
Volume 8, Issue 12, December 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC313 www.ijisrt.com 208

Map Reduce on Red Green Blue Architecture

Lacine KABRE

Joseph Ki-Zerbo University,

Mathematical and computer analysis laboratory,

Ouagadougou, BURKINA FASO

Telesphore TIENDREBEOGO,

NAZI BONI University, Bobo Dioulasso,

Bobo Dioulasso,

BURKINA FASO

Abstract:- In massive data processing, platforms using

MapReduce are designed for data centers, which are

generally centralized.These platforms typically rely on a

single node to maintain and coordinate MapReduce

tasks, leading to a single point of failure. Our aim in this

paper has been to propose a model for MapReduce

computation on the Red Green Blue architecture, which

is a decentralized, triple-node big data architecture.

This architecture is based on the peer-to-peer

networking protocol named Content Addressable

Network. First, we implemented all the steps of the

MapReduce computation approach, taking into account

the properties of the Content Addressable Network

protocol and the Red Green Bluearchitecture. We then

carried out an experiment in a local network to evaluate

performance in terms of processing speed and time. The

experiment showed that latency decreased with the

number of compute nodes. This study not only showed

that the Red Green Blue architecture is viable as a

massive data processing architecture, but also improved

processing times as a function of network nodes. The

robustness, scalability and lack of a single point of

failure of the Red Green Bluearchitecture mean that

MapReduce can be easily deployed in a wider variety of

applications.

Keywords:- P2P protocol, Map Reduce, RGB architecture,

Big data Storage.

I. INTRODUCTION

Over the past twenty years, the amount of data

generated has only increased. Currently, we produce a very

large mass of data every year, estimated at nearly 3 trillion

(3,1018) bytes of data. It is estimated that in 2016, 90% of

the world's data was created in the previous two years.

Database Management System (DBMS) have been

criticized for their monolithic architecture, which makes

them "heavy" and costly to operate [1].It is sometimes

argued that they are inefficient for many data management

tasks, despite their success in enterprise data processing.

This has been dubbed the "big data problem". And today

the term "big data" is used to designate this phenomenon of
high-volume, diverse data with a velocity that is becoming

increasingly difficult to control. Whereas early DBMS

focused on modeling the operational characteristics of

companies, "big data" systems are now geared towards

modeling user behavior by analyzing vast quantities of

interaction logs. In view of the sheer volume of data

involved, several solutions have been put forward to

restructure DBMS [2], but the basic architecture has not

changed dramatically. With the increase in data quantity

and the availability of high-performance, relatively

inexpensivehardware, database systems have been extended

and parallelized to run on multiple hardware platforms [3].

Recently, a new distributed data processing framework

called MapReduce has been proposed [4], whose

fundamental idea is to simplify parallel processing using a

distributed computing platform that offers only two

interfaces: map and reduce.

Hadoop[5] is the most popular framework

implementing the map reduce computation model. Several

other technologies developed around Hadoop make it
efficient and easy to deploy in data centers [6]. Typically,

Hadoop is deployed on its HDFS (Hadoop Distributed File

System) file system for greater efficiency. But Hadoop’s

architecture is centralized. Its main node, called the name

node, is responsible for all the other nodes, called the data

node. This central node constitutes a point of failure, as its

unavailability brings the platform to a complete halt until it

is restored [7].

In this research work, we propose the possibility of

deploying MapReduce on a Big Data architecture. This is

the Red Green Bleu(RGB) architecture, which uses the

CAN distributed hash table and its network management

methods [8]. Our contribution in this paper was first to

define the components of MapReduce and how it integrates

with the RGB architecture that constitutes the storage layer

in our context, and then to build a prototype implementing
MapReduce execution. We then deployed our system in a

local environment and carried out an experiment by

running a word counting process on a file stored on RGB

architecture before concluding with an evaluation of the

results, which show that our architecture is viable in a big

data processing context.

II. MAP REDUCE PROGRAMMING MODEL

In 2004, Google published an article proposing a

solution for processing large-scale analytical operations on

a large cluster of servers: the MapReduce computing

model. In this approach, users implement their own

mapping and reduction functions, while the system is

responsible for scheduling and synchronizing mapping and

reduction tasks [4]. MapReduce is increasingly used in

applications such as data mining, data analysis and

scientific computing. Its widespread adoption and success

are based on its distinctive features [1], which can be

summarized as follows:

 Flexibility: it lets you write your own calculation and
sorting methods on a variable amount of data [1].

 Scalability: the MapReduce processing system can

dynamically increase or decrease its performance as

computing needs change [1].

 Efficiency: MapReduce doesn't need to load data into a

database, which usually entails high costs. It is therefore

http://www.ijisrt.com/

Volume 8, Issue 12, December 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC313 www.ijisrt.com 209

highly efficient for applications that require data to be

processed once (or only a few times)[1].

 Fault tolerance: In MapReduce, each job is divided

into several small tasks which are assigned to different

machines[1].

In the Map Reduce computation model, a computation
takes a set of key/value pairs as input, and produces a set of

key/value pairs as output [4]. MapReduce is based on two

main methods: Map and Reduce. The Map method, written

by the user, takes a data pair as input and produces a set of

intermediate key/value pairs. MapReduce groups all

intermediate values associated with the same key and

passes them onto the Reduce function. The Reduce

function, also written by the user, accepts an intermediate

key and a set of values for this key. It merges these values

to form a possibly smaller set of values. As a general rule,
each invocation of the Reduce function produces only zero

or one output value. Intermediate values are supplied to the

user's reduction function via an iterator [9]. This allows us

to manage lists of values that are too large and could

saturate memory. Many different implementations of

MapReduce exist, depending on the environment.

Forexample, one can be implemented on a small shared-

memory machine and another for a set of networked

machines [4]. The following algorithms represent examples

of pseudo code for Map and Reduce functions, and Fig.1

shows an illustration of MapReduce execution.

In a MapReduce computing system, tasks are sent to

worker nodes via the scheduling module. Each worker node

is responsible for a mapping or reduction process [1]. The

basic implementation of the MapReduce engine must

include the following modules (marked by gray boxes in

Figure 1).

Fig. 1: Map Reduce Architecture [1]

http://www.ijisrt.com/

Volume 8, Issue 12, December 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC313 www.ijisrt.com 210

 The “Scheduler” module is responsible for assigning

Map and Reduce tasks to compute nodes (also known as
worker nodes), based on data location, network status

and other node statistics. It also controls fault tolerance

by rescheduling a failed process to other worker nodes

(if possible). “Scheduler” design significantly affects

MapReduce system performance.

 The “Map” module analyzes a block of data and

invokes the user-defined Map function to process the

input data. After generating intermediate results (a set

of key/value pairs), it groups the results based on

partition keys, and notifies the master node of the

position of the results.

 The "Reduce" module extracts data from the maps after

receiving notification from the master node once all

intermediate results have been obtained. The "Reduce"

module merges the data by key and all values with the

same key are grouped together. Finally, the user-defined

function is applied to each key/value pair and the results

are transmitted to the master node.

III. RED GREEN BLUE ARCHITECTURE

Today, the ever-increasing volumes of data from a

variety of sources have given rise to a new range of

technologies and architecture models. These so-called Big

Data architectures are data pipelines capable of collecting,

storing and processing data. Most often, data is stored and

processed in semi-structured and unstructured formats.

However, well-known architectures such as Lamda

architecture, Zeta architecture and Iot architecture have a
centralized data lake, while architectures such as

microservice architecture and kappa have several databases

forming their data lake. In our previous work, we proposed

an architecture model that takes advantage of the

aforementioned architecture models and overcomes the

limitations of centralized data lake models. This

architecture, called RGB architecture, is a model that uses

the decentralized peer-to-peer network (CAN) protocol

based on distributed hash tables[8].In addition, we carried

out a comparative study of the peer-to-peer network

protocols Chord, CAN, Pastry and Kademlia, which

showed that the CAN[10] protocol had a slightly higher
routing time than the others, but ensured more efficient

message transmission [11]. Storage operations with the

CAN protocol therefore have a good success rate [11].

The RGB architecture is a triple-node architecture

determined by the image properties Red Green Blue

(RVB)[13] and based on the properties of the CAN

protocol for information routing and node management.

The figure (Fig.3) shows the conceptual model of the

architecture. In the RGB architecture, we have a primary

bootstrap node and three secondary nodes (R, G, B), called

bootstrap secondary nodes, which are connected to other

nodes for data storage. In the context of the map reduce

computational model implementation, the data nodes play

the role of worker nodes(see image Fig.10).

Fig. 2: Red Green Blue Architecture [8]

IV. THE OPERATING PRINCIPLE OF RGB

ARCHITECTURE

A. The storage of Big Data objects
Object storage is an unstructured data storage technique.

It therefore enables massive data to be stored with a unique

identifier enabling the object to be located [3]. In the RGB

architecture, an SHA-3 key is used to generate a unique

identifier for each object. This identifier is called the Global

Unique IDentifier (GUID). This 512-bit key is associated

with the object to be stored, and the key/value pair is written

to the CAN protocol hash table[12].. The key is then divided

into eight 64-bit subkeys. Each 64-bit sub-key is also

associated with the object to be stored. Each key is then

broken down into two parts of 24 bits and 40 bits. The 24

bits are used to determine the data peer cluster that will

contain the data to be stored. The calculation process is

detailed in [8].The algorithm 1 is a pseudo code of the

calculation process.

http://www.ijisrt.com/

Volume 8, Issue 12, December 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC313 www.ijisrt.com 211

Fig. 3: Architecture of secondary bootstrap node [8]

Figure (Fig.5) is a screenshot showing the calculation of keys during a storage request in the RGB architecture. This is the
result of implementing algorithm 1.

Fig. 4: Calculating storage keys

B. Dynamics of nodes

One of the design objectives of the RBG architecture is

to have an almost totally autonomous, self-managed system

with high fault tolerance. In its operation, the secondary

bootstrap nodes are synchronized with the primary bootstrap

node [8]. The first secondary node to detect the

unavailability of the primary node will replace it while

waiting for it to recover. As a result, the system will

continue to operate and storage will be carried out on the

other two remaining nodes. Adding and removing data pairs

is managed by the CAN protocol [8].

http://www.ijisrt.com/

Volume 8, Issue 12, December 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC313 www.ijisrt.com 212

V. DATA SECURITY LAYER IN RGB

ARCHITECTURE

RGB architecture introduces data-centric security.

Search operations require verification of all subkeys

associated with the object being searched. During storage, a

coordinate point (x,y) is chosen in the two-dimensional
virtual space of CAN. Applying the SHA-3 encryption

function to this point provides the object's GUID, which in

turn is split into 8 subkeys. The sub-key space is called the
virtual image space. Figure Fig.6 illustrates the association

between the CAN image space and the virtual image space.

 Let Pu, the CAN unique point, SHA-3 the encryption

function, the object identifier is verified by the following

formula

𝑆𝐻𝐴3(𝑃𝑢) = ∑ (P′
𝑖
)

8

𝑖=1

(1)

Fig. 5: The image shows the association of an SHA3 key with a virtual point space

To reinforce the security of data in transit, FPE[17]

technology is used in addition to the verification of keys

identifying objects. This technology preserves data integrity

from capture to storage in the data lake. The application of

these techniques results in a data lake with reliable data[17].

VI. RESULT ON LOOKUP OPERATIONS

Fig. 6: Average Time for LOOKUP Operations

The performance of search and storage operations has

been evaluated[8]. The figure shows the evolution of latency

times for search requests. For 1000 store requests (STORE

request), we generate around 1000*8 keys in the hash table.
For search requests (LOOKUP request), the operation was

carried out several times and the average search times were

calculated using the following formula: the calculation of

the average time taken for the searches is done with the

following formula:

𝑻𝑴𝑳 =
∑ (𝐓𝒊)𝒏

𝒊=𝟏

𝑵𝑳

; ; 𝑛 = 1000 (𝟐)

NL is the total number of LOOPUK requests and Tiis

the time for lookup.At the start of the experiment, latency

was 2.9 ms (milliseconds). A peak of 5.7 ms was also

observed. But as we repeated the experiment, the latency

time dropped slightly to 4.9 ms.

VII. MAP REDUCE AND RGB ARCHITECTURE

Today. several technologies are designed for massive

data processing and adapt to cloud architectures. Their

architecture relies on several nodes with specific roles to

coordinate task execution. These nodes perform scheduling

and distribution tasks and contribute to network fault

tolerance. However, the failure of individual nodes has a

major impact on the overall system.Our MapReduce

implementation on the RGB Architecture provides a
dynamic framework for MapReduce, and is ableto be

CAN virtual space Virtuel point space

(p)

http://www.ijisrt.com/

Volume 8, Issue 12, December 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC313 www.ijisrt.com 213

running on any arbitrary distributed configuration. Our

framework exploits the characteristics of CAN[12]
distributed hash tables coupled with our color-

codedcomputing approach to manage distributed file

storage, fault tolerance and data retrieval[8].

Our approach to implementing MapReduce has been to

develop modules as extensions to the CAN protocol, taking
advantage of existing functionality. By treating each task as

a data object, we can distribute them in the same way as

files, relying on the protocol to route them and ensure their

robustness.

Fig. 7: Basic Architecture of node on RGB Architecture

VIII. MAP REDUCE AND DATAFLOW

In the implementation of MapReduce in the RGB

architecture, each data peer ("worker") will perform the

tasks and send its result to the "secondary bootstrap node".

Note that these peers of data are also nodes in a P2P

network using the CAN protocol. They therefore retain

their master slave status.To launch the MapReduce process,

the user contacts the primary bootstrap node. The primary

bootstrap node first identifies the file using the RGB system
search algorithms on one of the clusters (R or G or B)

before delegating full management of all MapReduce steps

to it.

The "secondary bootstrap node" that receives a
computation request will first select a set of nodes to

perform the tasks, also known as "jobs". This stage

corresponds to an initialization process, in which the

secondary bootstrap node confirms, on the basis of its

routing table, the availability of the nodes it has chosen to

perform the calculations.

The secondary bootstrap node's job is to divide the

data file into smaller units called "data atoms" and then send

each data unit to its elected peers. In this way, each compute

node performs the job on the data unit assigned to it. The

results are stored as a new data atom, which is then sent to

the secondary bootstrap node. This operation takes

(d/4)(n1/d) hops according to the routing algorithms of the

CAN(12) protocol, with d the dimension of the space and n

the number of nodes. The data atom can be a block of text,
the result of a summation or a subset of the elements to be

processed. MapReduce functions are applied to these data

atoms.

For a particular intermediate value, or a subset of

elements to be sorted, the details of the "job" distribution are

defined by the user.

For a user who wants to run a MapReduce job on data

stored in the RGB architecture, the primary bootstrap node

locates the data file using its key, as described in [8], and

sends the command to the secondary bootstrap node, which

becomes fully responsible for executing the MapReduce job.

The secondary node have the role of JobTracker. It
coordinates the execution of the jobs and returns the result

to the primary node.

In our design, elected peers must finish executing a

task before they want to leave the network. To avoid losing
an atom of data, a timeout is assigned to each task. If a task

is not completed when the timeout expires, the

neighboringnode takes over the task and it is deleted from

the node that was in charge of execution. In effect, each

node also maintains the state of its neighbor.

When the delay expires, the peer who voluntarily

leaves the network overloads his neighbor with the data

atom for which he was responsible. The neighbor

determination mechanism is based on the CAN protocol

[12]. One of the advantages of our system is its ease of

development. The user doesn't get involvedthe uniform

distribution of tasks, nor about the failure of a network node.

If a node fails during an operation, its task is reassigned to

another. This makes the system extremely robust during

runtime. For this architecture, all a developer has to do is
write the Map and Reduce functions, which define how to

divide the work to be done into portions and the task to be

performed on each portion to obtain results.

http://www.ijisrt.com/

Volume 8, Issue 12, December 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC313 www.ijisrt.com 214

IX. EXPERIMENTATION AND DEPLOYMENTS

A. Experimentation

The aim of this paper is to show that our architecture is

viable for processing massive data using the MapReduce

model. To this end, we will carry out an experiment in a

local network and seek to evaluate the following aspects:

 speed of execution of Jobs submitted by compute nodes;

 The evolution of calculation times as a function of

calculation nodes;

 Execution speed as a function of the number of jobs

submitted.

The acceleration or speed of computation can be

demonstrated by showing that a "Job" distributed to several

nodes runs faster than when assigned to a single node. In

other words, show that ⱻn Tn < T1, where Tn is the time, it

takes n nodes to complete a "Job". To establish scalability,

we need to show that the cost (in terms of time) of

distributing work grows logarithmically. Also, we need to

show that the larger the "Jobs" to be completed, the higher

the number of nodes if we want to achieve a low execution

time. To estimate the execution time, we use the formula
[15]:

𝑇𝑛 =
𝑇1

𝑛
+ 𝑘 ∗ log2(𝑛) (3)

T1/n is the time the job would take if it was distributed

in an ideal universe and k*log2(n) is the network time, k

being an unknown constant depending on network latency.

For the purposes of this article, our experiment is based on
counting the number of words in a file. Fig.9 shows the

steps in the calculation process.

B. Deployments

To evaluate the performance of our MapReduce
implementation, we chose to deploy it on a local network.

This implementation was entirely realized in Java using the

java.net, File, Stream API and regular expressions. Our

implementation implements all the routing and

maintenance procedures defined by the CAN(12) protocol,

which is used to implement the RGB(8) architecture. The

machines used are configured on the Windows file system.

Our implementation is therefore able to easily manipulate

(create, read and write) files. To start the experiment,

MapReduce commands and job descriptions are sent to the

Primary Bootstrap Node, which performs a file search
operation before transferring the commands to one of the

secondary nodes. We tested our computing system by

running a word frequency count. The tasks were tested in

several configurations; we varied the initial network size

and the size of the Jobs. Each Map job is defined by the

number of nodes that must execute it, and produces a result

that constitutes an input for the "Shuffle" process. Reducing

these results involves adding up the respective fields. Our

experiment counts the occurrence of each word in a file

stored on the RGB[8] architecture.

Fig. 8: Map Reduce processes for WordCount[16]

Fig. 9: Example of a file block created after a Splitting operation

http://www.ijisrt.com/

Volume 8, Issue 12, December 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC313 www.ijisrt.com 215

Fig. 10: Example of a file created after running Map

Fig. 11: Example of files created after Shuffle

Fig. 12: Example of files created after running Reduce

Fig. 13: Example of a file containing the calculation result

http://www.ijisrt.com/

Volume 8, Issue 12, December 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC313 www.ijisrt.com 216

X. RESULTS

In a test context, we evaluated the latency of

MapReduce requests. We chose a file with a fixed size of

120 MB. This file contains a set of words. The Map and

Reduce tasks consist in counting certain keywords that we

specified as arguments at the start of the program launch.
First, we carried out an initial test to ensure that all the

steps would run successfully. To do this, we configured the

RGB architecture and the nodes on a single machine with
32 GB ram capacity and an SSD disk. The addresses of the

computing peers and secondary nodes are managed using

text files. We ran the same Job several times, varying the

number of nodes from 1 to 10.

Fig. 14: Job execution time as a function of nodes

Fig.15 shows the evolution of calculation times for the

same. Job. We obtained an average value of 1214

milliseconds, approximately (1.3 seconds) for one node,

and an average value of 361 milliseconds for 10 nodes.

Thegreater the number of nodes, the longer the execution

time. This implies that the processes of dividing files into

blocks, distributing these blocks, counting and sorting are

successfully completed.

Fig. 15: Processing time as a function of compute nodes

Fig.16 shows the result of experimenting with

MapReduce on the RGB architecture in the deployment

environment described above. We decided to run 100 jobs

and then 500 jobs simultaneously, varying the number of

nodes (Workers) from 1 node to 20 nodes. For the 100

jobs, we have 429.4 seconds for 1 node versus 22.10

seconds for 20 nodes. For 500 jobs, we have 4322 seconds

for 1 node versus 1400 seconds for 20 nodes. For this

experiment, we observe a progressive decrease in

processing time, as shown in Fig.16. We can therefore
deduce an acceleration factor by calculating (T1/Tn). This

gives 19.41 for 100 jobs and 3.08 for 500 jobs respectively.

Note that the higher the number of jobs, the longer the

computation time, but the shorter it is if several nodes are

assigned to the jobs.

The graphs in Fig.17 show the evolution of

computation times for jobs between 1 and 20 compute

nodes. This estimate is based on a proportional calculation

and the data collected in the previous analyses. The values

(in seconds) given in the table indicate calculation times.

http://www.ijisrt.com/

Volume 8, Issue 12, December 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC313 www.ijisrt.com 217

Table 1: Estimated time spent depending on nodes

Workers 100 Jobs 200 Jobs 300 Jobs 400 jobs 500 jobs

Time(s)

1 429.4 858 1287 1716 4321.9

5 214.1 729.8 1158.8 1587.8 2002.7

10 107.5 601.5 1030.5 1459.5 1815.0

20 22.1 472.3 901.73 1330.3 1399.3

Table 2 : Estimated time spent depending on nodes

Workers 600 jobs 700 jobs 800 jobs 900 jobs 1000 jobs

Time(s)

1 518.2 6049.17 6913.14 7777.13 8641.11

5 4217.2 5081.17 5945.14 6810.13 7971.11

10 3249.2 4113.17 4977.14 5843.13 7301.11

20 2281.2 3145.17 4009.14 4876.13 6631.11

Graphs on Fig.17 have the same shape, showing an improvement in calculation time despite the large numberof jobs

submitted.

Fig. 16: Estimating execution time as a function of nodes

Furthermore, the graphs in Fig.16 and Fig.15follow a logarithmic function. Taking into account the speed of execution, we

make a projection based on the equation 3. This produces the graphs shown in Fig.17.

Fig. 17: Job execution speed by node

Fig.18 shows a theoretical estimate of execution speed
as a function of the number of nodes. Based on 500 jobs

submitted, for 100 nodes we have an execution speed 66.42

times the execution speed of a node loaded with the same

number of jobs. At 10,000 nodes, the speed can reach 97.92
times the speed of a loaded node.

http://www.ijisrt.com/

Volume 8, Issue 12, December 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC313 www.ijisrt.com 218

XI. CONCLUSION

In this article, we present MapReduce on the RGB

architecture, a massive data processing architecture based

on the peer-to-peer networking protocol. This architecture

has self-managed, dynamic compute nodes thanks to the

distributed hash table property used in the CAN protocol.
We therefore experimented with MapReduce operation in a

decentralized environment and showed that MapReduce is

scalable, load-balanced and fault-tolerant thanks to the

dynamism of the nodes in the RGB architecture from a

network point of view.We implemented a fully functional

version of MapReduce on the RGB architecture and carried

out detailed experiments to test its performance. These

experiments confirmed that the architecture is robust and

efficient. P2P network protocols are traditionally known for

file sharing. We have demonstrated that it can also be used

to build a data pipeline and perform distributed
computations on large volumes of data.

In the near future, we intend to further optimize the

performance of MapReduce and the RGB architecture by

studying an efficient load-balancing system.

REFERENCES

[1]. Li F, Ooi BC, Özsu MT, Wu S. Distributed data

management using MapReduce. ACM Comput Surv.

2014 Jan 1;46(3):31:1-31:42.

[2]. Chaudhuri S, Weikum G. Rethinking Database

System Architecture: Towards a Self-tuning RISC-

style Database System. Proceedings of the 26th

International Conference on Very Large Data Bases,
VLDB’00. 2000 Dec 20;

[3]. Özsu MT, Valduriez P. Principles of Distributed

Database Systems, Third Edition [Internet]. New

York, NY: Springer New York; 2011 [cited 2023 Jun

6]. Available from:

https://link.springer.com/10.1007/978-1-4419-8834-8

[4]. Dean J, Ghemawat S. MapReduce: simplified data

processing on large clusters. Commun ACM. 2008

Jan;51(1):107–13.

[5]. Apache Hadoop [Internet]. [cited 2023 Jun 7].

Available from: https://hadoop.apache.org/
[6]. PoweredBy - HADOOP2 - Apache Software

Foundation [Internet]. [cited 2023 Jun 7]. Available

from:

https://cwiki.apache.org/confluence/display/HADOOP

2/PoweredBy

[7]. Shvachko K, Kuang H, Radia S, Chansler R. The

Hadoop Distributed File System. In: 2010 IEEE 26th

Symposium on Mass Storage Systems and

Technologies (MSST). 2010. p. 1–10.

[8]. Big Data Storage based on CAN Protocol [Internet].

2023 [cited 2023 Jun 8]. Available from:

https://www.researchsquare.com
[9]. Lämmel R. Google’s MapReduce programming

model — Revisited. Science of Computer

Programming. 2008 Jan;70(1):1–30.

[10]. Dromard J. Etat de l'art: Réseaux pair à pair,

supervision, sécurité et approches collaboratives. 2010
Jan 1 [cited 2023 Jun16];Available from:

https://www.academia.edu/55363840/Etat_de_lart_R

%C3%A9seaux_pair_%C3%A0_pair_supervision_s%

C3%A9curit%C3%A9_et_approches_collaboratives

[11]. Kabre L. Comparative Study of can, Pastry, Kademlia

and Chord DHTS. 2021 Jan 1 [cited 2023 Jun 16];

Available from:

https://www.academia.edu/51132180/COMPARATIV

E_STUDY_OF_CAN_PASTRY_KADEMLIA_AND

_CHORD_DHTS

[12]. Ratnasamy S, Francis P, Handley M, Shenker S, Karp

R. A Scalable Content-Addressable Network.
[13]. Ferrah I. Un nouveau classificateur de codage

RVBRNA et analyse fractale pour l’étude et le

diagnostic d’un isolateur pollué sous tension

alternative 50 Hz [Internet] [Thesis]. 2021 [cited 2023

Jun 16]. Available from:

http://repository.enp.edu.dz/jspui/handle/123456789/9

817

[14]. Kofi D, Mouaddib EM, Salvi J. Décodage d’un motif

structurant codé par la couleur.

[15]. Rosen A. Towards a Framework for DHT Distributed

Computing [Internet]. Georgia State University; [cited
2023 Jun 29]. Available from:

https://scholarworks.gsu.edu/cs_diss/107

[16]. MapReduce Word Count | Guide to MapReduce Word

Count | Examples [Internet]. EDUCBA. 2020 [cited

2023 Jun 16]. Available from:

https://www.educba.com/mapreduce-word-count/

[17]. Conference: Selected Areas in Cryptography, 16th

Annual International Workshop, SAC 2009, Calgary,

Alberta, Canada, August 13-14, 2009, Revised

Selected Papers, DOI:10.1007/978-3-642-05445-

7_19.

http://www.ijisrt.com/
http://dx.doi.org/10.1007/978-3-642-05445-7_19
http://dx.doi.org/10.1007/978-3-642-05445-7_19

