have grown exponentially over the past century, 

providing efficient and effective solutions to various 

problems. From the classic brute force and manual 

calculations, these methods have evolved to yield faster 
calculations with efficient algorithms. Mathematical 

algorithms have been integrated into different fields of 

human endeavors, such as finance, health, agriculture, 

education, and so on. The applications are open to 

exploration in many endeavours. The development of 

problem-oriented computational algorithms dates back to 

the mid-20th century (Knuth, 1977). Researchers including 

Turing (1936), Dantzig (1951), Hoare (1961), Haigh (1993), 

Copeland (2004), Belvos (2013), Montanaro (2016), Childs 

et. al. (2018) have reported compelling algorithms ranging 

from logic, linear functions, universal computation to 

optimizations. With the advancement of  quantum 
mechanics, quantum computing algorithms have also been 

intensively used in the fields of optimization, cryptography 

and cryptoanalysis. These quantum algorithms offer a 

speedup in calculation due to carrying out multiple 

calculations simultaneously. 

 

Taking Nepal as a sample location to map out dif 

ferent real life scenarios in terms of mathematical and 

computational models for efficient problem-solving, a 

number of areas can be considered. We can map out the 

location of disaster-prone areas and based on the distance 
between the major necessities, allocate the appropriate 

resources. We Can effectively plan hydropower plant 

schedul ing, based on the energy consumption of a certain 

area, the number of workers, total electricity production, as 

well as the medium of transmission. We can optimize bus 

routing based on distance and traffic mobilization for 

deterministic time frames. We can also allocate network 

bandwidth in a way that meets transmission requirements 

with the least interference and maximizes network 

efficiency. 

 

The aforementioned issues, based on the problem 

domains and requirements, fall under resource allocation 

and effective scheduling. For a general resource allocation 

problem, a set of resources is to be allocated to different 
specifications. Different constraints are then defined which 

adds objectivity to the problem. Additional constraints can 

be defined to maximize the output function based on the 

problems.   Likewise, as a scheduling problem goes, a set of 

works to be scheduled for a given time based on work-

specific and time-specific parameters can be determined. 

 

For our paper, the problem we shall be focusing on is 

to allocate specialist doctors to different hospitals in the 

Kathmandu Valley such that no doctor of similar expertise 

lands in the same or even adjacent hospitals at a given 
period of time. The hospitals have been chosen based on 

accessibility, proximity, clinical metrics, and resources. This 

sort of problem with adjacency in terms of resource 

allocation and scheduling can be modeled using graph 

coloring. 

 

Various classical algorithms have been developed to 

address the graph coloring problem. However, we have 

opted for the use of the quantum algorithm “Grover’s 

algorithm” to solve the problem. After mapping the 

information of hospitals and specialists in the graph coloring 

problem, we apply Grover’s algorithm which, through re 
peated iterations, gives us the most effective solution. The 

sections to follow cover the details of mapping a graph 

coloring problem using different classical algorithms as well 

as implementing Grover’s algorithm. 

 

 Problem Introduction 

Leading Nepali news portals have often reported 

problems in health services due to the unavailability of 

special doctors in rural Nepal. A fairly recent account of the 

threatened future of Nepal’s health sector due to a lack of 

superspecialist doctors has been reported (OnlineKhabar 
English News, 2023). According to the Nepal Medical 

Council (NMC), there are 10,080 specialist doctors as of 

January 2023. The specialist doctors have not been 
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mobilized properly with all the specialists being 

concentrated in bigger cities, and due to the very limited 

number of specialists, it is very problematic for everyone to 

get access to effective health services. Thus, we tried to 

generate an algorithm that would allocate the specialists to 

different hospitals based on pre-set constraints, which in our 

case is proximity. 

 
 

 

 

For our solution sampling, a total of 8 hospitals were 

taken, and based on clinical facilities available and the 

distance, edges were defined. The hospitals under 

observation are Norvic International Hospital, Civil 

Hospital, B&B Hospital, Nepal Mediciti Hospital, Megha 

Hospital, Patan Hospital, Sumeru City Hospital and Star 

Hospital. Based on the size and distance between the 

hospitals, we generated a map which would encompass the 
necessary information of the hospitals (vertices), and the 

edges. For further simplicity, we take the following graph 

assigning a numerical vertex to the hospitals. 

 

 
Fig 1 Map of Kathmandu Valley with Hospitals Marked as Nodes. 

 

Based on the above graph, we can know the ad  jacent 

nodes. Let E =  (0,1), (0,5), (0,6), (0,7), (1,2), (1,6),(2,3), 

(2,6), (3,4), (3,6), (4,5), (4,7), (5,7), (6,7)be the set of all the 

edges in the graph. To solve the graph coloring problem, 

any two vertices are associated with an edge. i.e. two 

adjacent vertices should not have the same color. In our 

case, the color represents the specialist doctors. 

 

II. GRAPH COLORING PROBLEM 

 

A graph is a collection of vertices(nodes) connected by 

the edges. Typically, vertices of graphs are represented by 

names or properties. Edge is often used to link any two 

vertices of the graph. In terms of symbols, we represent 

graphs as G, vertices as V, and edges as E. The vertices 

having an edge between them are often called adjacent 

vertices. Graphs are either directed or undirected. Edges of 

directed graphs have direction associated with them while 

the edges of undirected graphs don’t have any direction. All 

the graphs discussed in this paper will be undirected graphs. 
Undirected graphs in our paper are simple graphs, that is 

there won’t be more than one edge connecting the same pair 

of vertices. 

 

Graph coloring, just like its name, is a way of coloring 

vertices of the graph such that no two adjacent vertices share 

the same color. For this kind of coloring the easiest hack is 

to use different colors for each node. Since the total number 

of nodes in a graph doesn’t have any restrictions, using 

different colors for different nodes is not feasible. Thus, for 

proper coloring of a graph, one should color the graph using 

a minimum number of colors. 

 
The lowest number of colors required to color a 

graph(G) is called the chromatic number of G (Boyer et al., 

1998).  A graph G with a chromatic number (G)=k is k 

chromatic. Graph G whose vertices can be colored using k 

colors is called k colorable (Boyer et al., 1998). Normally 

there are three types of graph coloring: Vertex coloring, 

edge coloring, and face coloring (Diao, 2010). In this paper, 

we will stick with vertex coloring. Discussing further the 

chromatic number of a graph, we will discuss one of the 

landmark achievements in the field of graph theory widely 

known as the Four Coloring Theorem. The four-coloring 
theorem implies that for any planar graphs, their chromatic 

number is at most four. In other words, we can always color 

a planar graph with 4 colors. 
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Fig 2 Planar Graphs with 5 Vertices and 7 Edges. 

 

This interesting conjecture was first conjectured by 

Francis Guthrie in 1852 and remained unsolved for more 

than a century. Finally, the major proof was given in 1977 

by Appel and Haken (K. Appel & W. Haken, 1977). Their 

proof was largely computer-based as it required solving too 

many cases. Whether this kind of computerized proof 

actually constituted proof in the mathematical community is 

still controversial. 

 

 

Note that this theorem is limited to planar graphs. 

Because of this interesting boundary on chromatic numbers 

for planar graphs, we will be dealing with planar graphs in 

our paper. So let’s look at what exactly are planar graphs. 

 

Basically, a planar graph is a graph that can be drawn 

in the plane such that no two edges cross except at a vertex. 

But we can’t ensure if a graph is planar just by looking at it. 

You can see Fig 2 as an illustration. 
 

 
Fig 3 Different Kinds of Planar Graphs with 4 Vertices. 

 

To overcome this problem, Euler formulated a famous 

theorem known as Euler’s theorem. The theorem states that 

for any planar graph, No. of Vertices(v)   Number of 
Edges(e) + regions(r) equals 2, i.e. v e+r=2. The number 2 

in this theorem is not random as you can notice 2 usually 

has something to do with the plane. In this theorem, the 

region(r) of a planar graph is basically sections of a flat 

surface separated by a planar graph. You can look at Figure 

2 for its illustration. Imagine erasing vertices from the 

surface, it breaks into separate pieces, and each piece is 

called a region. We also need to be aware that there’s 

always one special outer region that contains all the parts of 
the surface that go on forever. For a region, degree (deg) is 

the number of edges that are adjacent to the region, written 

as deg(R). As an example of Euler’s theorem, you can see it 

works in the graph below. Since, v=4, e=6 and r=4, 4 

6+4=2.

 

 
Fig 4 A Planar Graph to Illustrate Euler’s Theorem 
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Euler’s   theorem   can   be   proved   using   simple 

mathematical induction (Berman & Williams, 2009). Euler’s 

theorem itself doesn’t help us much to see if the graph is 

planar since we need to redraw the graph, but some 

corollary of this theorem can be very useful for us to test the 

pla narity of a graph. If G is a planar graph with vertices (v) 

and edges (e), with v ≥ 3, then it must satisfy the inequality e 

≤ 3v − 6. 
 

 

 

 

 Proof:  

We can notice that, for each region of a planar graph, 

its degree is 3, and each edge is adjacent to two regions. 

Now, we can derive that 2e =3r    degrees of r regions of a 

graph.   Thus, 2e = 3r Substituting this in Euler’s theorem, 

we can prove the inequality. However, this theorem is not 

two sided so we need to be careful.  For all the planar graphs 

this inequality must be satisfied, but a graph satisfying this 
inequality doesn’t imply that it is planar. For example: In 

figure 5 you can see that v=5 and e=10. So, 10 is not 9, the 

graph is not planar. Whereas in Figure 5, v=6 and e=9 and 9. 

If we check, the graph is not planar. 

 

 
Fig 5 Planar and Non-Planar Graphs 

 

 Why Study Graph Coloring Problems? 

Graph coloring problem is one of the most important 

aspects of graph theory because of its real-life implications 

like scheduling, resource allocation, assigning radio 

frequency, map coloring, and many others. However, to 

date, there is no efficient algorithm for solving the graph 

coloring problem. It is one of the well-known Np complete 

problems. Np complete problems are the problems which 

don’t have any established polynomial time algorithm. 

Polynomial-time algorithms are considered to be efficient 
because the execution times do not grow rapidly as the 

problem size increases, unlike exponential-time algorithms. 

Thus finding a polynomial time algorithm for any of the np 

complete problems can solve all of them. 

 

 Classical Solutions 

One of the popular classical algorithms for solving 

graph coloring problems is the Backtracking Algorithm. 

Backtracking is a classical approach to solving graph 

coloring using recursion. It is proven better than other 

classical and brute force methods, because the paths leading 

to false solutions are terminated earlier, preventing any 

further branches on that path. Although the upper bound of 

time complexity for both the backtracking and brute force 

methods are of O(mn). 

 

Here, m is the number of colors and n is the number of 

nodes, the average time complexity of backtracking is 

lesser. Here is how backtracking works: 

 
We want the adjacent nodes to be of different colors. 

First, we make a list of nodes and a list of colors. Now we 

put the first color on the first node and move on to the 

adjacent node. Since the second node can’t have the same 

color as the first, the algorithm looks for the next color on 

the color list and goes on till all the vertices are colored as 

required. When the algorithm reaches a node and can’t find 

any color that works, the algorithm backtracks and colors 

the previous node with a different color. All the.

 

 
Fig 6 A Simple Graph Coloring Problem with a Square 
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 Grover’s Algorithm 

Say we have a list of unsorted data consisting of N 

elements and we want to find some desired elements from 

that list. Mathematically, we can define this problem as if 

we have a function f such that, f(x)=1 if x is marked (desired 

solution) f(x)=0 Otherwise A classical algorithm will, on 

average, check the list for N/2 times to find the desired 

element. In 1996, Lov Grover proposed Grover’s Algorithm 
that could find the desired elements in O N evolutions 

(Grover, 1996). Grover’s algorithm uses quantum 

mechanical properties: superposition and interference and 

provides a quadratic speedup for searching unstructured 

databases (Saha et al., 2015). 

 

There are three parts of Grover’s algorithm: Ini 

initialization, Oracle, and Diffuser. Firstly all the qubits, 

which are used to translate the problem we want to solve 

using Gorver’s algorithm, are applied to the Hadamard gate 

which creates a superposition of all the possible states with 

equal amplitude. This step is called Initialization. 
 

                                       (1) 

 

In the second step, the oracle function is applied to 

these states in superposition (Ket s). The Oracle Uw is 

designed such that it can mark the desired item(s) in the 

database by flipping the  

 

   (2) 

 

Geometrically, the oracle Uw applied to ket s can be 

visualized as a reflection around the set of orthogonal states 

to ket w (which is the desired state) written as, 

                                           (3) 

 
An important thing to note is that the oracle is 

problem-based so for each different problem to be solved we 

need to design the oracle accordingly. 

 

In the third step, after applying the Oracle function, we 

apply the diffusion operator, which reflects the amplitudes 

of the states about the mean of all the states. The diffusion 

operator does the work of amplifying the amplitude of the 

solution state(s) and suppressing the amplitude of the non 

solution states. 

 

                                             (4) 

 

Core working of Grover’s Algorithm. So following the 

measurement, the solution state is easily noticeable with the 

highest amplitude. We easily find the answer we desire. 

 

 Graph Coloring Circuit 

There are several methods of implementing Grover’s 

search algorithm in a quantum circuit. For our use, we 

developed a basic form of a quantum circuit to implement 
Grover’s Search algorithm to solve the graph coloring 

problem for planar graphs. 

 

Our paper will present an implementation of Grover’s 

Search algorithm to solve the graph coloring for a simple 

planar graph with 4 nodes and 4 edges (see Fig: 7). We will 

also present a more general method that works for any 

planar graph with n nodes and e edges between them. 

 

Suppose, for simplicity’s sake, we have the following 

graph: 

 

 

 
Fig 7 A Simple Graph to Illustrate Quantum Circuit. of Applying u w and v d on s . and it Turns Out 
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Elements in the database, and M is the number of 

marked states we need (Saha et al., 2015), it has the net 

effect that the amplitude of the desired answer is almost 1, 

while the amplitudes of undesired answers reduce to almost 

0. With each iteration, the solution state is getting larger in 

am  plitude, and vice versa with the other states–the It’s 

proven that any planar graph can be colored using 4 colors 

(Appel & Haken, 1977). Suppose we have the following 
four colors with a two-bit binary number representation: 

Red corresponds to 00, Blue to 01, Green to 10, and Yellow 

to 11 binary digits. Adding binary representations to these 

colors, we proceed with the graph coloring circuit with the 

binary digits, corresponding to the colors, as input. 

 

Our problem now is to assign these two-bit binary 

numbers (or simply these colors) to the n = 4 nodes such 

that no two adjacent nodes have the same binary numbers; 

this ensures that no two adjacent nodes have the same color. 

To accomplish that, let’s develop a system to keep track of 

the different nodes, their colors, and the information 

between adjacent nodes. 

 

As a first step, we can take 2n = 8 qubits and 

understand that the 4 back-to-back qubit pairs represent each 

of the n = 4 nodes with the first two qubits representing N1. 
 

This way, the four pairs of qubits’ values can be 

interpreted as the color in the four nodes. Suppose for now 

that we have these eight qubits with their values as 

01000110 Because this representation has the first two 

qubits’ value as 00, so (N1) is colored blue. Likewise, this 

representation implies that nodes (N2), (N3), and (N4) are 

colored red, blue, and green respectively. In a circuit, that 

would be.

 

 
Fig8 Quantum Circuits Showing Input and Output in Binary Digits 

 

Notice how after applying Grover’s algorithm, our 

final output will be a 2n-bit binary number whose leftmost 

two values represent N1’s color, then the next two values 

represent N2’s color, and so on until the last two values 

represent Nn’s color. For our use, we’ll refer to the qubits 

represented by the Nn node as Nn qubits. So, the second last 
pair of qubits is the N3 qubits. 

  

Since these are the only qubits that represent our color, 

we can apply the Hadamard H gate to make them into a 

uniform superposition. Any ancilla qubit we need/use later 

will not need to be initialized because their final values are 

of no use to us.  

 

 

 

 

 

We now move on to designing the oracle to invert the 

phase of the coloring combination in which adjacent nodes  

have different colors. To achieve that, we break the oracle’s 

function into two parts, so that the gate implementation is 

simpler. First, we need to identify the solution states whose 

adjacent nodes are differently colored. Second, we need to 
invert the phase of the identified solution states. 

 

For now, let’s just look at N1 and N2 from our specific 

case. Since they’re adjacent, the first part of the oracle must 

identify if they have the same color. We’ll use multi-control 

Toffoli gates in the following combination (see Figure 10) to 

see if they have the same color and store their value in an 

ancilla, which we’ll call an edge ancilla. Note that the two 

nodes below are represented by two qubits each. The 

ancillia starts from the null state. Ancilla indexing is the 

same as the edge indexing from the graph. This is done for 

simplicity’s sake. 
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Fig 9 Circuit with two Nodes Showing Multi -Control Tofolli Gates and Ancilla 

 

A truth table with all possible inputs in the N1 and N2 

qubits shows that the edge ancilla returns 0 only when the 

N1 and N2 qubits have different values (i.e., different colors). 

This will be the case we desired. When the colors in the 

adjacent nodes are the same, only one of the Toffoli of the 

four flips the sign of the edge ancilla, making it a 1, a case 
that shows that the pairing isn’t valid as a solution to the 

graph coloring problem. Else, two Toffoli gates are 

activated which  

 

 

Act like inverses of one another to give an output of 0 

in the edge ancilla. 

 

Because of their frequent use, the combination of these 

Toffoli gates to check if any pair of adjacent nodes Ni and Nj 

with edge Ek have different colors or not, we’ll be calling 
them color-checking gates (C(i, j)) and their corresponding 

edge ancilla is Ek. For ease of notation, we’ll name the 

inverse of C(i, j) to be C(j, i) because C(j, i) must have the 

Toffoli gates in the reverse order of C(i, j 

 
Fig 10 Toffoli Gates for Checking Colors in Pairs of Adjacent Nodes 

 

We now design the second part of the oracle to flip the 

phase of the correct states identified in the first part. Our 
goal is to filter out the solution state after kicking its phase. 

For that, we’ll use phase kickback (Alsing & McDonald, 

2011) by using a new ancilla, which we’ll refer to as the 

negative ancilla.  In a Tofolli gate, the state of the target 

qubit is flipped if and only if the con trol qubit is in the state 

—1〉, known as phase kickback. The kickback helps identify 

our solution state. We’ll again use a multi-control Toffoli 

gate to flip the phase of the solution states. 

 

In the first part of the oracle, we know we’ll have e 

edge ancillas.   If all of these edge ancillas return 0, we 
know that is a valid coloring because the edge ancillas are 0 

only when adjacent nodes have different colors. 

 
We now take the edge ancillas as the control and the 

negative ancilla as the target in a Toffoli gate to flip the 

phase only when all the edge ancillas return 0–when the 

coloring is valid. However, computationally, it is more 

efficient to make the controls that check 1, else we’ll need to 

use X gates before and after all the controls. This will 

increase the gate complexity, and we try to avoid this. 

 

Hence, in the initialization step itself, we make all  

 

the edge ancillas to 1 to reduce the cost of the quantum 
circuit. In a diagram, we would have. 
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Fig 11 Initialized Edge Ancillia 

 
So, up until now, we have initialized the states, 

checked which states have valid coloring, and flipped the 

phase of states with valid coloring. To prevent the effect on 

phase due to C(i,j), we apply C(j, i) right after the phase 

kickback completes our oracle. 

 

 For the diffusion operator, recall that it can be written 

as. 

 

s = H⊗n |0⟩                                                                              (5) 
 

 

D = 2 |s⟩ ⟨s| − I                                                                (6) 

 

D = 2(H⊗n |0⟩) ⟨H⊗n |0⟩| − I                                               
(7) 

 

 Because D can be written as a reflection about 
Mathematically, we want a gate such that. 

 

M0 |0⟩ = |0⟩                                                                (8) 

 

M0 |x⟩ = − |x⟩ for x ̸= 0                                                  (9)

 

 
Fig 12 A Part of Initializing the Circuit 
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 As a Pseudo Circuit, our Final Circuit would Look Like:  

 

 
Fig 13 The Final Quantum Circuit 

 

III. CONCLUSION 

 

Grover’s Search Algorithm has practical applications 

beyond sorting or searching, such as in optimizations, one of 
which is the NP-hard planar graph coloring problem.   The 

implication of the graph coloring problem is vast: 

scheduling problems, molecular chemistry, puzzle solving, 

traffic signal optimization, cartography, and so on.   In our 

case, we took the graph coloring problem of specialists in 

different hospitals in Nepal. While the problem has been 

solved using classical backtracking or greedy methods, 

Grover’s technique offers a quadratic speedup, making it 

handy when the number of nodes grows larger. Our 

Quantum Circuit is open to further optimization to reduce 

the error complexity in gates and yield even more precise 
results. 
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