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I. INTRODUCTION 
 

Vector space is the most important part of Functional Analysis.In this paper the vector space is clearly defined [1, 6]. 

Furthermore, a vector space that has a norm function in it is called a norm space [2,5,7]. As for the clearly defined finite linear 
operator [3,4,5].  

 

 Definition  1.1 [1]Suppose 𝑉be a vector space over the field F. Define a real function as follows : 
 

‖ . ‖  ∶   𝑉 ×   𝑉  ⟶   ℝ  
 

Who fulfils : 
 

‖𝑥‖   ≥   0 
 

‖𝑥‖  =   0  ⟺    𝑥 =   0 
 

‖𝛼 𝑥‖  =  |𝛼|‖𝑥‖ 
 

‖𝑥 + 𝑦‖   ≤   ‖𝑥‖ + ‖𝑦‖ 
 

Shared vector space with norms function‖ .  ‖is called a normed space denoted by(𝑉, ‖ . ‖). 
 

 Definition 1.2: [5]Suppose 𝑉 and 𝑊be are vector spaces a mapping 𝑇 from the vector space 𝑉 to the vector space 𝑌 

satisfies𝑇 (𝑥 + 𝑦) = 𝑇(𝑥) + 𝑇(𝑦)and𝑇(𝛼𝑥) =  𝛼𝑇(𝑥)for each𝑥, 𝑦 ∈ 𝑉and𝛼 ∈   𝐹. 𝑇 is called a linear operator. 
 

 Definition  1.2 [1]Suppose 𝑉 and 𝑊be are vector spaces.  A mapping 𝑇 from the norm space 𝑉 to the vector space 𝑌 is called a 

bounded linear mapping if there exists 𝑐 ∈ 𝐹 such that it satisfies‖𝑇(𝑥)‖  ≤   𝑐‖𝑥‖for each𝑥 ∈ 𝑉 
 

 Definition  1.3 [5]Suppose 𝑉 and 𝑊be are vector spaces.   
 

 DefineΒ(𝑈, 𝑉) =  {𝑇 |  𝑇 ∶ 𝑈 ⟶   𝑉, 𝑇  𝑙𝑖𝑛𝑒𝑎𝑟}. Further it can be proved that 𝐵(𝑈, 𝑉) is a vector space. Further it can be 

proved that 𝐵(𝑈, 𝑉) is a vector space. 
 

 Definition  1.4 [2,6]Suppose (𝑥𝑛  )be a sequence on the space ofℝ.   
 

Define the sequence space:  
 

𝓵𝒑(ℝ) =  {(𝑥𝑛)  ⊆  ℝ| ∑|𝑥𝑛|𝑝 <   ∞

∞

𝑛=1

} 

 

Furthermore, it can be proven that𝓵𝒑(ℝ)is a vector space. Apart from that, the norm can also be defined: 
 

‖𝑥‖𝓵𝒑 =  (∑|𝑥𝑛|𝑝

∞

𝑛=1

)

1

𝑝
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More specific to𝒑 = 2,  maka ruang  𝓵𝟐(ℝ)is an inner product space with inner product defined : 
 

〈𝑥𝑛 , 𝑦𝑛〉 =  ∑|𝑥𝑛𝑦𝑛|2

∞

𝑛=1

 

 

Theorem   1.1[5]Any space𝓵𝒑(ℝ)with𝑝 ≠   2 , is not an inner product space. 
 

Proof. Using the properties of parallelograms, select𝑥 = (1,1,0,0,0 … , ) ∈  𝓵𝒑(ℝ)and𝑦 = (1, −1, 0, 0, 0, … , ) ∈ 𝓵𝒑(ℝ)then 

obtained: 
 

‖𝑥‖ = ‖𝑦‖ = 2
1

𝑝       𝑑𝑎𝑛   ‖𝑥 + 𝑦‖ = ‖𝑥 − 𝑦‖ = 2 
 

It appears that the equation holds𝑝 = 2∎ 
 

Theorem   1.2 [5]Any space𝑪[𝒂, 𝒃]is not an inner product space. 
 

Proof. Suppose‖𝑥‖ =  max 
𝑡 ∈[𝑎,𝑏]

|𝑥(𝑡)|is the norm on the space𝑪[𝒂, 𝒃]. This theorem can be proved using parallelogram theory. 

Suppose it is determined that𝑥(𝑡) = 1, 𝑦(𝑡) =
𝑡−𝑎

𝑏−𝑎
then‖𝑥‖ = 1and‖𝑦‖ = 1so that it is obtained: 

 

𝒙(𝑡) + 𝑦(𝑡) = 1 +  
𝑡 − 𝑎

𝑏 − 𝑎
 

 

𝒙(𝑡) − 𝑦(𝑡) = 1 −  
𝑡 − 𝑎

𝑏 − 𝑎
 

so that it is obtained: 
 

‖𝑥 + 𝑦‖ = 2  ,  ‖𝑥 − 𝑦‖ = 1and‖𝑥 + 𝑦‖2 +  ‖𝑥 − 𝑦‖2 = 5even though2(‖𝑥‖2 + ‖𝑦‖2) = 4.             
 

∎ Definition  1.5 [3,7]Suppose [𝑎, 𝑏]  ⊆  ℝand𝑓 ∶ [𝑎, 𝑏]  ⟶ ℝ is a real function onℝ .Defined 
 

𝑳𝒑([𝑎, 𝑏]) =  {  𝑓     | ∫|𝑓(𝑥)|𝑝  𝑑𝑥  <   ∞  

𝑏

𝑎

} 

 

Furthermore, it can be proven that𝑳𝒑([𝑎, 𝑏])is a norm space, with norm: 

‖𝑓‖𝑳𝒑 =  (∫|𝑓(𝑥)|𝑝  𝑑𝑥    

𝑏

𝑎

)

1

𝑝

 

 

More specific to𝒑 = 2,  then the space𝑳𝟐(ℝ)is an inner product space with inner product defined : 
 

〈𝑓(𝑥), 𝑔(𝑥)〉 =  (∫    𝑓(𝑥)𝑔(𝑥) 𝑑𝑥    

𝑏

𝑎

)

1

2

 

 

II. RESULTS 
 

In this section, the results of this research will be described, namely by proving some properties of finite linear mappings on 

a normed space and on the inner product space..  
 

Theorem  2.1. Suppuse𝓵𝒑(ℝ)beis a normed space with norm defined as follows: 
 

‖𝑥‖ =  ∑|𝑥𝑛|𝑝

∞

𝑛=1

 

 

Then there is a linear mapping  shift left𝑓which is bounded. 
 

Proof. Suppose𝑓 ∶   𝓵𝒑(ℝ)  ⟶   𝓵𝒑(ℝ), bewith the linkage defined: 
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𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, … ) ↦  𝑓(𝑥) = (𝑥2, 𝑥3, 𝑥4, 𝑥5, … ).It will be shown that 𝑓 is a linear mapping.Let's take an arbitrary𝑥, 𝑦  ∈
 𝓵𝒑(ℝ)and𝛼, 𝛽  ∈   ℝ, write down𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, … )and𝑦 = (𝑦1, 𝑦2, 𝑦3, 𝑦4, … )notice that: 
 

𝑓(𝛼𝑥 + 𝛽𝑦) =  𝑓(𝛼𝑥1 +  𝛽𝑦1), (𝛼𝑥2 +  𝛽𝑦2), …  )                              =  (0, 𝛼𝑥2, 𝛼𝑥3, …  ) + (0, 𝛽𝑦2, 𝛽𝑦3, …  ) 

 𝛼𝑓(𝑥) +  𝛽𝑓(𝑦) 
 

Means 𝑓 is linear. 
 

For an arbitrary vector𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, … )   ∈   𝓵𝒑(ℝ)apply: 
 

‖𝑓(𝑥)‖𝑝  =    ‖(𝑥2, 𝑥3, 𝑥4, 𝑥5, … )‖𝑝 
 

=  ∑|𝑥𝑛|𝑝

∞

𝑛=1

 

 

≤ ∑|𝑥𝑛|𝑝

∞

𝑛=1

 

 

=     ‖𝑥‖𝑝 
 
 

So obtained‖𝑓(𝑥)‖ ≤ ‖𝑥‖ , ∀   𝑥  ∈   𝓵𝒑(ℝ), means 𝑓 is bounded. Furthermore, without prejudice to the generality of 

writing‖𝑓‖ ≤ 1                    … … . … … … … … … … ….     (1) 
 

Meanwhile, the vectors𝑒 = (0,1,00, … ) ∈ 𝓵𝒑(ℝ).It is clear that‖𝑒‖  = 1and‖𝑓(𝑒)‖ =  ‖(1,0,0,0, … )‖ = 1thus 

obtained‖𝑓‖ =  𝑠𝑢𝑝 
‖𝑥‖=1

‖𝑓(𝑥)‖ ≥ 1…………….………..(2) 

 

From equations (1) and (2), it is concluded that‖𝑓‖ = 1∎ 
 

Example 2.1.  Suppose𝐻 =  𝓵𝟐(ℝ)be.  If 𝑯 is a Hilbert space then the right shift mapping is a linear and bounded mapping. 
 

Proof. Suppose𝑓 ∶   𝓵𝟐(ℝ)  ⟶  𝓵𝟐(ℝ)with the attribution defined  : 
 

𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, … ) ↦  𝑓(𝑥) = (0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, … ).  For an arbitrary𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, … )   ∈   𝓵𝟐(ℝ)apply: 
 

‖𝑓(𝑥)‖2  =    ‖(0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, … )‖2 
 

=  ∑|𝑥𝑛|2

∞

𝑛=1

 

 

≤ ∑|𝑥𝑛|2

∞

𝑛=1

 

 

=     ‖𝑥‖2 
 

So it is obtained‖𝑓(𝑥)‖ ≤ ‖𝑥‖ , ∀   𝑥  ∈   𝓵𝟐(ℝ), means f is bounded. 
 

Example 2.2.  Suppose𝐻 =  𝓵𝟐(ℝ).If 𝐻 is a Hilbert space then the left shift mapping is a linear and bounded mapping. 
 

Proof. It will be shown f is a linear mapping. Take any𝑥, 𝑦  ∈  𝓵𝟐(ℝ)and𝛼, 𝛽  ∈   ℝ, write 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, … )and𝑦 =
(𝑦1, 𝑦2, 𝑦3, 𝑦4, … )and realise that: 

 

𝑓(𝛼𝑥 + 𝛽𝑦) =  𝑓(𝛼𝑥1 +  𝛽𝑦1), (𝛼𝑥2 +  𝛽𝑦2), …  ) 
 

                             =  (0, 𝛼𝑥2, 𝛼𝑥3, …  ) + (0, 𝛽𝑦2, 𝛽𝑦3, …  ) 
 

=  𝛼𝑓(𝑥) +  𝛽𝑓(𝑦) 
 

This proves that 𝑓 is linear. Next suppose𝑓 ∶   𝓵𝟐(ℝ)  ⟶   𝓵𝟐(ℝ)with the attribution defined  : 
 

𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, … ) ↦  𝑓(𝑥) = (𝑥2, 𝑥3, 𝑥4, 𝑥5, … ).  For an arbitrary vector𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, … )   ∈   𝓵𝟐(ℝ)apply: 
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‖𝑓(𝑥)‖2  =    ‖(𝑥2, 𝑥3, 𝑥4, 𝑥5, … )‖2 
 

=  ∑|𝑥𝑛|2

∞

𝑛=1

 

 

≤ 
 

∑|𝑥𝑛|2

∞

𝑛=1

=     ‖𝑥‖2 

 

So it is obtained‖𝑓(𝑥)‖ ≤ ‖𝑥‖ , ∀   𝑥  ∈   𝓵𝟐(ℝ), means 𝑓 is bounded. Furthermore, without prejudice to the generality of 

writing‖𝑓‖ ≤ 1     … … … … … … … … … ..     (1) 
 

Meanwhile, the vector𝑒 = (0,1,00, … ) ∈ 𝓵𝟐(ℝ).It is clear that‖𝑒‖  = 1and‖𝑓(𝑒)‖ =  ‖(1,0,0,0, … )‖ = 1thus 

obtained‖𝑓‖ =  𝑠𝑢𝑝 
‖𝑥‖=1

‖𝑓(𝑥)‖ ≥ 1  ……………...………..(2) 

 

From equations (1) and (2) it can be deduced‖𝑓‖ = 1∎ 
 

Example 2.3. Suppose𝐻 =  𝓵𝟐(ℝ)be,If 𝐻 is a Hilbert space then the right shift mapping is a linear and bounded mapping. 

Proof. Suppose𝑓 ∶   𝓵𝟐(ℝ)  ⟶   𝓵𝟐(ℝ)with the attribution defined: 
 

𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, … ) ↦  𝑓(𝑥) = (0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, … ).  For an arbitrary𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, … )   ∈   𝓵𝟐(ℝ)apply : 
 

‖𝑓(𝑥)‖2  =    ‖(0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, … )‖2 
 

=  ∑|𝑥𝑛|2
∞

𝑛=1

 

 

≤ ∑|𝑥𝑛|2
∞

𝑛=1

 

 

       =     ‖𝑥‖2 
 

So obtained‖𝑓(𝑥)‖ ≤ ‖𝑥‖ , ∀   𝑥  ∈   𝓵𝟐(ℝ), means 𝑓 is bounded. Furthermore, without prejudice to the generality of 

writing‖𝑓‖ ≤   1     … … … … … … … … … … … … ….   (1) 
 

Meanwhile, the vector𝑒 = (1,0,00, … ) ∈ 𝓵𝟐(ℝ).It is clear that‖𝑒‖  = 1and‖𝑓(𝑒)‖ =  ‖(0, 1,0,0,0, … )‖ = 1so that it is 

obtained‖𝑓‖ =  𝑠𝑢𝑝 
‖𝑥‖=1

‖𝑓(𝑥)‖ ≥ 1  ……..………..(2) 

 

From equations (1) and (2) it can be deduced‖𝑓‖ = 1∎ 
 

Theorem  2.2. Given two norm spaces(𝑋, ‖ ∙ ‖1)and(𝑌, ‖ ∙ ‖2).Suppose 𝑇 ∈ 𝐵(𝑋, 𝑌) 𝑏𝑒, defined 
 

‖𝑇‖ =  𝑖𝑛𝑓
𝑥 ∈𝑋

{ 𝑀 ∶  ‖𝑇(𝑥)‖2  ≤  𝑀 ‖𝑥‖1}then 

 

‖𝑇‖ =  sup
𝑥 ∈  𝑥 ,   𝑥 ≠0 

‖𝑇(𝑥)‖2

‖𝑥‖1

 

 

And 
 

‖𝑇‖ =  sup
‖𝑥‖1<  1  

‖𝑇(𝑥)‖2 

 

Proof. Note that the : 
‖𝑇(𝑥)‖2

‖𝑥‖1

  ≤   𝑀, ∀  𝑥 ∈   𝑋, with  𝑥 ≠ 0 

 

From the definition obtained : 
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‖𝑇‖ =  𝑖𝑛𝑓

𝑥∈𝑋
{𝑀 ∶  ‖𝑇(𝑥)‖2  ≤  𝑀 ‖𝑥‖1} 

                                                   = sup
𝑥 ∈  𝑥 ,   𝑥 ≠0 

‖𝑇(𝑥)‖2

‖𝑥‖1

            (1) 

 

Now suppose that𝑦 =  
𝒙

‖𝒙‖𝟏
for∀   𝑥  ∈   𝑋, 𝑥 ≠ 0its accuracy is obtained𝑦 ∈   𝑋and‖𝑦‖  = 1. From equation (1) is obtained: 

 

‖𝑇‖ =      sup
𝑥 ∈  𝑥 ,   𝑥 ≠0 

‖𝑇(𝑥)‖2

‖𝑥‖1

 

 

 

=   sup
‖𝑦‖=1 

‖𝑇 (
‖𝑥‖1𝑦

‖𝑥‖1

)‖
2

 

 

 =   sup
‖𝑦‖=1 

‖𝑇(𝑦)‖2 

 

                                 =   sup
‖𝑥‖=1 

‖𝑇(𝑥)‖2       … … … … … … . . … . (2) 

 

From equation (2) is obtained : 
 

‖𝑇‖ =  sup 
‖𝑥‖1

‖𝑇(𝑥)‖2 

 

≤   sup 
‖𝑥‖1

‖𝑇(𝑥)‖2 

 

              ≤   sup 
𝑥 ∈𝑋,   ‖𝑥‖1≤  1

‖𝑇(𝑥)‖2

‖𝑥‖1

 

 

        ≤   sup 
𝑥∈𝑋,   𝑥 ≠0

‖𝑇(𝑥)‖2

‖𝑥‖1

 

 

=   ‖𝑇‖ 
 

then‖𝑇‖  =  sup 
‖𝑥‖1 ≤  1

‖𝑇(𝑥)‖2 

 

Furthermore, suppose that, 𝐴 =  {𝑥 ∈   𝑋 ∶   ‖𝑥‖1   ≤   1}and𝐴0 =  {𝑥 ∈   𝑋 ∶   ‖𝑥‖1 <   1}, because it is recognised 

that‖𝑇‖  =  sup 
𝑥 ∈ 𝐴

‖𝑇(𝑥)‖2then there is a sequence(𝑥𝑛) ∈ 𝐴so that: 

 

‖𝑇‖ =  lim
𝑛→  ∞

‖𝑇(𝑥𝑛)‖2 

 

Note that the sequence(𝑦𝑛)with𝑦𝑛 = (1 −
1

2𝑛
) 𝑥𝑛 .It is clear that𝑦𝑛  ∈   𝐴0, such that for all𝑛 ∈  ℕapply 

 

lim
𝑛→  ∞

‖𝑇(𝑥𝑛)‖2 =  lim
𝑛→  ∞

‖𝑇 (1 − 
1

2𝑛
) 𝑥𝑛‖

2
 

 

                =  lim
𝑛→  ∞

𝑇 (1 −  
1

2𝑛
) 𝑥𝑛‖𝑇(𝑥𝑛)‖2 

 

                   =  lim
𝑛→  ∞

(1 −  
1

2𝑛
) lim

𝑛→  ∞
‖𝑇(𝑥𝑛)‖2 

 

 =   ‖𝑇‖ 
 

Therefore: 
 

sup
𝑥  ∈  𝐴0

‖𝑇(𝑥)‖2  ≥   ‖𝑇‖ 

 

on the other hand sup
𝑥 ∈  𝐴0

‖𝑇(𝑥)‖2   ≤    sup
𝑥  ∈  𝐴  

‖𝑇(𝑥)‖2 
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                                                     =  ‖𝑇‖∎ 
 

 Exsamle 2.3. Suppose it is known that the space𝑋 = 𝐶[0,1],with the maximum norm. . The integral operator is defined as 

follows :  𝜑 ∶ 𝐶[0,1]  ⟶   𝐶[0,1]with :  
 

𝜑𝑓(𝑥) =  ∫ 𝑓(𝑦)   𝑑𝑦

1

0

 

 

Then 𝜑 is bounded. 
 

Proof. Note that the: 
 

‖𝜑 𝑓‖   ≤   max
𝑥 ∈[0,1]

∫|𝑓(𝑦)|

𝑥

0

 𝑑𝑦 

 

 ≤   ∫|𝑓(𝑦)|  𝑑𝑦

1

0

 

 

≤   ‖𝑓‖ 
 

Because‖𝜑‖   ≤    1,  and1 ∈ 𝑋, 𝜑 1 = 𝑥then‖𝜑 1‖ = 1. ∎ 
 

Exsamle 2.4.Suppose𝑳2[0,1], bewith norms‖𝑥‖2 . Define the integral operator: 
 

𝜑 ∶   𝑳2[0,1]  ⟶   𝑳2[0,1]  𝑤𝑖𝑡ℎ   𝜑𝑓(𝑥) =  ∫ 𝑓(𝑦)  𝑑𝑦

𝑥

0

 

Then 𝜑 is bounded. 
 

Proof. 
 

‖𝜑𝑓‖2
2  =   ∫ |∫ 𝑓(𝑠)𝑑𝑠

𝑡

0

|

1

0

2

 𝑑𝑡                                                   

 

=   ∫ ||∫ √cos
𝜋𝑠

2

𝑓(𝑠)

√cos
𝜋𝑠

2

   𝑑𝑠 

𝑡

0

||

2

𝑑𝑡

1

0

 

 

       ≤   ∫ (∫ cos
𝜋𝑠

2
   𝑑𝑠   ∫

|𝑓(𝑠)|2

cos
𝜋𝑠

2

    𝑑𝑠

𝑡

0

𝑡

0

)

1

0

  𝑑𝑡 

 

=   
2

𝜋
∫ (∫ sin

𝜋𝑡

2

𝑡

0

 ∙  
|𝑓(𝑠)|2

cos
𝜋𝑠

2

   𝑑𝑠)

1

0

 𝑑𝑡 

 

=   
2

𝜋
∫ (∫ sin

𝜋𝑡

2

𝑡

0

 ∙  
|𝑓(𝑠)|2

cos
𝜋𝑠

2

   𝑑𝑡)

1

0

 𝑑𝑠 

 

=   
2

𝜋
∫ (∫ sin

𝜋𝑡

2
   𝑑𝑡

1

0

)
|𝑓(𝑠)|2

cos
𝜋𝑠

2

   𝑑𝑠

𝑡

0
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=   (
2

𝜋
)

2

∫
|𝑓(𝑠)|2

cos
𝜋𝑠

2

   𝑑𝑠                       

𝑡

0

 

 

This is the case when𝑓(𝑠) = cos  
𝜋𝑠

2
 

 

Theorem   2.5An inner productive space satisfies the Schwarz inequality and the triangle inequality, namely: 
 

|〈𝑥, 𝑦〉| ≤ ‖𝑥‖‖𝑦‖    (Schwarz's inequality) 
 

‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖    (triangle inequality) 
 

Proof. In part 𝑎) it is easy to prove the bilan vector{𝑥, 𝑦}linearly dependent i.e. suppose𝑦 = 𝑡𝑥means it can be written 

as|〈𝑥, 𝑦〉| ≤ 
 

‖𝑥‖‖𝑦‖ ⇔ |〈𝑥, 𝑡𝑥〉| ≤ ‖𝑥‖‖𝑡𝑥‖ 
 

⇔ |𝑡〈𝑥, 𝑥〉| ≤ 𝑡‖𝑥‖‖𝑥‖ 
 

⇔ |𝑡|‖𝑥‖2 ≤ 𝑡‖𝑥‖2 
 

Furthermore, if{𝑥, 𝑦}is linearly independent then : if𝑦 = 0then0 =  |〈𝑥, 0〉| ≤ ‖𝑥‖‖0‖ = 0then it is proven. Now if𝑦 ≠   0. 

Suppose for any scalar𝒕 , note that : 0 ≤ ‖𝑥 − 𝑡𝑦‖2  =  〈𝑥 − 𝑡𝑦, 𝑥 − 𝑡𝑦〉 
 

                            =  〈𝑥, 𝑥〉 − 𝑡̅〈𝑥, 𝑦〉 − 𝑡[〈𝑦, 𝑥〉 −  𝑡̅〈𝑦, 𝑦〉] 
 

by choosing𝑡 ̅ =  
〈𝑦, 𝑥〉

〈𝑦, 𝑦〉
 

then obtained : 

0 ≤  〈𝑥, 𝑥〉 −  
〈𝑦, 𝑥〉

〈𝑦, 𝑦〉
〈𝑥, 𝑦〉 

 

=  ‖𝑥‖2 −  
|〈𝑥, 𝑦〉|2

‖𝑦‖2
 

 

Because of this〈𝑥, 𝑦〉 =  〈𝑦, 𝑥〉̅̅ ̅̅ ̅̅ ̅then by multiplying it with‖𝑦‖2then the above equation is proven.       ∎ 
 

For part 𝑏). Note that: 
 

‖𝑥 + 𝑦‖2 =  〈𝑥 + 𝑦, 𝑥 + 𝑦〉 
 

   =  ‖𝑥‖2 +  〈𝑥, 𝑦〉 +  〈𝑦, 𝑥〉 + ‖𝑦‖2 
 

From equation 𝑎) is obtained : 
 

|〈𝑥, 𝑦〉| =   |〈𝑦, 𝑥〉| ≤ ‖𝑥‖‖𝑦‖ 
 

Furthermore, from 
 

‖𝑥 + 𝑦‖2 =  〈𝑥 + 𝑦, 𝑥 + 𝑦〉 
 

   =  ‖𝑥‖2 +  〈𝑥, 𝑦〉 +  〈𝑦, 𝑥〉 + ‖𝑦‖2 
 

≤  ‖𝑥‖2 +  2|𝑥, 𝑦| + ‖𝑦‖2 
 

   =  (‖𝑥‖ +  ‖𝑦‖)2 

So it is proven∎ 

 

III. CONCLUSION 
 

From the description it can be concluded that in the 

space of sequence𝓵𝒑(ℝ)can be constructed a bounded linear 

operator as well as in the space of functions𝑳𝒑(ℝ). In 

particular for 𝑝 = 2 it can be shown that both spaces are inner 

product spaces and satisfy the Schwarz inequality and triangle 

inequality. 
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