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Abstract:- In previous papers we have studied the 

extension of transition matrix chains B to the numerical 

statistical solution of the time-independent Schrödinger 

equation in one   two dimensions x,y. 

 

In this paper we examine the extension of B-

transition matrix chains to the numerical statistical 

solution of the time-independent Schrödinger equation in 

the three dimensions x, y, z. 

 

However, extending the physical transition matrix 

chains B to the solution of the time-independent 

Schrödinger equation requires respecting certain 

limitations of the bases which we briefly explain in this 

article. 

 

We present the numerical statistical solution via B-

matrix chains in two illustrative examples, namely the 

three-dimensional time-dependent heat diffusion 

equation and the quantum particle in a three-

dimensional infinite potential well. The numerical results 

are surprisingly accurate. 

 

I. INTRODUCTION 

 

In two previous articles, we studied the extension of 
transition matrix chains B to the numerical statistical 

solution of the time-independent Schrödinger equation in 

one and two dimensions x, y. In this paper, we propose the 

extension of transition matrix chains B to the numerical 

statistical solution of the time-independent Schrödinger 

equation in the 3D geometric space x, y, z. 

 

Note that extending the chains of the physical 

transition matrix B for the solution of the thermal and time-

independent Schrödinger equations requires the explanation 

of some basic physical and mathematical terms or concepts 

which we briefly explain in the following ten: 
 

 Square matrices are a subset of mathematical matrices 

and physical square matrices that have physical meaning 

(such as transition matrix B) are a subset of square 

matrices. 

 

 Statistical transition matrices and Chains of statistical 

transition matrices exist and its modeling works 

effectively in the solution of partial differential 

equations. At present, we know of two, namely the 

mathematical and statistical Markov transition matrix 
and the transition matrix B which is the subject of this 

article. However, in Markov matrix chains we do not 

care about the energy density, boundary conditions, 

source term, average properties of the medium, etc., 

whereas in the case of B matrix chains we do that . 
 

 A physical transition matrix chain B for energy density U 

exist and can be defined by the recurrence relation, 

 

U (x, t+ dt) =B. U(x,t) 

 

NB: The transition matrix B has a place for the 

boundary conditions BC and the source term S which are 

essential in the solution of the heat diffusion equation and 

the Schrödinger equation respectively. 

 

Therefore, a chain transition matrix B emerges and 
must be able to describe the solution trajectory through its 

own solution space for a given time evolution which is the 

energy solution E in 4-D x-t. space. 

 

 The matrix solution for the energy density U(x,y,z,t) in 

time dependent and time-independent PDE appears in 

matrix equation form. All matrix equations “resulting 

from the solution of PDE via the transition matrix” are 

not eigenvalue equations. For example, the matrix 

equation of the numerical solution of the heat diffusion 

equation results in a system of non-homogeneous first-
order linear algebraic equations while the matrix 

equation of the numerical solution of the Schrödinger 

equation is homogeneous and results in an eigenvalue 

problem with multiple eigenvalues. Several eigenvalues 

have their corresponding eigenvectors. The time-

dependent and time-independent Schrödinger equations 

are in-depth examples of eigenvalue equations in 

quantum mechanics, with their eigenvalues 

corresponding to the allowed energy levels of the 

quantum system. Generally speaking, in the statistical 

transition matrix B, the eigenvalue is the dominant 
eigenvalue (eigenvalue of the maximum absolute value) 

equal to 1. 

 

 What is the Schrödinger equation and what is the time-

independent Schrödinger equation? 

 

 The time-dependent equation is 

 iℏ(dψ/dt)= Ĥψ, 

 and the time-independent equation is 

 Eψ = Ĥψ. 

 

Showing that the Schrödinger equation is a second-
order linear PDE in the so-called wave function ψ(x,t) and is 

a way to probabilistically describe the time evolution of 
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energy, momentum and the position of quantum particles in 

space. His time-independent equation for ψ(x) describes the 

equilibrium state that occurs when evolutionary time tends 

to infinity. It should be noted that another way to describe 

quantum particle dynamics is to use statistical transition 

matrices that completely ignore the Schrödinger equation 

and the wave function ψ as if they never existed in the same 

way that one solves the heat diffusion equation without 
going through the thermal EDP. 

 

Obviously it is ψ2 and not ψ itself which is replaced by 

the energy density U to be the subject of the study in the 

matrix chains B. 

 

 What is a Numerical and/or Statistical Solution! 

 

The numerical solution replaces the analytical solution 

of the time-dependent PDE by discretizing space and time 

into dx and dt and replacing the differentials dy/dx by 

[y+dy-2y +y-dy]/2dx And d ^2 y/dx ^ 2 by [y+dy-2y +y-
dy]/dx^2. etc. 

 

In other words, the numerical solution method reduces 

the PDE to a system of algebraic equations via the finite 

difference method FDM. 

 

On the other hand, calculus methods such as (FDM) 

are not necessary in transition matrices of statistical 

solutions since FDM techniques inherently exist in statistical 

chains of transition matrices. 

 

 This means that, in a way, the numerical statistical 

solution is a subset of the numerical solution in which 

the differential calculus is ignored and replaced by the 

statistics of the transition matrix. 

 In addition, the method of separating variables 

W(x,y,z,t)=X(x)Y(y)Z(z) f(t) is also not necessary 

because it is intrinsically included in the unit 4D 

inseparable space x-t of the B matrix strings. 

 The numerical (technical) method of Monte Carlo is the 

closest to the Cairo technical method. However, the 

numerical Monte Carlo method is a bit old and requires 
generating a random numerical variable thousands of 

times. This makes the interpretation of its numerical 

results long and tedious. 

 Finally, it should be mentioned that today we only know 

one physical transition matrix which is the transition 

matrix B resulting from the so-called Cairo technique. 

 

Through this article, we examine in detail two different 

illustrative 3D physics problems in the areas of the heat 

diffusion equation and the time-independent Schrödinger 

equation. 

 
Namely, we present numerical results for time-

dependent thermal diffusion in a three-dimensional thermal 

energy field and the steady-state distribution of quantum 

energy density in a 3D potential box. 

 

 

 

II. THEORY 

 

In practice, the field of modern quantum mechanics 

relies entirely on the Schrödinger equation and its 

derivatives which constitute a subset of physics but not 

physics as a whole. Bohr's original theory of the hydrogen 

atom introduced the condition of quantization of electronic 

energy as quantification for the first time in history. circular 
orbits of the electron around the nucleus in orbits called 

allowed orbits. The so-called authorized orbits give rise to 

authorized atomic energy states, as opposed to prohibited 

energy states. Niels Bohr's original model in 1913 was based 

entirely on Newton's laws of motion supplemented by 

Bohr's quantification hypothesis, of the principal quantum 

number n, namely, 

 

mv. 2π. Rn=nh. . . ………………………………………(1) 

 

n=1,2,3. . , infinity 

 
Where Rn is the nth radius of electrons circulating 

around the nucleus. 

 

At the time, N. Bohr did not say a word about the 

electronic cloud or the superposition of quantum states. Nor 

did he say about the electron cloud in a quadratic potential 

nor about any of the quantization numbers (n, l, m, s) other 

than the principal quantum number n. 

 

This is called classical quantum mechanics, where the 

electron is considered as a particle whose position x, speed v 
and trajectory in space are known. Although old and 

classical, Bohr's original hypothesis in 1913 introduced a 

giant step towards modern quantum mechanics and the 

Schrödinger equation to come in 1927. 

 

Accordingly, we introduce the term classical quantum 

mechanics which corresponds to the original model of 

quantum mechanics developed by N. Bohr's theory of the 

hydrogen atom in 1913 and to similar models which 

considered subatomic particles as a point in the x-t space. 

 

Modern quantum mechanics was supplemented by the 
1927 Schrödinger equation and the Bohr/Copenhagen 

interpretation. This interpretation is known as the principle 

of superposition of quantum states. It is considered the 

second giant leap emerging Bohr's modern theory of the 

hydrogen atom in 1927. 

 

N. Bohr introduced the concept of representing the 

dynamics of subatomic particles in space as a probability 

cloud described by the Schrödinger equation which replaced 

Newton laws of motion. In this article we describe how to 

apply the chains of the matrix B to describe the quantized 
dependence of the total energy E on a principal quantum 

number n (in order not to go further to other quantum 

numbers l, m, s)  

 

The quantum hypothesis of energy and angular 

momentum can be, in some way, replaced by the 

quantification of time inherent in matrix chains B. 
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The concept of a quantum point particle and a quantum 

particle path subject to Newton's laws of motion has been 

radically overturned. 

 

We recall that, in previous articles [2,3,4] we had 

introduced numerical statistical solutions to time-dependent 

partial differential equations such as Poisson and Laplace 

partial differential equations, sound intensity and time of 
reverberation in audio rooms. , digital integration and 

differentiation, etc. Our proposed numerical statistical 

modeling for the study of time-independent SEs is based on 

the same chains of transition matrices B and its derived 

transfer matrices D, E. The basic entries of the statistical 

transition matrix B (i, j) are well defined in 1D, 2D and 3D 

configuration space problems via four statistical conditions 

[2,3,4] and the resulting transfer matrices D ,E are well 

defined via the following relation elements: 

 

E(N) = B0 + B + B2+ B3 + . . . + B^N. . . . . …………….(2) 

 
Where, 

 

B0 = I, the unitary matrix. 

 

If N is sufficiently large, we arrive at the time-

independent steady state solution, 

 

E = 1/(I-B) . . . . …………………………………………. (3) 

 

For N sufficiently large. 

 
In all cases, the transfer matrix D is defined as, 

 

D = E-I . . . . .. …………………………………………... (4) 

 

Equation 3 is the reason why we introduced the 

transfer matrix E to use in the first step, and then calculated 

the transfer matrix D from equation 4 in the second step. 

This matrix calculation procedure is called the Cairo 

technique (by distinction) [2,3,4]. 

 

We emphasize again that the Cairo technical procedure 

for solving the time-dependent PDE in classical physics and 
its proposed extension to cover QM problems is not 

complicated but rather lengthy and requires mastery of some 

prerequisites in matrix algebra [ 1] and in statistical 

transition matrix chains [2,3,4]. 

 

In the Cairo techniques approach, the time-dependent 

solution of the PDE energy density U (x, t) is given by, 

 

U (x, t)=D(N) . (b + S) + IC . B^N . . . . . ………………..(5) 

 

Where S is the vector of the source/sink term and IC is 
the vector of the initial conditions. Equation 5 is used as a 

time dependent statistical PDE equivalence matrix which 

has been used in the solution of classical physics problems 

such as heat conduction PDE and it is now proposed to find 

a solution to the equation of Schrödinger 3D geometric 

shapes. 

 

It should be noted that equation 5 contains a term due 

to the initial state conditions described by IC. B^N which 

decreases exponentially with time because the modulus of 

matrix B is less than 1. This term tends towards zero with 

time and is therefore not treated in the present case of the 

steady state in the remainder of this article. Note that 

equation 5 is the solution of U(x,t) in a 4D unit space x-t 

where the real time t is completely lost and is replaced by a 
dimensionless integer N. 

 

It is also worth mentioning that discretizing time t into 

forbidden and allowed where t = N dt and N is an integer is 

itself a quantification of time. Again, the integer N is the 

number of iterations which is the number of time steps or 

time jumps dt. One important reason to replace the 

Schrödinger equation with chains of statistical transition 

matrices is that you are moving from an area of SE where 

many unanswered questions remain to the area of modern 

statistical physics where almost all questions have adequate 

answers. 
 

The question arises how to extend the B matrix chain 

solution of the Cairo technique to cover time-independent 

stationary situations in 3D quantum mechanical problems. 

 

In other words, how can we process Equation 5 in 

order to find the statistical equivalence of the 3D 

Schrödinger equation? This is the subject of the current 

article. 

 

The time-independent Schrödinger equation, 
describing the square root of the probability density function 

ψ in all space, is expressed as follows: 

 

 
 

Considering that the statistical equivalence approach of 

the Cairo techniques which is in general a time-dependent 

solution for the energy density U(x,t) as given by equation 5, 

 

U(x, t)=D(N) . (b + S) + IC. B^N. . . . . . ………………(5) 

 
Eq 7 is very important as it defines the spatio-temporel 

evolution of the energy density U in space and time in 

matrix form. 

 

The similarity between Equation 5 and Equation 6 is 

obvious and the application of Equation 5 to solving 

quantum mechanical problems seems natural. 

 

 In Order to apply Equation 5 as a Substitution for 

Equation 6, we Propose two Important Natural 

Assumptions: 

 

 We first assume an intrinsic and/or extrinsic landscape 

potential V(x,y,z) which must be symmetrical and imply 

zero BC. 

 We assume that the matrix B must be completed by a 

diagonal matrix V representing the source term S, that is 

to say 
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S(x,y,z,t)=Constant. V(x,y,z,t) . . . ……………………… (7) 

 

Where S is a source term. 

 

The constant in equation 7 is found by trial and error. 

 

Equation 7 is a breakthrough because it characterizes 

the physical domain of validity of SE and suggests a 
statistical solution to 3D SE that circumvents SE itself. 

 

There is a simple way to solve the matrix statistical 

equivalence of SE, 

 

[B(x,y,z)] + C [V(x,y,z)] . . . . . …………………………. (8) 

 

This involves assuming in advance the potential 

landscape V (x, y, z) first, then working backward to find the 

eigenvalues and eigenvectors of the energy. This may be a 

way to resolve the SE, while it's easier to go back and look 

for a solution. 
 

This is exactly what happens even when solving the 

1D, 2D and 3D Schrödinger equation via B-matrix statistical 

chains, while it is better to first assume the potential 

landscape before solve. 

 

We also assume that the solution of matrix chains B 

may be, in some way, more informative than SE itself, a 

claim which will be explored in more detail when describing 

solutions to Schrödinger's equations in 4D. 

 
It is worth mentioning that B-matrix string theory is 

not entirely new and has been working effectively since 

2020 [2,3,4]. 

In order not to worry too much about the details of the 

theory, let's move on to the following numerical results. 

 

III. NUMERICAL RESULTS 

 

A. 3A Heat Diffusion Equation 

The heat diffusion/conduction equation is of particular 

importance both in modern classical physics (classical 
physical laws supplemented by the modern definition of 

transition probability) and in quantum mechanics where we 

find numerous communities of characteristics. 

 

In the previous parts of this article I, II, we solved the 

thermal conduction/diffusion equation in 1D and 2D via 

chains of 1D and 2D B matrices. In this third part of the 

paper, we use 3D B-matrix chains to find a numerical 

statistical solution for the spatiotemporal heat diffusion flow 

in solid shapes and test the correctness and precision of the 

numerical statistics of the method. 

 
Consider the simple case of a rectangular cube shown 

in Figure 1 with 27 equidistant free nodes, u1, u2, u3, ... u27 

and 52 Dirichlet boundary conditions BC1 to BC52. These 

conditions of 52 BC are reduced to just 27 BC when using 

the ruler, 

 

 BC(1)=BC1X+BC1Y+BC1Z 

 

 BC(2)=BC2X+BC2Y+BC2Z 

 

 BC(27)=BC27X+BC27Y+BC27Z 

 

 
Fig 1 Heat Diffusion Flow in a Rectangular Cube with 27 Equally Spaced Free Nodes 
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As shown in Figure 1 A 3D rectangular cube domain 

with 27 equally spaced free nodes subjected to Dirichlet BC. 

 

Again, the 52 boundary conditions in Figure 1 can be 

reduced only to 27 modified BCs for the 7 boundary nodes 

as follows: 

 

 BC(1)=BC1X+BC1Y+BC1Z 
 

 BC(2)=BC2X+BC2Y+BC2Z 

 

 BC(27)=BC27X+BC27Y+BC27Z+ BC9Y 

 

 Step 1 

The first step consists of constructing the 27x27 B 

transition matrix so as to satisfy the conditions i-iv [2,3,4] 

and to set the presupposed value of RO. 

 

For an arbitrary RO, the 27x27 matrix B is given by, 

 
27X27 B-Matrix inputs 

 

 Line1 RO 1/6-RO/6 0.0000 1/6- RO 1/6-RO/6 0.0000 

0.0000 0.0000 0.00001/6-RO/6 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.00000.0000 

0.00000.00000.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 

 

 Line 2 1/6-RO/6 RO 1/6-RO/6 0.0000 1/6-RO/6 0.0000 

0.0000 0.0000 0.0000.00001/6-RO/6 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 
0.00000.00000.00000.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

 

 Line 3 0.0000 1/6-RO/6 RO 0.0000 0.0000 1/6RO/6 

0.0000 0.00000.00000.00000.0000 1/6-RO/6 0.0000 

0.0000 0.0000 0.0000 0.0000 

0.00000.00000.00000.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

 

 Line 14 0.0000 0.0000 0.0000 0.0000 1/6-RO/6 0.0000 

0.00000.00000.00000.0000 1/6-RO/6 0.0000 1/6-RO/6 
RO 1/6-RO/6 0.00001/6-RO/60.00000.0000 0.0000 

0.0000 0.0000 1/6-RO/6 0.0000 0.0000 0.00000.0000 

 

 Line 25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.00000.00000.00000.0000 0.0000 0.0000 

0.0000 0.0000 1/6-RO/6 0.0000 

0.00000.00000.00000.0000 1/6-RO/6 0.0000 0.0000 RO 

1/6-RO/6 0.0000 

 

 Line 26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.00000.00000.00000.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 1/6-RO/6 

0.00000.00000.00000.0000 0.0000 1/6-RO/6 0.0000 1/6-

RO/6 RO 1/6-RO/6 

 

 

 

 

 Line 27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.00000.00000.00000.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 1/6-

RO/60.00000.00000.0000 0.0000 0.0000 1/6-RO/6 

0.0000 1/6-RO/6 RO 

 

 We Call this Matrix M1. 

Note that a given numerical value of RO uniquely 
defines the thermal diffusivity of the medium, e.g. RO = 

0.22 for legal carbon steel and 0.13 for high purity 

aluminum, as shown in reference 5. 

 

 Step 2 

Choose the appropriate values of the boundary 

conditions vector b and the source/sink term S 

corresponding to a given set of experiments. 

 

Here we set S=0 for all 27 free nodes, except node 2 

which is set to 100 units. The 27 boundary condition inputs 

b, are all set to zero as for Zeiga modeling in 2021[6]. 
 

The initial conditions vector IC is set equal to zero for 

all 27 free nodes. 

 

 Step 3 

Use equations 2 and 4 to calculate D(N) for different N 

for a given RO parameter, then use equation 5 { U(x, 

t)=D(N). (b + S) + IC * BN} to calculate the spatio-temporal 

evolution of the temperature field. Zeiga [6] classically 

solved the same thermal system shown in Figure 1 via the 

MATLAB technique and obtained a space-time distribution 
of the temperature field similar to that of the B-matrix chain 

solution. 

 

However, it should be mentioned that the numerical 

results in reference 6 are not related to the thermal properties 

of the support material. 

 

Numerical results for the thermal system in the following 

table,  

 

N= 1 

 
0.000      100.000       0.000      0.000      0.000       0.000       

0.000       0.000       0.000    0.000       0.000 0.000       0.000       

0.000       0.000      0.000       0.000       0.000      0.000      

0.000       0.000     0.000   0.000  0.000  0.000  0.000      

0.000        

 

 Axial Temperature   0.000       0.000       0.000    

 

EXP RISE/DECAY ALPHA = -0.4302 

 

N=5   
 

24.107       139.25       24.107      7.42       25.387       7.427   

1.280     3.903      1.280    7.427       25.387     7.427       

2.560      7.80      2.560  0.379      1.280    0.379    1.280   

3.903  1.280  0.379      1.280      0.379     0.000      0.190       

0.000     
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 Axial Temperature   25.387       7.806      1.280   

 

EXP DECAY ALPHA =  -0.405   

 

N=10   

 

27.359      143.910      27.359     10.833       30.383       

10.833  3.024     6.429       3.024  10.833      30.383      
10.833      6.048     12.859     6.048      2.026       3.768     

2.026       3.024       6.429      3.024    2.026   3.768      2.026      

0.744   1.295  0.744 

 

 Axial Temperature   30.383      12.859      3.768 

 

EXP DECAY ALPHA = -0.405 

 

N=15  

 

27.921    144.707       27.921    11.570     31.426     11.570       

3.505   7.110    3.505  11.570     31.426       11.570    7.009      
14.220     7.009       2.649      4.651       2.649      3.505       

7.110       3.505 2.649      4.651       2.649     1.147   1.865   

1.147    

  

 Axial Temperature   31.426      14.220     4.651   

 

EXP DECAY ALPHA = -0.364 

 

N= 20   

 

28.053  144.893  28.053    11.753    31.684      11.753     
3.631  7.289      3.631   11.753    31.684  11.753  7.262   

14.578    7.262    2.825      4.899 2.825    3.631       7.289      

3.631     2.825  4.899  2.825   1.268   2.037       1.268     

 

 Axial Temperature   31.684   14.578   4.899 

 

EXP DECAY ALPHA = -0.382 

 

Where the axial points are nodes 5,14,23 and Alpha 

parameter represents the exponential coefficient in the 

formula: 
 

T(x,y,z,t)=F(x,y,z).Exp-Alpha . t. . . . . . . . . . Cooling curve, 

 

T(x,y,z,t)=F(x,y,z).(1-Exp-Alpha . t) . . . . . . . Heating curve 

 

WE present the Temperature T along the central axis as 

a function of time t=n. dT in Figure 2. 

 

Temperature T 

 

 
Fig 2 Temperature along the Central Axis as a  

Function of Time 

 

Here the numerical value of Alpha which is a function 

of the size and shape of the object considered as well as the 
thermal diffusivity coefficient is invariant and is almost 

equal to 0.37 in SI units. 

 

B. A Quantum Particle in a 3D Potential box (Fig.1) 

Interestingly, the same transition matrix B used to 

solve classical physics problems such as heat diffusion PDE 

is also valid for the solution of the time-independent 

Schrödinger equation with minor modifications [7,8,9]. 

 

 Step 1 

 

 Construct the B-matrix 27x27 with RO=0. 

 We call this matrix M2. 

 

 Step 2 

 

 Construct the proper matrix M3=M2+CV(x,y,z). I 

 Such that V(x,y,z) is symmetrical about the center of 

mass (node 14) and tends to zero at the boundaries. 

 The 27x27 eigenmatrix is given by, 

 

3/16 1/6 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

1/6 4/16 1/6 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

 

 

 

 

 

 
 

 

http://www.ijisrt.com/


Volume 8, Issue 12, December – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                                   ISSN No:-2456-2165 

 

IJISRT23DEC1827                                                             www.ijisrt.com                   2458 

0.0 1/6 3/16 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

1/6 0.0 0.0 4/16 1/6 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

0.0 1/6 0.0 1/6 6/16 1/6 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 

0.0 0.0 1/6 0.0 1/6 4/16 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

0.0 0.0 0.0 1/6 0.0 0.0 3/16 1/6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

0.0 0.0 0.0 0.0 1/6 0.0 1/6 4/16 1/6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1/6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

0.0 0.0 0.0 0.0 0.0 1/6 0.0 1/6 3/16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 1/6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 

1/6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4/16 1/6 0.0 1/6 0.0 0.0 0.0 

0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

0.0 1/6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 6/16 1/6 0.0 1/6 0.0 0.0 

0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 4/16 0.0 0.0 1/6 0.0 

0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 0.0 

 

0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 6/16 1/6 0.0 1/6 
0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 

 

0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 1/6 8/16 1/6 0.0 

1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 

 

0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 1/6 6/16 0.0 

0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 

 

0.0 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 4/16 

1/6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 1/6 
6/16 1/6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 0.0 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 

1/6 4/16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 3/16 1/6 0.0 1/6 0.0 0.0 0.0 0.0    0 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 1/6 4/16 1/6 0.0 1/6 0.0 0.0 0.0 0.0 

 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 1/6 3/16 0.0 0.0 1/6 0.0 0.0 0.0 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 0.0 

0.0 0.0 1/6 0.0 0.0 4/16 1/6 0.0 1/6 0.0 0.0 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 

0.0 0.0 0.0 1/6 0.0 1/6 6/16 1/6 0.0 1/6 0.0 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 0.0 

0.0 0.0 0.0 0.0 1/6 0.0 1/6 4/16 0.0 0.0 1/6 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/6 

0.0 0.0 0.0 0.0 0.0 1/6 0.0 0.0 3/16 1/6 0.0 
 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.00 1/6 4/16 1/6 

 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 1/6 0.0 0.0 0.0 0.0 0.0 1/6 0.0 1/6 3/16 

 

Note that we used an integer multiplication factor for 

the 27 diagonal entries M3 (I,i) of, 3 4 3 4 6 4 3 4 3 3 4 6 4 6 

8 . . . etc 

 

 Step 3 
Verify that V(x,y,z) is an eigenvector of M3 with an 

eigenvalue equal to 1. 

 

 V(x,y,z)= 

 

 635/256 

 

 63/16 

 

 635/256 

 
 63/16 

 

 641/96 

 

 63/16 

 

 635/256 

 

 63/16 

 

 635/256 

 
 193/48 

 

 641/96 

 

 63/16 

 

 641/96 

 

 45/4 

 

 ..etc.. 
 

 M3 . V(x,y,z)= 

 

 635/256 

 

 63/16 
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 635/256 

 

 63/16 

 

 641/96 

 

 63/16 

 
 635/256 

 

 63/16 

 

 635/256 

 

 193/48 

 

 641/96 

 

 63/16 

 
 641/96 

 

 45/4 

 

 ..etc.. 

 

 Showing that M3 . V(x,y,z)=V(x,y,z) is almost exact ! 

 

IV. CONCLUSION 

 

Extending the physical transition matrix chains B to 
the solution of the time-independent Schrödinger equation is 

not complicated but it is a bit long and requires respecting 

certain limitations of the bases which are briefly explained 

in this article. The present study shows that the statistical 

chains of matrix B can be applied to the solution of the time-

dependent 3D heat equation and the time-independent 3D 

Schrödinger equation. We present the numerical solution via 

the statistical transition matrix B in two illustrative 

situations, namely the 3D thermal diffusion equation and the 

quantum particle in a three-dimensional box where the 

numerical results are of excellent precision. 

 

 NB: In the previous calculations, the author used his 

own double precision algorithm as explained in ref. 10. 

 No ready-made algorithms such as Python or MATLAB 

are needed 
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