
Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1734 www.ijisrt.com 1902

Solving the General Planar Graph Coloring Problem

Using Grover’s Algorithm

Lenish Pandey1; Swayam Chaulagain1; Madhav Khanal1; Pratyush Bhattrai1,2

Sampada Wagle1, Sooraj Sahani1
1Incubate Nepal, Kathmandu, Nepal

2Department of Physics, University of Bristol, UK

Abstract: In this paper, we discuss the structure and

implementations of the planar graph coloring problem

(PGCP). We briefly look at well-known classical

algorithms used to solve the PGCP but primarily focus

on the quantum computational angle. Grover’s search is

a well-known quantum algorithm that offers a quadratic

advantage relative to its classical counterparts.

Traditionally, this algorithm is used for search and

sorting; in this paper, we inspect its application to the

PGCP and build a corresponding quantum circuit.

While we take a specific case of specialists in Nepalese

hospitals and optimize their placements, the approach

we have shown in this paper has wide implications for

efficiently solving a huge range of optimization problems

in health, transport, and so on.

I. INTRODUCTION

Mathematical and computational methods of problem-

solving have grown exponentially over the past century,

providing efficient and effective solutions to various

problems. From the classic brute force and manual

calculations, these methods have evolved to yield faster
calculations with efficient algorithms. Mathematical

algorithms have been integrated into different fields of

human endeavors, such as finance, health, agriculture,

education, and so on. The applications are open to

exploration in many endeavours. The development of

problem-oriented computational algorithms dates back to

the mid-20th century (Knuth, 1977). Researchers including

Turing (1936), Dantzig (1951), Hoare (1961), Haigh (1993),

Copeland (2004), Belvos (2013), Montanaro (2016), Childs

et. al. (2018) have reported compelling algorithms ranging

from logic, linear functions, universal computation to

optimizations. With the advancement of quantum
mechanics, quantum computing algorithms have also been

intensively used in the fields of optimization, cryptography

and cryptoanalysis. These quantum algorithms offer a

speedup in calculation due to carrying out multiple

calculations simultaneously.

Taking Nepal as a sample location to map out dif

ferent real life scenarios in terms of mathematical and

computational models for efficient problem-solving, a

number of areas can be considered. We can map out the

location of disaster-prone areas and based on the distance
between the major necessities, allocate the appropriate

resources. We Can effectively plan hydropower plant

schedul ing, based on the energy consumption of a certain

area, the number of workers, total electricity production, as

well as the medium of transmission. We can optimize bus

routing based on distance and traffic mobilization for

deterministic time frames. We can also allocate network

bandwidth in a way that meets transmission requirements

with the least interference and maximizes network

efficiency.

The aforementioned issues, based on the problem

domains and requirements, fall under resource allocation

and effective scheduling. For a general resource allocation

problem, a set of resources is to be allocated to different
specifications. Different constraints are then defined which

adds objectivity to the problem. Additional constraints can

be defined to maximize the output function based on the

problems. Likewise, as a scheduling problem goes, a set of

works to be scheduled for a given time based on work-

specific and time-specific parameters can be determined.

For our paper, the problem we shall be focusing on is

to allocate specialist doctors to different hospitals in the

Kathmandu Valley such that no doctor of similar expertise

lands in the same or even adjacent hospitals at a given
period of time. The hospitals have been chosen based on

accessibility, proximity, clinical metrics, and resources. This

sort of problem with adjacency in terms of resource

allocation and scheduling can be modeled using graph

coloring.

Various classical algorithms have been developed to

address the graph coloring problem. However, we have

opted for the use of the quantum algorithm “Grover’s

algorithm” to solve the problem. After mapping the

information of hospitals and specialists in the graph coloring

problem, we apply Grover’s algorithm which, through re
peated iterations, gives us the most effective solution. The

sections to follow cover the details of mapping a graph

coloring problem using different classical algorithms as well

as implementing Grover’s algorithm.

 Problem Introduction

Leading Nepali news portals have often reported

problems in health services due to the unavailability of

special doctors in rural Nepal. A fairly recent account of the

threatened future of Nepal’s health sector due to a lack of

superspecialist doctors has been reported (OnlineKhabar
English News, 2023). According to the Nepal Medical

Council (NMC), there are 10,080 specialist doctors as of

January 2023. The specialist doctors have not been

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1734 www.ijisrt.com 1903

mobilized properly with all the specialists being

concentrated in bigger cities, and due to the very limited

number of specialists, it is very problematic for everyone to

get access to effective health services. Thus, we tried to

generate an algorithm that would allocate the specialists to

different hospitals based on pre-set constraints, which in our

case is proximity.

For our solution sampling, a total of 8 hospitals were

taken, and based on clinical facilities available and the

distance, edges were defined. The hospitals under

observation are Norvic International Hospital, Civil

Hospital, B&B Hospital, Nepal Mediciti Hospital, Megha

Hospital, Patan Hospital, Sumeru City Hospital and Star

Hospital. Based on the size and distance between the

hospitals, we generated a map which would encompass the
necessary information of the hospitals (vertices), and the

edges. For further simplicity, we take the following graph

assigning a numerical vertex to the hospitals.

Fig 1 Map of Kathmandu Valley with Hospitals Marked as Nodes.

Based on the above graph, we can know the ad jacent

nodes. Let E = (0,1), (0,5), (0,6), (0,7), (1,2), (1,6),(2,3),

(2,6), (3,4), (3,6), (4,5), (4,7), (5,7), (6,7)be the set of all the

edges in the graph. To solve the graph coloring problem,

any two vertices are associated with an edge. i.e. two

adjacent vertices should not have the same color. In our

case, the color represents the specialist doctors.

II. GRAPH COLORING PROBLEM

A graph is a collection of vertices(nodes) connected by

the edges. Typically, vertices of graphs are represented by

names or properties. Edge is often used to link any two

vertices of the graph. In terms of symbols, we represent

graphs as G, vertices as V, and edges as E. The vertices

having an edge between them are often called adjacent

vertices. Graphs are either directed or undirected. Edges of

directed graphs have direction associated with them while

the edges of undirected graphs don’t have any direction. All

the graphs discussed in this paper will be undirected graphs.
Undirected graphs in our paper are simple graphs, that is

there won’t be more than one edge connecting the same pair

of vertices.

Graph coloring, just like its name, is a way of coloring

vertices of the graph such that no two adjacent vertices share

the same color. For this kind of coloring the easiest hack is

to use different colors for each node. Since the total number

of nodes in a graph doesn’t have any restrictions, using

different colors for different nodes is not feasible. Thus, for

proper coloring of a graph, one should color the graph using

a minimum number of colors.

The lowest number of colors required to color a

graph(G) is called the chromatic number of G (Boyer et al.,

1998). A graph G with a chromatic number (G)=k is k

chromatic. Graph G whose vertices can be colored using k

colors is called k colorable (Boyer et al., 1998). Normally

there are three types of graph coloring: Vertex coloring,

edge coloring, and face coloring (Diao, 2010). In this paper,

we will stick with vertex coloring. Discussing further the

chromatic number of a graph, we will discuss one of the

landmark achievements in the field of graph theory widely

known as the Four Coloring Theorem. The four-coloring
theorem implies that for any planar graphs, their chromatic

number is at most four. In other words, we can always color

a planar graph with 4 colors.

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1734 www.ijisrt.com 1904

Fig 2 Planar Graphs with 5 Vertices and 7 Edges.

This interesting conjecture was first conjectured by

Francis Guthrie in 1852 and remained unsolved for more

than a century. Finally, the major proof was given in 1977

by Appel and Haken (K. Appel & W. Haken, 1977). Their

proof was largely computer-based as it required solving too

many cases. Whether this kind of computerized proof

actually constituted proof in the mathematical community is

still controversial.

Note that this theorem is limited to planar graphs.

Because of this interesting boundary on chromatic numbers

for planar graphs, we will be dealing with planar graphs in

our paper. So let’s look at what exactly are planar graphs.

Basically, a planar graph is a graph that can be drawn

in the plane such that no two edges cross except at a vertex.

But we can’t ensure if a graph is planar just by looking at it.

You can see Fig 2 as an illustration.

Fig 3 Different Kinds of Planar Graphs with 4 Vertices.

To overcome this problem, Euler formulated a famous

theorem known as Euler’s theorem. The theorem states that

for any planar graph, No. of Vertices(v) Number of
Edges(e) + regions(r) equals 2, i.e. v e+r=2. The number 2

in this theorem is not random as you can notice 2 usually

has something to do with the plane. In this theorem, the

region(r) of a planar graph is basically sections of a flat

surface separated by a planar graph. You can look at Figure

2 for its illustration. Imagine erasing vertices from the

surface, it breaks into separate pieces, and each piece is

called a region. We also need to be aware that there’s

always one special outer region that contains all the parts of
the surface that go on forever. For a region, degree (deg) is

the number of edges that are adjacent to the region, written

as deg(R). As an example of Euler’s theorem, you can see it

works in the graph below. Since, v=4, e=6 and r=4, 4

6+4=2.

Fig 4 A Planar Graph to Illustrate Euler’s Theorem

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1734 www.ijisrt.com 1905

Euler’s theorem can be proved using simple

mathematical induction (Berman & Williams, 2009). Euler’s

theorem itself doesn’t help us much to see if the graph is

planar since we need to redraw the graph, but some

corollary of this theorem can be very useful for us to test the

pla narity of a graph. If G is a planar graph with vertices (v)

and edges (e), with v ≥ 3, then it must satisfy the inequality e

≤ 3v − 6.

 Proof:

We can notice that, for each region of a planar graph,

its degree is 3, and each edge is adjacent to two regions.

Now, we can derive that 2e =3r degrees of r regions of a

graph. Thus, 2e = 3r Substituting this in Euler’s theorem,

we can prove the inequality. However, this theorem is not

two sided so we need to be careful. For all the planar graphs

this inequality must be satisfied, but a graph satisfying this
inequality doesn’t imply that it is planar. For example: In

figure 5 you can see that v=5 and e=10. So, 10 is not 9, the

graph is not planar. Whereas in Figure 5, v=6 and e=9 and 9.

If we check, the graph is not planar.

Fig 5 Planar and Non-Planar Graphs

 Why Study Graph Coloring Problems?

Graph coloring problem is one of the most important

aspects of graph theory because of its real-life implications

like scheduling, resource allocation, assigning radio

frequency, map coloring, and many others. However, to

date, there is no efficient algorithm for solving the graph

coloring problem. It is one of the well-known Np complete

problems. Np complete problems are the problems which

don’t have any established polynomial time algorithm.

Polynomial-time algorithms are considered to be efficient
because the execution times do not grow rapidly as the

problem size increases, unlike exponential-time algorithms.

Thus finding a polynomial time algorithm for any of the np

complete problems can solve all of them.

 Classical Solutions

One of the popular classical algorithms for solving

graph coloring problems is the Backtracking Algorithm.

Backtracking is a classical approach to solving graph

coloring using recursion. It is proven better than other

classical and brute force methods, because the paths leading

to false solutions are terminated earlier, preventing any

further branches on that path. Although the upper bound of

time complexity for both the backtracking and brute force

methods are of O(mn).

Here, m is the number of colors and n is the number of

nodes, the average time complexity of backtracking is

lesser. Here is how backtracking works:

We want the adjacent nodes to be of different colors.

First, we make a list of nodes and a list of colors. Now we

put the first color on the first node and move on to the

adjacent node. Since the second node can’t have the same

color as the first, the algorithm looks for the next color on

the color list and goes on till all the vertices are colored as

required. When the algorithm reaches a node and can’t find

any color that works, the algorithm backtracks and colors

the previous node with a different color. All the.

Fig 6 A Simple Graph Coloring Problem with a Square

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1734 www.ijisrt.com 1906

 Grover’s Algorithm

Say we have a list of unsorted data consisting of N

elements and we want to find some desired elements from

that list. Mathematically, we can define this problem as if

we have a function f such that, f(x)=1 if x is marked (desired

solution) f(x)=0 Otherwise A classical algorithm will, on

average, check the list for N/2 times to find the desired

element. In 1996, Lov Grover proposed Grover’s Algorithm
that could find the desired elements in O N evolutions

(Grover, 1996). Grover’s algorithm uses quantum

mechanical properties: superposition and interference and

provides a quadratic speedup for searching unstructured

databases (Saha et al., 2015).

There are three parts of Grover’s algorithm: Ini

initialization, Oracle, and Diffuser. Firstly all the qubits,

which are used to translate the problem we want to solve

using Gorver’s algorithm, are applied to the Hadamard gate

which creates a superposition of all the possible states with

equal amplitude. This step is called Initialization.

 (1)

In the second step, the oracle function is applied to

these states in superposition (Ket s). The Oracle Uw is

designed such that it can mark the desired item(s) in the

database by flipping the

 (2)

Geometrically, the oracle Uw applied to ket s can be

visualized as a reflection around the set of orthogonal states

to ket w (which is the desired state) written as,

 (3)

An important thing to note is that the oracle is

problem-based so for each different problem to be solved we

need to design the oracle accordingly.

In the third step, after applying the Oracle function, we

apply the diffusion operator, which reflects the amplitudes

of the states about the mean of all the states. The diffusion

operator does the work of amplifying the amplitude of the

solution state(s) and suppressing the amplitude of the non

solution states.

 (4)

Core working of Grover’s Algorithm. So following the

measurement, the solution state is easily noticeable with the

highest amplitude. We easily find the answer we desire.

 Graph Coloring Circuit

There are several methods of implementing Grover’s

search algorithm in a quantum circuit. For our use, we

developed a basic form of a quantum circuit to implement
Grover’s Search algorithm to solve the graph coloring

problem for planar graphs.

Our paper will present an implementation of Grover’s

Search algorithm to solve the graph coloring for a simple

planar graph with 4 nodes and 4 edges (see Fig: 7). We will

also present a more general method that works for any

planar graph with n nodes and e edges between them.

Suppose, for simplicity’s sake, we have the following

graph:

Fig 7 A Simple Graph to Illustrate Quantum Circuit. of Applying u w and v d on s . and it Turns Out

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1734 www.ijisrt.com 1907

Elements in the database, and M is the number of

marked states we need (Saha et al., 2015), it has the net

effect that the amplitude of the desired answer is almost 1,

while the amplitudes of undesired answers reduce to almost

0. With each iteration, the solution state is getting larger in

am plitude, and vice versa with the other states–the It’s

proven that any planar graph can be colored using 4 colors

(Appel & Haken, 1977). Suppose we have the following
four colors with a two-bit binary number representation:

Red corresponds to 00, Blue to 01, Green to 10, and Yellow

to 11 binary digits. Adding binary representations to these

colors, we proceed with the graph coloring circuit with the

binary digits, corresponding to the colors, as input.

Our problem now is to assign these two-bit binary

numbers (or simply these colors) to the n = 4 nodes such

that no two adjacent nodes have the same binary numbers;

this ensures that no two adjacent nodes have the same color.

To accomplish that, let’s develop a system to keep track of

the different nodes, their colors, and the information

between adjacent nodes.

As a first step, we can take 2n = 8 qubits and

understand that the 4 back-to-back qubit pairs represent each

of the n = 4 nodes with the first two qubits representing N1.

This way, the four pairs of qubits’ values can be

interpreted as the color in the four nodes. Suppose for now

that we have these eight qubits with their values as

01000110 Because this representation has the first two

qubits’ value as 00, so (N1) is colored blue. Likewise, this

representation implies that nodes (N2), (N3), and (N4) are

colored red, blue, and green respectively. In a circuit, that

would be.

Fig8 Quantum Circuits Showing Input and Output in Binary Digits

Notice how after applying Grover’s algorithm, our

final output will be a 2n-bit binary number whose leftmost

two values represent N1’s color, then the next two values

represent N2’s color, and so on until the last two values

represent Nn’s color. For our use, we’ll refer to the qubits

represented by the Nn node as Nn qubits. So, the second last
pair of qubits is the N3 qubits.

Since these are the only qubits that represent our color,

we can apply the Hadamard H gate to make them into a

uniform superposition. Any ancilla qubit we need/use later

will not need to be initialized because their final values are

of no use to us.

We now move on to designing the oracle to invert the

phase of the coloring combination in which adjacent nodes

have different colors. To achieve that, we break the oracle’s

function into two parts, so that the gate implementation is

simpler. First, we need to identify the solution states whose

adjacent nodes are differently colored. Second, we need to
invert the phase of the identified solution states.

For now, let’s just look at N1 and N2 from our specific

case. Since they’re adjacent, the first part of the oracle must

identify if they have the same color. We’ll use multi-control

Toffoli gates in the following combination (see Figure 10) to

see if they have the same color and store their value in an

ancilla, which we’ll call an edge ancilla. Note that the two

nodes below are represented by two qubits each. The

ancillia starts from the null state. Ancilla indexing is the

same as the edge indexing from the graph. This is done for

simplicity’s sake.

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1734 www.ijisrt.com 1908

Fig 9 Circuit with two Nodes Showing Multi -Control Tofolli Gates and Ancilla

A truth table with all possible inputs in the N1 and N2

qubits shows that the edge ancilla returns 0 only when the

N1 and N2 qubits have different values (i.e., different colors).

This will be the case we desired. When the colors in the

adjacent nodes are the same, only one of the Toffoli of the

four flips the sign of the edge ancilla, making it a 1, a case
that shows that the pairing isn’t valid as a solution to the

graph coloring problem. Else, two Toffoli gates are

activated which

Act like inverses of one another to give an output of 0

in the edge ancilla.

Because of their frequent use, the combination of these

Toffoli gates to check if any pair of adjacent nodes Ni and Nj

with edge Ek have different colors or not, we’ll be calling
them color-checking gates (C(i, j)) and their corresponding

edge ancilla is Ek. For ease of notation, we’ll name the

inverse of C(i, j) to be C(j, i) because C(j, i) must have the

Toffoli gates in the reverse order of C(i, j

Fig 10 Toffoli Gates for Checking Colors in Pairs of Adjacent Nodes

We now design the second part of the oracle to flip the

phase of the correct states identified in the first part. Our
goal is to filter out the solution state after kicking its phase.

For that, we’ll use phase kickback (Alsing & McDonald,

2011) by using a new ancilla, which we’ll refer to as the

negative ancilla. In a Tofolli gate, the state of the target

qubit is flipped if and only if the con trol qubit is in the state

—1〉, known as phase kickback. The kickback helps identify

our solution state. We’ll again use a multi-control Toffoli

gate to flip the phase of the solution states.

In the first part of the oracle, we know we’ll have e

edge ancillas. If all of these edge ancillas return 0, we
know that is a valid coloring because the edge ancillas are 0

only when adjacent nodes have different colors.

We now take the edge ancillas as the control and the

negative ancilla as the target in a Toffoli gate to flip the

phase only when all the edge ancillas return 0–when the

coloring is valid. However, computationally, it is more

efficient to make the controls that check 1, else we’ll need to

use X gates before and after all the controls. This will

increase the gate complexity, and we try to avoid this.

Hence, in the initialization step itself, we make all

the edge ancillas to 1 to reduce the cost of the quantum
circuit. In a diagram, we would have.

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1734 www.ijisrt.com 1909

Fig 11 Initialized Edge Ancillia

So, up until now, we have initialized the states,

checked which states have valid coloring, and flipped the

phase of states with valid coloring. To prevent the effect on

phase due to C(i,j), we apply C(j, i) right after the phase

kickback completes our oracle.

 For the diffusion operator, recall that it can be written

as.

s = H⊗n |0⟩ (5)

D = 2 |s⟩ ⟨s| − I (6)

D = 2(H⊗n |0⟩) ⟨H⊗n |0⟩| − I
(7)

 Because D can be written as a reflection about
Mathematically, we want a gate such that.

M0 |0⟩ = |0⟩ (8)

M0 |x⟩ = − |x⟩ for x ̸= 0 (9)

Fig 12 A Part of Initializing the Circuit

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1734 www.ijisrt.com 1910

 As a Pseudo Circuit, our Final Circuit would Look Like:

Fig 13 The Final Quantum Circuit

III. CONCLUSION

Grover’s Search Algorithm has practical applications

beyond sorting or searching, such as in optimizations, one of
which is the NP-hard planar graph coloring problem. The

implication of the graph coloring problem is vast:

scheduling problems, molecular chemistry, puzzle solving,

traffic signal optimization, cartography, and so on. In our

case, we took the graph coloring problem of specialists in

different hospitals in Nepal. While the problem has been

solved using classical backtracking or greedy methods,

Grover’s technique offers a quadratic speedup, making it

handy when the number of nodes grows larger. Our

Quantum Circuit is open to further optimization to reduce

the error complexity in gates and yield even more precise
results.

REFERENCES

[1]. Alama, J. (2009). Euler’s Polyhedron Formula.

Formalized Mathematics, 16(1), 7 17.

https://doi.org/10.2478/v10037 008 0002 6.

[2]. Alsing, P. M., & McDonald, N. (2011).

Grover’s search algorithm with an entangled

database state. Proc. SPIE 8057, Quantum

Information and ComputationIX,80570R

https://doi.org/10.1117/12.883092.
[3]. Berman, L. W., & Williams, G. I. (2009).

Exploring Polyhedra and Discovering Euler’s

Formula. Resources for Teaching Discrete

Mathematics. Mathematical Association of America.

Boyer, M., Brassard, G., Høyer, P., & Tapp, A.

(1998). Tight bounds on quantum searching.

Fortschritte der Physik: Progress of Physics, 46(4 5),

493 505.

[4]. Diao, Z. (2010). Exactness of the Original Grover

Search Algorithm. Physical Review A, 82.

https://doi.org/10.1103/PHYSREVA.82.044301.

[5]. Grover, L. K. (1996). A fast quantum mechanical

algorithm for database search. Proceedings of the

Twenty Eighth Annual ACM Symposium on Theory

of Computing STOC ’96.
https://doi.org/10.1145/237814.237866.

[6]. K. Appel, W. Haken “Every planar map is four

colorable. Part I: Discharging,” Illinois Journal of

Mathematics, Illinois J. Math. 21(3), 429 490,

(September 1977).

[7]. Lack of superspecialist doctors threatens the future of

Nepal’s health sector OnineKhabar English News.

(2023,February13).

https://english.onlinekhabar.com/lack superspecialist

doctors nepal html.

[8]. Mukherjee, S. (2022, February 8). A Grover search
based algorithm for list coloring.

[9]. Saha, A., Chongder, A., Mandal, S. B., &

Chakrabarti, A. (2015, December). Synthesis of

vertex coloring problem using Grover’s algorithm.

2015 IEEE . International Symposium on

Nanoelectronic and Information Systems, pp. 101

106. IEEE.

[10]. Wilf, H. S. (1984). Backtrack: An O(1) expected

time algorithm for the graph coloring problem.

Information Processing Letters, 18(3), 119 121.

https://doi.org/10.1016/0020 0190(84)90013 9

http://www.ijisrt.com/
https://doi.org/10.1117/12.883092
https://doi.org/10.1103/PHYSREVA.82.044301
https://doi.org/10.1145/237814.237866

	I. INTRODUCTION
	 Problem Introduction
	II. GRAPH COLORING PROBLEM
	 Why Study Graph Coloring Problems?
	 Classical Solutions
	 Grover’s Algorithm
	 Graph Coloring Circuit
	III. CONCLUSION
	REFERENCES

