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Abstract:- The objective of this study was to use and 

compare multi- ple classifying models that can be used 

for classifying as- tronomical data and was tested upon 

data obtained from Sloan Digital Sky Survey: Data 

Release-16. Various Classi- fying models have been 

trained and tested by dividing the data into two parts- 80 

per cent of the data was then used for training purposes 

and 20 per cent for testing. In order to achieve the task of 

classifying the tabular data consist- ing of spectroscopic 

and photometric parameters effectively, the study was not 

just limited to usage of indiviual models. Stacking : the 

combination of multiple Classifying mod- els has also 

been implemented. Multiple stacking models were 

created for the same .Stacking models have on mul- tiple 

occasions proven to have higher evaluation metrics , thus 

having significantly better performance than any in- 

dividual classifier, proving that stacking is a better choice 

to classify data. certain Individual models such as Bag- 

ging , Hard Voting etc have been found to have comparable 

performance to that of Stacked Models. Box plots for in- 

diviual classes were also plotted to compare and determine 

the models that were capable in identifying a single class of 

stellar objects. The models from this study could be used 

as a reliable classification tool for a wide variety of astro- 

nomical purposes to accelerate the expansion of the sample 

sizes of stars, galaxies, and quasars. 
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I. INTRODUCTION 
 

The universe is composed of various objects of different 

shape, size and color. In order to understand the universe we first 

need to classify the objects that make it up. For centuries, 

astronomers have been observing and studying the sky to 
understand what kinds of objects were in the universe. From 

the ancient to the present day, humanity has created thousands of 

different astronomical catalogs. The goal of all of them is to 

collect observations of astronomical objects made with one or 

more instruments and to combine them into a unique 

homogeneous description. This enables anybody interested in 

the study of a given class of sources to compare their 

properties on an equal basis. Now, with more extensive and 

higher quality catalogs, we can perform this study in a better 

way. Stars, Quasars and Galaxies are the most commonly 

found objects in the universe[1]. A star is an astronomical 
object comprising a luminous spheroid of plasma held together 

by its gravity [wiki]. Galaxies are made of billions of such stars 

that revolve around a gravitation center of the black hole[1]. 

Quasars are quasi-stellar objects which emit electromagnetic 

radiation more potent than the luminosities of the galaxies, 
combined [1]. There have been numerous large scale survey 

catalogs that have been done to map the universe and the 

celestial objects present in it. The most important surveys 

are the Sloan Digital Sky Survey (SDSS), which commenced 

observations of the universe in 1998 [2]. There have been 

four major phases of this survey with multiple data 

releases(5’th phase going on in 2022). The information 

captured by the SDSS survey includes optical, spectroscopic, 

and photometric information, along with an array of other 

observations. Here we use the data of SDSS from Data 

release 14 which was made available in 2017 [sdss.org]. Our 
objective in this project is to compare multiple classifying 

machine learning models and determine the best classifier 

among them. Here we only use the spectroscopic and 

photometric information of the SDSS DR-14 dataset. The 

objectives are as follows:- 

 To perform Exploratory Data Analysis on the SDSS 

dataset and to tidy the data. Also, to count plot & scatter 

plot the data for data visualization. 

 To select multi-class classifier models like DecisionTree, 

LogisticRegression, Stacked, Boosted etc., which can be 

used to classify the data 

 Split the data into 80/20 ratio for training and testing the 

data 

 Use the training data to train the selected models and then 

test them. 

 Evaluation Metrics such as Accuracy score, Precision 

score, Recall, F1 & Classification report are used to 

compare the tested models with the original test data. 

Thus identifying the best performing model 

 Box Plotting the evaluation metrics with classification 

models to get a better visualization of the performance of 

the Models 
 

A. Background 

Many Large Surveys of the universe have been done over 

for a while. Amongst the most popular surveys which 

capture information about the celestial objects in the universe 
is the Sloan Digital Sky Survey (SDSS) [2]. Machine learning 

and Deep learning architectures are being continually designed 

and utilized in many large-scale astronomical surveys. Both 

supervised, and unsupervised Machine Learning is used for 

classification but supervised Machine Learning has proven to 

be superior for the task [7]. CNN & ANN, like Skynet & 

AstroNN, are designed and used to survey astronomical data 

collected by observatories like APO (Apache Point 

Observatory) [1]. The Javalambre Photometric Local 
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Universe Survey (J-PLUS) is also one of the surveys designed 

to observe several thousand square degrees in optical bands 
[5]. Some other databases used for such classification 

instead of SDSS are Gaia, WISE and UKIDSS [6]. There is a 

significant increase in research works related to stellar spectra 

detection and classification. Many researchers focused on 

star-quasar, galaxy-quasar or star-galaxy binary classification. 

Others focused on multi-class classification of stars, galaxies and 

quasars. In these works, various methods have been applied to 

automatically classify the heavenly bodies accurately [6]. Many 

authors used classical machine learning algorithms such as 

support vector machines (SVM), k-nearest neighbors 

(KNN), DecisionTree (DT), XGBoost, RandomForest (RF) 

etc. [1][2][3]. Others adopted deep learning techniques or 
developed their own novel solution. Other authors use data 

released from surveys like VEXAS and use an Ensemble of 

classifiers like KNN, ANN & CatBoost to get a better result 

for classifying stellar objects [4]. 
 

 

 

B. Data 

The data used in this study are from the Sloan Digital 
Sky Survey (SDSS), which is a leading astronomical survey 

that has been working for more than 20 years to produce 

extremely precise and detailed imaging and maps of the 

universe. This public dataset, Data Release 14, is the second 

release of the fourth phase of the survey and had observations 

through July 2016[7]. It contains 18 variables with 10,000 

total entries and no missing values and has been extracted 

from the SDSS public server using SQL query. 11 Variables 

(location of an object on the celestial sphere, the field/area 

of pixels in the image taken, info and specifications on the 

spectroscopy, optical fiber, etc.) have been removed since they 

are not contributing towards classification in any way[8]. The 
descriptions of the remaining 6 feature variables and 1 class 

variable (Camera; Measures Of Flux And Magnitude; 

Redshifts, The Photometric Camera and the CCDs; 

Understanding SDSS Imaging Data; Understanding the 

Imaging Data), their first 10 entries, and their statistics are 

shown in Tables below: 

 

U The intensity of light (flux) with a wavelength of 3 5 5 1 Å  emitted by the object 

G The intensity of light (flux) with a wavelength of 4 6 8 6 Å  emitted by the object 

R The intensity of light (flux) with a wavelength of 6 1 6 6 Å  emitted by the object 

I The intensity of light (flux) with a wavelength of 7 4 8 0 Å  emitted by the object 

Z The intensity of light (flux) with a wavelength of 8 9 3 2 Å  emitted by the object 

 

Red Shift 

Measurement of how fast the object is moving away relative to Earth. A result 

of Doppler’s Effect: light emitted from an object moving away increases in wavelength and 

shifts to the red end of the light spectrum 

Class Classification of the object as star, galaxy and Quasar 

Table 1: Description Of Variables 
 

C. Exploratory Data Analysis 

Exploratory data analysis is the initial process to analyse the data set through data statistics and graph plots , wherever 

applicable. For EDA the libraries of pandas, seaborn, were used. The number of variables , their types, entries, and missing or null 

values were examined. Then, the mean, standard deviation, minimum, lower quartile, median, upper quantiles, and maximum of the 
feature variables were calculated and organised. Then , a count plot and scatter plot of the dataset were plotted. 

 

 U G R I Z Redshift 

Mean 18.619355 17.371931 16.840963 16.583579 16.422833 0.143726 

Std 0.828656 0.945457 1.067764 1.141805 1.203188 0.388774 

Min 12.988970 12.799550 12.431600 11.947210 11.610410 -0.004136 

25% 18.178035 16.815100 16.173333 15.853705 15.618285 0.000081 

50% 18.853095 17.495135 16.858700 16.554985 16.389945 0.042591 

75% 19.259232 18.010145 17.512675 17.258550 17.141447 0.092579 

Max 19.599900 19.918970 24.802040 28.179630 22.833060 5.353854 

Table 2: Dataset Statistics 

 

http://www.ijisrt.com/


Volume 8, Issue 2, February – 2023                International Journal of Innovative Science and Research Technology                                                 

                                                                                ISSN No:-2456-2165 

 

IJISRT23FEB329                      www.ijisrt.com                                                          434 

Table 3: First 10 entries of the dataset 
 

 
Fig. 1: Quantitative distribution of class-labels in data 

Fig. 2: Pair plots between features of dataset. 
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II. REVIEW AND BACKGROUND 

INFORMATION 
 

Various algorithms and machine learning models are 

possible to achieve the goal of classifying the data from SDSS( 

Sloan Digital Sky Survey). In this Study we have focused on 

Comparing results from Individual models and stacked 
models to determine the best possible method. 
 

A. Background 

The classification of celestial objects is of great 

significance in the fields of astronomy. Its most direct 
benefit is providing the means to gather data samples of stars, 

galaxies, and quasars. Particularly for quasars, despite how 

important they are to a wide range of astronomy studies and 

research, their sample sizes are still in the relative minority 

class[1][2]. In order to achieve the increase in sample size , 

fast and reliable classifying models are crucial. Modern day 

telescopes have the capability to gather large amounts of 

data , leading to the need of fast and reliable classification 

models being emphasised even further[1]. Past Studies have 

prove that both supervised models have been shown to have 

higher accuracies than unsupervised models, which have 
been shown to be more efficient in identifying unknown 

objects[3][4]. Supervised models such as Support Vector, 

Random forest have been shown to classify the data with 

accuracies of up to 90 percent in studies to solely identify 

quasars or to classify stars , galaxies and quasars[5]. Decision 

tree classifier has been shown to be considerably effective than 

most other supervised classifiers such as Logistic 

Regression[2]. 
 

III. PROPOSED SOLUTIONS 
 

The solution towards the class task devised by us has 

been described below 
 

A. Classifiers 

We’ve compared forty three classifiers in this project, 

including boosting, bagging and ensemble classifiers. Naive 

Bayes (NB) is a probabilistic classifier that is based on the 

Bayes’ theorem with conditional dependence. Three variants 

of the classifier, which varied based on their assumptions on 

the distribution of likelihood of features, were used in this 

project: Gaussian Naive Bayes (GNB), Multinomial Naive 
Bayes (MNB) and Bernoulli Naive Bayes (BNB) [9]. Linear 

Discriminant Analy- sis (LDA) and Quadratic Discriminant 

Analysis (QDA) are classifiers that use linear and non-linear 

surfaces to separate the classes [9]. K-nearest neighbor (KNN) 

is an algorithm that classifies test data points by calculating 

the distance between the training data points and test data 

points, and then finding the probability for the point 

belonging to K nearest neighbors [10]. The value of K can 

be changed (n neighbors = 5, default), and the algorithm used 

to compute the nearest neighbor can also be varied. We have 

used three KNN classifiers with three different algorithms for 
finding the K nearest neighbors: Brute force (KNNB), Ball 

tree (KNN) and KD tree (KNNKD) [10]. Nearest Centroid 

(NC) is a classifier who assigns the test data to the class whose 

centroid is nearest to the test data point [9]. The Ridge 

Classifier (RC) is based on the ridge regression method that 

uses linear least squares with l2 regularization. Ridge CV 

(RCV), is a ridge classifier with built in cross-validation. 

Stochastic Gradient Descent classifier (SGD) is a linear 
classifier optimized by SGD, which computes the gradient of 

the loss per sample [11]. We used 3 different variations of the 

classifier by changing the penalty parameter, as follows: SGD 

l1 (penalty = ‘l1’), SGD l2 (penalty = ‘l2’, which is the 

default) and SGD elastic-net (penalty = ‘elasticnet’). 

Support Vector Machines (SVM) are classifiers that use 

thresholds with soft margins to classify the training data into 

clusters and subsequently classify the test data based on 

their position relative to the threshold. We used two SVM 

models with different kernels, which help in non-linear 

classification: PSVM (kernel = ‘polynomial) and RBFSVM 

(kernel = ‘rbf’, radial basis function). SVM uses the one-
versus-one approach for multi-class classifications as a default, 

since they are inherently a binary classifier [9]. Nu-Support 

Vector Machine (Nu-SVM), is similar to SVM, but uses a 

different regularization parameter Nu and Linear Support 

Vector Machine (LSVM) is similar to a SVM with a linear 

kernel and works on the liblinear library instead of libsvm 

[9]. We used LSVM with 2 penalty parameters: LSVM1 

(penalty = ‘l1’) and LSVM2 (penalty = ‘l2’, which is the 

default) [9]. Perceptron (PTN), is a linear classifier algorithm 

that acts as an artificial neuron while Multilayer Perceptron 

(MLP) is an artificial neural network that works non-linearly 
[12]. Passive-Aggressive (PA) is also a linear classifier that 

doesn’t use a learning rate but uses a regularization 

parameter (c = 1.0, default). Calibrated CV (CCV) uses 

cross validation to determine the parameters and also to 

calibrate a classifier (estimator = LinearSVC, default) [9]. 

Logistic regression (LR) is a linear clas- sifier, in which the 

probabilities of an outcome are modeled using a logistic 

function. In the case of models that are binary classifiers, the 

multi-class dataset is split into binary class subsets. The default 

setting for binary classifiers in scikit-learn library for 

handling multi-class dataset is, in general, the One-vs-Rest 

approach. Decision Trees (DT) is a classifier that has a tree-
like hierarchical structure and uses different functions 

(criterion = ‘gini’, default) to find the optimum split. Extra 

Trees (ET) and Random Forest (RF) are collections of 

decision trees with ET using a random split and RF using an 

optimum split and subsampling the data [13]. We used 2 

models of RF with different functions to calculate the 

optimum split: RFE (criterion = ‘entropy’) and RF (criterion 

= ‘gini’) [9]. Both are extensions of Bagging classifier, 

which is an ensemble algorithm which uses multiple versions 

of the base estimators (estimator = DecisionTreeClassifier, 

default) on data subsets, run them in parallel and then 
combine their individual predictions to achieve the final 

outcome. Boosting is an ensemble learning technique that 

builds a number of weak classifiers sequentially to produce a 

strong classifier [9]. We have used numerous boosting 

classifiers such as Adaptive Booster (AdaB), which identifies 

misclassified data points and adjusts their weights so as to 

minimize the error, and feeds it to the next sequential classifier; 

Gradient Booster (GB), a boosting algorithm that works on 

reducing the residuals of the predictors of the previous 

classifier; Extreme Gradient Booster (XGB), which is a 

computation- ally efficient implementation of GB; Light 
Gradient Boosting Machine (LightGBM), which is similar to 

XGBoost but different in that it chooses a leaf that will lead 
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to a higher reduction in loss, and continues the tree (leaf-

wise growth), CatBoost (CB), which is an open source 
library with gradient boosting framework and HistGradBoost 

(HGB), which is a Histogram-based Gradient boosting clas- 

sifier. Inorder to increase the accuracy of classifiers, we 

stacked a few of them and made five stacked models: 

 Stacked model-1 with DT, LR, KNN and SVM (RBF) 

 Stacked model-2 with KNN, SVM (RBF) and AdaBoost, 

which were some of the classifiers with lower performance 

 Stacked model-3 with LR, KNN and SVM (RBF) 

 Stacked model-4 with MLP, RF and SVM (RBF) 

 Stacked model-5 with SVM (RBF), KNN and PA 
 

The stacked models showed higher performance than 

any individual models. Voting classifier is also an ensemble 

learning method, and is of two types: Hard voting (HV), 

where the voting is calculated based on the predicted output 

and Soft Voting (SV), where it is based on the predicted 
probability of the output class. We built one soft voting and 

two hard voting classifiers as such: 
 

  Soft Voting:  

(i) QDA, (ii) Nu - SVM, (iii) RBFSVM, (iv) PSVM, 
(v) DTC, (vi) RF, (vii) XGBC, (viii) BC, (ix) MLP, (x) 

ETC, (xi) GNB. 
 

 Hard Voting 1: (i)RFE, (ii) XGBoost. 

 Hard Voting 2: (i) QDA, (ii) Nu - SVM, (iii) 
RBFSVM, (iv) PSVM, (v) DTC, (vi) RF, (vii) 

XGBC, (viii) BC, (ix) MLP, (x) ETC, (xi) GNB. 
 

 

B. Evaluation Metrics 

We have used four Evaluation metrics for calculating and 

comparing the performance of all the classifier models: 

Precision, Recall, Accuracy and F1 Score. We also calculated 

Precision, Recall and F1 score of each class (Galaxy, Stars and 
quasars) for each of the classifier models using the classification 

report function in the sci-kit learn library. To calculate these 

values, a confusion matrix is required, such as this: 

 

 

Actual Predicted 

 Negative Positive 

Negative True Negative False Positive 

Positive False Negative True Positive 

Table 3: TP, TN, FP, & FN explanation table 
 

 True Positive (TP) - The actual value is positive and is 

predicted to be positive. 

 True Negative (TN) - The actual value is negative and is 

predicted to be negative. 

 False Positive (FP) - The actual value is negative but is 
predicted to be positive. 

 False Negative (FN) - The actual value is positive but is 

predicted to be negative 
 

IV. EXPERIMENTAL RESULTS 
 

To compute the performance of the classifier models we 

used evaluation metrics such as accuracy, recall, precision and 

F1 score. We also used classification report from sklearn to 

obtain class-wise evaluations for each model. 

 

 

A. Evaluation Metrics of the Classifiers used 
Out of the 43 models used , the evaluation metrics of the best 20 have been listed below: 
 

S.no Classifier Accuracy Precision Recall F1 score 

1 Stacking Model-5 0.9785 0.9787 0.9785 0.9784 

2 Extra Trees 0.9790 0.9790 0.9790 0.9789 

3 SGD l1 0.9790 0.9790 0.9790 0.9789 

4 LSVM(L1) 0.9800 0.9799 0.9800 0.9789 

5 Multi Layer Perception 0.9825 0.9825 0.9825 0.9824 

6 Hard Voting-2 0.9875 0.9875 0.9875 0.9874 

7 Decision Tree 0.9880 0.9879 0.9880 0.9879 

8 Grad Boost 0.9885 0.9879 0.9885 0.9884 

9 LightGBM 0.9885 0.9884 0.9885 0.9884 

10 HistGradBoost 0.9890 0.9890 0.9890 0.9889 

11 CatBoost 0.9890 0.9889 0.9890 0.9889 

12 RF entropy 0.9890 0.9890 0.9890 0.9889 

13 Soft Voting 0.9890 0.9890 0.9890 0.9889 

14 RF gini 0.9895 0.9894 0.9895 0.9894 

15 Stacked Model-2 0.9895 0.9895 0.9895 0.9894 

16 XGBoost 0.9895 0.9895 0.9895 0.9894 

17 Hard Voting-1 0.9900 0.9900 0.9900 0.9899 

18 Stacked Model-3 0.9900 0.9900 0.9900 0.9900 

19 Stacking Model-4 0.9903 0.9903 0.9903 0.9903 

20 Stacking Model-1 0.9910 0.9910 0.9910 0.9909 

Table 4: Best 20 classifiers 
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B. Corresponding Box-Plots 

Box-plots are made for 20 models which have the highest accuracy of the total 43: 

 

 
(a) Accuracy Box-Plot                                      (b) Galaxies Precision Box-Plot 

    (c) Galaxies Recall Box-Plot                                         (d) Galaxies F1-score Box-Plot 

(e) Quasars Precision Box-Plot                                           (f) Quasars Recall Box-Plot 

(g) Quasars F1-score Box-Plot                                                         (h) Stars Precision Box-Plot 

 

(i) Stars Recall Box-Plot                                                             (j) Stars F1-score Box-Plot 

Fig. 3: Box-Plots 
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V. CONCLUSION AND FUTURE SCOPE 
 

After utilizing several machine learning models for 

subsequent classification of astronomical dataset from the Sloan 

Digital Sky Survey, Data Release - 14 (SDSS - DR14) into 

class-labels: “GALAXY”, “QSO” & “STAR”, a thorough 

analysis of the evaluation metrics: Accuracy, Precision (per 
class label), Recall (per class label), & F1-score (per class 

label) is performed and results are analyzed. The data 

consists of information on 17 feature variables and 1 class 

variable of 10,000 astronomical objects in total, and of the 

17 only 15 feature variables are retained as an input for 

classification models. An initial EDA of the dataset is 

performed in order to prepare the data for the subsequent 

classification task, wherein a 80/20 split of given data into 

training and testing data respectively is done. The training 

data is used to train independent Machine Learning models, 

directly accessible from the sklearn Python library, while 
keeping the hyper-parameters to a default. Some ensemble 

based algorithms, such as voting (hard and soft) are also 

analyzed with their ensemble members being derived based on 

an optimally performing voting algorithm evident in 

previous research. Stacking algorithms are constructed from 

poorly performing models and high performing algorithms to 

observe an increase in subsequent performance. In total, 43 

machine learning models are fitted to the training data, and 

their corresponding evaluation metrics are found using the 

testing data. The results are tabulated above in an increasing 

order of accuracy of models. As was expected, stacked models 

tended to perform better based on almost all evaluation metrics. 
Soft and hard voting algorithms also managed to score better 

than most individual models tested. For further detailed 

analysis of metric variation with repeated fitting, box-plots of 

all evaluation metrics are developed for the top 20 machine 

learning models in the table, and are presented above. Given 

that the data is unbalanced in the frequency of class labels, 

the plots of precision, recall and F1-score are separately 

analyzed for each class label. In case of “QSO” class label, 

the evaluation metric box-plots are observed to be more 

spread out than for other class labels, a result that can be 

attributed to the fact the number of objects labeled “QSO” 
are significantly less than those labeled “GALAXY” and 

“STAR”, both are which are almost equally distributed. The 

combined accuracy plot identifies the Stacked Model 1, 

Stacked Model 4 and XGBoost as the best performing models 

in terms of accuracy due to their high mean accuracy values 

and small spread about the mean. For “GALAXIES”, 

Stacked Model 1, Hard voting model 1 and XGBoost model 

seem to dominate with respect to recall and F1-score, but 

individual models seem to give better precision results than 

ensemble-based models. For “QSO”, we note due to a lower 

frequency of data, almost all models perform equivalently 

across all evaluation metrics, and therefore, a decision 
regarding the best models for this class-labels can’t be reached 

due to unavailability of sufficient data. For “STARS”, Stacked 

Model 1, Hard voting model 1, XGBoost model, Gradient 

Boosting model and Decision tree models seem to outperform 

in precision and F1-score, whereas almost all models perform 

equivalently well when it comes to recall. In case of 

“STARS”, a generic high performance is observed when 

compared to other class-labels, implying that the objects 

belonging to this class label are more easily classified with 

several machine learning models. The hierarchy of model 

performance based on each class-label is sufficiently 
presented, and with the ever-increasing data incoming from 

various ongoing astronomical surveys, machine learning 

algorithms specialized to classifying each class-label can be 

identified using the models already narrowed down above. 

Since the astronomical survey data is publicly released, a 

basic set of specialized high-performing models can be made 

readily available for public-access in order to avoid long 

hours associated with finding the right fit for the data set, 

considering the numerous machine learning models present 

today. Further optimization based on computational time 

and complexity can also be performed based on the 

requirements of individual projects and the available 
resources. 

 

REFERENCES 
 

[1.] Sabeesh Ethiraj, Bharath Kumar Bolla, 

”CLASSIFICATION OF QUASARS, GALAXIES, 

AND STARS USING MULTI-MODAL DEEP 

LEARNING”, Cornell university arXiv, May 2022. 

[2.] Zhuliang Qi, “Stellar Classification by Machine 
Learning”, SHS web of conferences, August 2022. 

[3.] Jordi Sabat´es de la Huerta, “Classifying astronomical 

sources with machine learning”, Dipòsit Digital de la 
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