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Abstract:- This study investigated the application of an 

artificial neural network (ANN) to predict the 

performance efficiency of the Abuja-based Wupa WWTP, 

Nigeria using effluent 5-day biochemical oxygen demand 

(BOD5) as a performance indicator. Daily data of influent 

BOD5, pH, total dissolved solids, total suspended solids, 

chemical oxygen demand, total coliform, Escherichia 

coliform, and fecal coliform; and effluent BOD5 over a 

period of five years (2013 to 2017) for the Wupa WWTP 

was utilized for the plant’s performance efficiency. The 

four most reliable multilayer perceptron ANN (MLP-

ANN) algorithms namely, Levenberg-Marquardt (LM) 

backpropagation resilient backpropagation, Quasi-

Newton backpropagation, and Fletcher-Reeves conjugate 

gradient backpropagation were adopted; and the most 

appropriate model was selected following training, 

validation and testing by altering the number of neurons 

and activation functions in both the hidden and output 

layers. The model efficiency was determined using mean 

square error (MSE) and correlation coefficient (R2). The 

ML algorithm with Logsig-Tansig activation pairing and 

architecture [8-1270-1] performed the best in terms of 

convergence time and prediction error, with MSE and R2 

values of 1.522 and 0.922, respectively. Also, it revealed 

that the selected ANN model predicted the effluent BOD5 

with an overall correlation coefficient of 0.962; thus, 

demonstrating the efficacy of ANN models for accurate 

prediction of the Wupa WWTP performance. The novelty 

of this research is in evaluating the efficiency of the plant 

over the periods and determining the most precise ANN 

model for Wupa WWTP, Abuja, Nigerians a study which 

has never been carried out before now. 
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I. INTRODUCTION 

 

The treatment and management of wastewater in our 

environment have increasingly gained attractive attention in 

the last decade, particularly in the face of the incessantly 

increasing volume of wastewater owing to population growth; 

rapid urbanization; increased agricultural; and industrial 

activities (Abba and Elkiran 2017; Arismendy et al., 2020; 

Alsulaili and Refaie, 2021).  

Wastewater treatment plants (WWTPs) are built to clean 

wastewater and convert it into eco-friendlier water which is 

released into the environment (Varkeshi et al., 2019). 

However, due to the wide fluctuation in the quality and 

quantity of untreated wastewater transported to the treatment 

plant, the operation of WWTPs can be difficult and 

challenging (Szeląg et al. 2017).  

 

Moreover, many treatment plants are constructed 

following the conventional activated sludge system which is 

allegedly riddled with inefficiencies associated with pollutant 

removal (Ogwueleka and Samson, 2020). In addressing the 

challenges of the conventional treatment systems, several 

alternative methods have been proposed, notable amongst 

which are the advanced oxidation processes (AOPs) (Deng 

and Zhao, 2015); nanomaterials (Adeleye et al., 2016); 

microalgae-activated sludge (MAAS) (Ogwueleka and 

Samson, 2020); microbial electrochemical system (Li et al., 

2021). However, many of these emerging methods are still 

limited to pilot or laboratory scales and are yet to gain 

widespread practical applications due to a number of reasons 

such as the initial cost of installation, uncertainties with 

operations, adaptation and installation of new technologies, 

etc.; thus, there is still need to seek for means of attaining 

efficiency, even in the pre-existing installed treatment 

systems; which can be achieved by attaining and maintaining 

optimal conditions in WWTPs. 

 

Attaining optimal operational conditions in WWTPs 

even with conventional systems is possible and can be 

achieved with the use of models to predict the WWTP 

performance based on previous measurements of major plant 

parameters (Jami et al., 2012). 

 

An important parameter commonly utilized to examine 

the performance of WWTPs is the 5-day biochemical oxygen 

demand (BOD5) (Dogan et al. 2008; Araromi et al., 2018). 

BOD5 is an approximation of the quantity of biochemically 

degradable organic matter contained in a water sample, 

defined as the amount of oxygen necessary for the aerobic 

bacteria present in a sample to oxidize the organic matter to a 

stable organic form (Dogan et al., 2008). It is, however, 

difficult to measure, and requires five days for its 

determination (Dogan et al., 2008; Alsulaili and Refaie, 2021).  

Therefore, the determination of the output BOD5 of a WWTP 

as a performance index using predictive tools could achieve 
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safe and economic treatment process management (Araromi et 

al., 2018; Varkeshi et al., 2019).  

 

Several models have been employed for the prediction of 

a variety of WWTP performance indicators; among them, 

artificial neural network (ANN) has risen in popularity and has 

proven to be excellent in terms of the following advantages  

 Ability to model complex functions with high precision 

 Modelling of multiple inputs and output concurrently 

 It can accommodate workings with noisy and missing 

parametric 

 It can train and update the model with dated data 

 

In spite of the outlined advantages amongst others, there 

are also some pitfalls with the workings and the development 

of the ANN model  

 There is no physical significance of model parameters 

 Underfitting and overfitting may sometimes result due to a 

lack of standards in the determination of the network 

architecture (trial and error methods are used) 

 ANN model is primarily computer dependent due to the 

enormous data needed to train the neurons. 

 

In the last two decades, studies conducted on the 

modeling and prediction ability of the NN model. ANN was 

used to estimate wastewater treatment plant inlet biochemical 

oxygen demand. The results obtained show its flexibility, 

simplicity, the accuracy of prediction, and robust structure 

(Dogan et al., 2008; Banaei et al., 2013; Bekkari and Zeddouri, 

2018; Abba et al., 2020; Alsulaili and Refaie 2021; Setshedi et 

al. 2021). ANN was used for the modeling of wastewater 

treatment and desalination using membrane processes, At the 

end of the study ANN shows high capability in terms of both 

accuracy and short time of computation compared to the 

conventional method (Jasir et al., 2021). 

 

 A variety of notable studies such as (Ogwueleka and 

Ogwueleka, 2009; Ogwueleka and Ogwueleka 2010; Vyas et 

al., 2011; Jami et al. ,2012; Banaei et al., 2013; Ahmadzadeh 

et al. 2015; Xue 2017; Bekkari and Zeddouri, 2018; Katip 

2018; Arismendy et al., 2020; Gawdzik et al., 2020; Alsulaili 

and Refaie, 2021; Saleh, 2021; Saleh and Kayi, 2021) have 

documented the application of ANN to model various 

hydrology and environmental engineering issues. A 

remarkable application among these studies is the application 

of ANN to model and predict BOD in diverse WWTPs across 

the globe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alsulaili and Refaie (2021) investigated the use of ANN 

in predicting BOD5 in the  WWTP, Kuwait, using seven years 

of data dating from 2013 to 2019; the outcome of the study 

indicated that the applied model for the BOD5 prediction 

achieved a high level of precision with an R2 value of 0.754, 

implying the viability of the model.  Saleh (2021) applied 

ANN models to predict BOD5, total suspended solids (TSS), 

and chemical oxygen demand (COD) in the effluent of the 

Muamirah WWTP, Al-Hillah using a two years dataset. The 

result of the study indicated the capability of ANN for COD, 

BOD5, and TSS modeling.  

 

II. ARTIFICIAL NEURAL NETWORK 
 

An artificial neural network is an aspect of artificial 

intelligence that mimics the operation of the human central 

nervous system in receiving and computing information 

systems. it is based on a system of interconnected “neurons” 

forming the basis of neural network operation (Alsulaili and 

Refaie, 2021; Setshedi et al., 2021; Saleh, 2021).   The model 

uses a network system similar to the human brain called 

neurons, to learn and predict various parameters. ANN is 

gaining quick popularity in the area of artificial intelligence 

and machine learning due to its robustness and precision 

accuracy. The significance of ANN is to determine the 

computational relationship between the dependent and the 

dependent variable especially due to the anthropogenic nature 

of the wastewater variable. The relationship is established by 

designing a network architecture in which previous 

information(data) is used to train the network during the 

learning phase to build models Figure l. 

 

There are many types of ANN depending on their 

peculiarity in terms of architecture and parameters. the 

commonly used is backpropagation a feed-forward neural 

network that could be called multilayer perceptron (PLP). we 

have other types of ANN used for computational analysis such 

as; Radial Basial Function Neural Networks (RBFN) 

Networks current Neural Networks (RNN), Elman, Neural 

Network Networks Deep Neural Networks (DNN) are some of 

the typologies of MLP-ANN with different training algorithms 

and model architecture. 

 

A. Multi-layer Perceptron  

MLP type which this study is set-out to apply consist of 

the impute layer, one or more hidden layers, and an output. at 

each layer, the numbers of neurons at each layer are equal to 

the number of variables at both input and output in the 

architecture. do, at the hidden layer there could be a greater 

number of neurons irrespective of the input or the output 

layers. The quality of the computation ability at the hidden and 

the output layers is a function of the quantum of the calculated 

data assigned to the neurons called weights. A typical ANN 

MLP architecture is shown in the schematic diagram below: 
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Fig.1. A typical schematic single hidden layer MLP 

architecture of (4-4-2) 

 

III. PREPARE YOUR PAPER BEFORE STYLING 

 

However, there are basically three phases of developing 

an ANN model: training, validation, and prediction. During 

this process, the data set is divided into three groups, usually 

for the purpose of this study and other development studies 

reported. the data set is divided into a ratio of 70:15:15 

presents.70% of the data set is usually assigned to the training 

phase to train the neuron while about 15% is used for 

validation and the remaining 15% is used for the prediction of 

the ANN variables. At the training phase the weight attached 

to each neuron are updated after each epoch with the help of 

the training algorithm until the training is validated with high 

testing precision. Criterion for stoppage is usually defined as 

specified at the beginning of each training by using the 

numbers of iterations and the minimum mean square error as 

well as validation checks. The normalization checks are 

designed in such a way that each impute node contribute 

immensely to the prediction of the output to minimize local 

minimum convergence [29,30] The normalization equation 

can be expressed using Eq. (1) below 

  

𝑦 = 𝑦𝑚𝑖𝑛 +
(𝑥 − 𝑥𝑚𝑖𝑛)(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
           1 

 

where and 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑖𝑛  are the maximum and 

minimum value of the data set, 𝑦𝑚𝑎𝑥and 𝑦𝑚𝑖𝑛  are the range 

for normalization, and y the normalized value of 𝑥. basically, 

the range for normalization is either (0,1) or (-1,1). The output 

of each neutron is function of the training neurons and its 

eights assigned to it using Eq. (2) 

                                                   

𝑎𝑖𝑗   =𝑓𝑗 (∑ 𝑎𝑘(𝑗−1)𝑤𝑘𝑖(𝑗−1)+𝑏𝑖𝑗

(𝑛(𝑗−1))
𝑘=1 )        2 

 

where 𝑎𝑖𝑗  and 𝑏𝑖𝑗are the output and bias of the i-th 

neutron in the j-th layer, 𝑎𝑘(𝑗−1) and 𝑤𝑘𝑖(𝑗−1) are the output 

and the weight of neutron from the previous layer, 

respectively, 𝑛(𝑗−1) is the number of neutrons in the (j-1) and 

𝑓𝑗  is the activation by introducing non-linearity to the network. 

The commonly used activation functions are logistic sigmoid 

(log-sigmoid), hyperbolic tangent sigmoid (tan-sigmoid), and 

linear transfer functions (purelin), whose output ranges and 

equations are given in Eq. (2). 

 

B. Significance of the study 

Vyas et al. (2011) studied the relevance of ANN 

techniques to predict influent and effluent BOD5 for WWTP 

in Govindpura, Bhopal; using 3 years of data and two ANN 

models. The result for model 1 and model 2 showed R values 

of 0.9 and 0.73 respectively; which is an indication that ANN 

provides highly acceptable outcomes. Rene and Saidutta 

(2008) employed 12 AANN-based models to predict BOD5 

and COD levels in wastewater generated from the treatment 

plant of a petrochemical industry in Mangalore, India. The 

results revealed that; through its diverse training procedure, 

ANNs can accurately and effectively predict concentrations of 

water quality indicators.  

 

Dogan (2008) established an ANN model to predict BOD 

in the inlet of WWTPs, and the results demonstrated that the 

ANN may be used to accurately estimate daily BOD at the 

input of wastewater treatment facilities. Hamed et al. (2004) 

developed two ANN models to forecast the effluent 

concentrations of BOD and suspended solids for a major 

WWTP in Cairo; using a 10 months dataset. The study 

reported that the prediction error fluctuated minimally and 

gradually throughout the range of data sizes utilized in training 

and testing, making ANN a reliable tool for prediction. 

 

Despite these studies having established the viability of 

ANN for the prediction of BOD as a performance indicator in 

WWTP, it is important to note; no study has been conducted 

to predict the performance of BOD5 as a performance indicator 

for the Wupa WWTP. Bearing in mind that each WWTP in the 

world is dynamic and unique with sometimes high variation in 

their contaminants as rightly noted by (Jami et al. 2012). It 

becomes expedient to apply ANN for the prediction of BOD5 

output in the Wupa WWTP. Therefore, this study applies ANN 

to predict the output BOD5 for the Wupa WWTP using a 5 

years’ dataset.  

 

The novelty of this research lies in the application of four 

reliable multilayer perceptron ANN algorithms including the 

Levenberg-Marquardt (LM) backpropagation, resilient 

backpropagation (RP), Quasi-Newton backpropagation (BFG) 

and Fletcher-Reeves conjugate gradient backpropagation 

(CGF); for performance prediction of the Abuja-based Wupa 

WWTP using effluent 5-day biochemical oxygen demand 

(BOD5) as a performance indicator. 

 

III. MATERIALS AND METHODS 

 

A. Study Area 

The location for this study is Abuja, the Federal Capital 

City of Nigeria; using the Wupa WWTP Abuja, Nigeria. Wupa 

WWTP occupies an area of 297,900 square meters and lies 

between UTM coordinate N998183.603, E321889.651, 

N998183.603, E322283.340 and 321889.65, E321889.651, 

N997495.399. E322283.340. The Wupa WWTP is an 

oxidation ditch plant; a type of activated sludge system 

developed to a capacity of 131.3 million liters per day with 
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700,000 population equivalent (P.E.) which is expandable to 

1,000,000 P.E. to treat Abuja wastewater. It has three 

operational units, one of which is currently in service; the other 

two are standbys in case one unit fails. Wupa WWTP’s 

maximum operating capacity of waste per day is 131,250 m3. 

Notably, treated effluents from the plant is released into River 

Wupa. An area map of the Wupa WWTP is presented in Figure 

2 and a schematic diagram showing the plant’s flow process is 

presented in Figure 3. 

 

 
Fig 2: Area map of Wupa WWTP 

 

B. Equations 

The equations are an exception to the prescribed 

specifications of this template. You will need to determine 

whether or not your equation should be typed using either the 

Times New Roman or the Symbol font (please no other font). 

To create multileveled equations, it may be necessary to treat 

the equation as a graphic and insert it into the text after your 

paper is styled. 

Number equations consecutively. Equation numbers, 

within parentheses, are to position flush right, as in (1), using a 

right tab stop. To make your equations more compact, you may 

use the solidus ( / ), the exp function, or appropriate exponents. 

Italicize Roman symbols for quantities and variables, but not 

Greek symbols. Use a long dash rather than a hyphen for a 

minus sign. Punctuate equations with commas or periods when 

they are part of a sentence, as in.

 

 
Fig 3: Schematic diagram showing the Wupa WWTP flow process 
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B. Data Collection 

This study utilized data obtained from Wupa WWTP, Abuja. The data contained a total of 14,600 dataset collected daily for a 

period of five years from 2013 to 2017. Notably, the obtained data was consistent without any missing record. The large volume of 

data used for this study is preferred because it encompasses all seasonal fluctuations in the parameter capable of affecting the data 

pattern. Also, ANN modeling is heavily reliant on the quality of historical data, therefore the larger the data collection, the more 

dependable the developed model (Jami et al. 2012; Alsulaili and Refaie, 2021). The data comprised notable influent(inf.) Authors 

and Affiliations and effluent (eff.) parameters commonly used for performance evaluation of aerobic wastewater treatment process; 

which include potential hydrogen (pH), total suspended solid (TSS), BOD5, total dissolved solid (TDS), COD, Escherichia coliform 

(EC), total coliform (TC) and facal coliform (FC). Table 1 shows the descriptive statistics for the Wupa WWTP applied variables. 

The mean, minimum, maximum, standard deviation, and variance are denoted by Xmean, Xmin, Xmax, S, and V. Prior to the ANN 

modelling process, a correlation matrix of the obtained data was developed to evaluate the dependence between the variables, using 

Pearson’s correlation as shown in table.2 

 

Table 1: Descriptive Statistics of the applied parameters 

Parameter Unit Xmean Xmin Xmax S V 

Input parameter  
   

 
 

PHinf.  7.31 1.781 12.513 1.539 2.367 

TDSinf. Mg/L 151.856 125.835 183.317 15.954 254.518 

TSSinf. Mg/L 197.623 155.498 259.43 35.485 1259.167 

B0Dinf. Mg/L 130.983 104.775 185.663 26.162 684.446 

CODinf. Mg/L 262.028 136.186 403.842 83.533 6977.752 

T.Cinf. Mg/L 259999.99 199995.72 300005.43 49003.3 2401324017 

E,Cinf. Mg/L 499.99 196.109 1003.432 309.927 96054.474 

F.Cinf. Mg/L 5732.137 3159.007 8917.195 2304.64 5311370.1 

Output parameter  
   

 
 

B0Deff. Mg/L 9.739 0.417 24.991 5.564 30.96 

 

C. Analytical Procedure 

 

 ANN Model 

The multilayer perceptron (MLP) is the applied ANN 

architecture for this study; it is the most extensively used ANN 

and is known to exceed others in precision (Alsulaili and 

Refaie, 2021; Setshedi et.al., 2021). MPL is a feed-forward 

ANN model that uses a supervised learning technique 

involving the backpropagation (BP) algorithm to map sets of 

input data into appropriate outputs (Setshedi et.al., 2021). 

Notably, forward feed ANN is one that creates connections in 

a single direction, from input to output, without causing cycles 

(Saleh, 2021). The MLP-ANN is made up of numerous basic 

neurons that operate simultaneously in three layers namely; 

input, hidden, and output layers as shown in Figure 4. The 

network function can be determined by connecting the neurons 

and using operators to link the signal phases of one neuron to 

the other. This can be explained by Equation 1 (Bekkari and 

Zeddouri 2018). 

 

𝑦𝑖 = ƒ (∑ 𝑤𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 + 𝑏𝑖)                   (3) 

 

where 𝑦𝑖 denotes the ith nodal value in the current layer, 

f denotes the activation function; 𝑤𝑖𝑗 denotes the weight 

allocated to each input. 𝑥𝑗is the previous layer's jth nodal 

value; 𝑏𝑖represent the bias for each output; and N is the total 

amount of inputs. 

 

Three layers of architecture (input, hidden, and output) 

for a feedforward ANN were created to predict the Wupa 

WWTP. Because poor node fitting could affect the network 

training and validation phase (Bekkari and Zeddouri 2018), 

the model employs fewer hidden nodes to avoid the over-

fitting problem that may emerge from generalization. 

 

 
Fig 4: Architecture of the applied ANN 

 

D. Training, Validation and testing 

The appropriate ANN model development in this study 

depended on three major steps including; training, validation, 

and testing. Training was used to build the model by altering 

weights; whilst the validation dataset was used to identify the 

BP algorithm's stopping point as well as the ANN architecture 

determination; and the testing dataset was used to determine 

performance parameters like accurateness and model 

generalization testing.  
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The efficiency of the ANN model was determined using 

mean square error (MSE) and correlation coefficient (R2) 

which were estimated between actual and predicted data, as 

stated in Equations 2 and 3 below. 

 

𝑅2     = (
(∑(𝑥𝑖 − �̅�) (𝑦𝑖 − �̅�))

√(𝑥𝑖 − �̅�)2(𝑦𝑖 − �̅�)2
)

2

                ( 2)  

 

 

𝑀𝑁𝑆𝐸 =  
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑡=1

𝑁
                                ( 3) 

 

where 𝒙𝒊 represent measured value; 𝒚  indicates 

predicted value; �̅� ̅ denotes the mean of the measured values; 

ӯ is the mean of the predicted values; while N denotes the total 

amount of model outputs. When the MSE was the lowest and 

the R was the highest (near to 1), the best model was created. 

 

 ANN Model Simulation and Architecture 

The MLP-ANN architecture and simulation was 

performed using MATLAB RB 2021. Data splitting, in which 

data is partitioned into training, validation and testing subsets 

to guarantee strong model generalizability, is a critical phase 

in the building of an ANN and has a major impact on the model 

performance (May et al., 2010). The MATLAB’s default 

splitting ratio of 70:15:15 was used for the training, validation, 

and testing sets respectively. The experimental data was 

randomly imputed into the work area, with CODeff. as the 

dependent variable and the independent variables being pHinf., 

TDSinf., TSS inf., BOD inf., COD inf., TC inf., FC inf., EC inf. 

 

This research work adopted four most reliable MLP-

ANN algorithms including the Levenberg-Marquardt (LM) 

backpropagation, resilient backpropagation (RP), Quasi-

Newton backpropagation (BFG) and Fletcher-Reeves 

conjugate gradient backpropagation (CGF). A single hidden 

layer and several neurons was used in the model. 

 

For each algorithm, the number of neurons in the hidden 

layer as well as the activation functions pairing were altered, 

and three (3) activation functions namely; linear activation 

function (purelin), hyperbolic tangent sigmoid activation 

functions (tansig), and logistic sigmoid activation function 

(logsig) were applied. Equations 4-6 represent the 

mathematical expressions of activation functions utilized. 

The trial-and-error method was utilized to tune the 

hyperparameters because it is one of the most practical and 

widely used approaches for choosing the ideal number of 

activation functions, batch sizes, neurons, epochs and learning 

rates among other things (Bashiri and Geranmayeh, 2011). 

 

Learning rate parameter (LRP), which is used to 

maximize the likelihood of the training process not becoming 

trapped in a local minimum rather than the global minimum, 

maybe critical in network convergence, based on the 

application and network configuration (Hamed et al., 2004; 

Bekkari and Zeddouri, 2018). LRP of 0.01 was applied in this 

study.  To achieve suitable timely convergence, the input and 

output data were normalized to a range of 0–1 using Equation 

7, and the real values were calculated once the ANN was 

completed by modifying the output ni data with Equation 8. 

 

                      𝑓(𝑛) = 𝑛                 (4)           

 

a). Purelin function  

b). Tangent sigmoid function 

 

  𝑓(𝑛) = 2/((1 + 𝑒^(−2𝑛) ) ) − 1     (5) 

 

c). Sigmoid function 

𝑓(𝑛) = 1/((1 + 𝑒^(−𝑛) ) )        (6)     

 

The outer boundaries of the activation functions are [0.1, [- ∞, 

+∞] and [-1, 1].  

 

     𝑥𝑛𝑖 = (𝑥𝑛𝑖 − 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 )      (7) 
 

𝑥𝑖 = 𝑥𝑛𝑖 (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑥𝑚𝑖𝑛       (8) 

 

 

IV. RESULTS AND DISCUSSION 

 

Table 2: Correlation Matrix for the of the plant data variables 
 pHinf. TDS inf. TSS inf. BOD inf. COD inf. T.C inf. E.Cinf. F.Cinf. BODeff. 

pHinf. 1  
       

TDS inf. -0.024 1        

TSS inf. 0.016 0.621 1       

BOD inf. -0.021 0.709 0.842 1      

COD inf. -0.013 0.608 0.862 0.925 1     

T.C inf. 0.019 0.606 0.369 0.174 -0.029 1    

E.Cinf. -0.013 0.783 0.538 0.634 0.347 0.791 1   

F.Cinf. -0.014 0.488 0.407 0.58 0.242 0.583 0.905 1  

BODeff 0.034 -0.802 -0.123 -0.235 -0.1 -0.638 -0.629 -0.32 1 

 

A. ANN Model Performance for BODeff. Output 

Tables 3 to 6 present the best results for each of the 

applied MLP-ANN algorithms (LM, BFG, RP and CGF) using 

various combinations of activation pairs; while Figure 4 shows 

the best ANN model's regression plot between actual and 

predicted data on the BODeff; and Figure 5 shows the BODeff 

output actual values against prediction values for the best 

ANN model. 
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Tables 3 to 6 indicate the following for each of the 

applied algorithm: 

 LM Algorithm: MSE and R2 values for the LM algorithm 

during training varied between 1.49 to 5.307 and 0.872 to 

0.929 respectively. MSE and R2 values for LM during 

validation varied between 1.404 to 5.483 and 0.845 to 

0.929 respectively. MSE and R2 values for LM during 

testing varied between 1.522 to 5.576 and 0.845 to 0.925 

respectively. Table 3 indicates that the LM algorithm with 

the Purelin-Tansig activation pairing and architecture [8-

1265-1] performed best.  

 RP Algorithm: MSE and R2 values for RP during training 

ranged between 1.519 to 5.322 and 0.053 to 0.949 

respectively. The MSE and R2 values for the RP during 

validation ranged between 1.493 to 5.499 and 0.077 to 

0.918 respectively. The MSE and R2 values for RP during 

testing ranged between 1.556 to 5.576 and 0.085 to 0.929 

respectively. Table 4 indicates that the RP algorithm with 

the Logsig-Tansig activation pairing and architecture [8-

1170-1] performed best.  

 BGF Algorithm: The MSE and R2 values for BFG during 

training ranged between 1.505 to 10.347 and 0 to 0.945 

respectively. The MSE and R2 values for BFG during 

validation varied between 1.417 to 10.591 and 0 to 0.929 

respectively. The MSE and R2 values for BFG during 

testing ranged between 1.424 to 10.978 and 0 to 0.939 

respectively. Table 5 indicates that the BGH algorithm 

with the Logsig-Tansig activation pairing and architecture 

[8-1270-1] performed best.  

 CGF Algorithm: MSE and R2 values for CGF during 

training ranged between 1.523 to 5.308 and 0.677 to 0.966 

respectively. MSE and R2 values for CGF during 

validation ranged between 1.457 to 5.484 and 0.714 to 

0.953 respectively. MSE and R2 values for CGF during 

testing ranged between 1.545 to 5.573 and 0.676 to 0.935 

respectively. Table 6 indicates that the CGF algorithm with 

the Logsig-Purelin activation pairing and architecture [[8-

1024-1] performed best.  

 

Notably, with the exception of the Tansig-Logsig and 

Logsig-Logsig functions, where the BFG had lower iteration 

counts, LM converged with the fewest iteration number for 

most activation functions pairs. Additionally, LM presented 

the best level of MSE indicators (i.e., the least MSE values) in 

all of the training, validation and testing stages amongst the 

four applied algorithms.  As a result, the LM algorithm is 

regarded as the most efficient in function approximation. 

Consequently, the best ANN model for the prediction of 

output BOD5 for this study is the MLP that applied Purelin-

Tansig activation pairing and architecture [8-1265-1]. The 

findings in this study agrees with studies such as Hamed et al. 

(2004); Bekkari and Zeddouri (2018); and Banaei et al., (2013) 

that have demonstrated that the LM algorithm outperforms 

other algorithms in terms of convergence time and prediction 

error. 

 

The result of the best ANN model's regression plot 

between actual and predicted data on the BODeff. in Figure 4 

indicate a high level of compatibility between the actual data 

and predicted ANN values with the noted high correlation 

coefficients of 0.965, 0.950, and 0.956 for the training, 

validation and testing phases respectively; and an overall 

correlation coefficient of 0.962. The comparison between the 

measured data and predicted data for the BODeff presented in 

Figure 5 demonstrates high accuracy of the applied ANN 

model for the prediction of the BODeff for Wupa WWTP. 

Although some deviations appear in some data points; these 

deviations can be attributed to factors such as, noise in the 

training; the wight of  the dataset and input parameters etc. 

 

Table 3: MLP-ANN model performance statistics for training; validation; and testing of the LM method for BODeff. 

 

Note: OLAF = output layer activation function; HLAF = hidden layer activation function; IN, iteration number 

 

 

    LM       

   Training Validation Testing   

HLAF OLAF Designation MSE R2 MSE R2 MSE R2 IN Architecture 

Logsig Purelin LP 1.512 0.929 1.520 0.904 1.523 0.925 11 [8-1003-1] 

Logsig Tansig LT 1.492 0.929 1.576 0.912 1.534 0.918 10 [8-1270-1] 

Tansig Purelin TP 1.49 0.929 1.605 0.906 1.527 0.925 16 [8-1200-1] 

Tansig Logsig TL 5.307 0.872 5.432 0.861 5.576 0.845 15 [8-1275-1] 

Purelin Logsig PL 5.306 0.874 5.483 0.845 5.513 0.857 15 [8-1201-1] 

Logsig Logsig LL 5.305 0.872 5.432 0.861 5.571 0.846 2 [8-899-1] 

Purelin Purelin PP 1.526 0.927 1.404 0.929 1.617 0.906 4 [8-1098-1] 

Tansig Tansig TT 1.504 0.929 1.578 0.912 1.528 0.920 14 [8-1044-1] 

Purelin Tansig PT 1.531 0.927 1.480 0.916 1.522 0.922 16  [8-1265-1] 
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Table 4: MLP-ANN model performance statistics for training; validation; and testing of the RP method for BODeff. 

   RP   

   Training Validation Testing   

HLAF OLAF Designation MSE R2 MSE R2 MSE R2 IN Architecture 

Logsig Purelin LP 1.557 0.927 1.641 0.918 1.588 0.924 27 [8-1045-1] 

Logsig Tansig LT 1.519 0.949 1.621 0.903 1.556 0.925 113 [8-1170-1] 

Tansig Purelin TP 1.527 0.933 1.620 0.912 1.580 0.929 61 [8-1200-1] 

Tansig Logsig TL 5.309 0.523 5.434 0.388 5.576 0.415 48 [8-1275-1] 

Purelin Logsig PL 5.322 0.053 5.499 0.077 5.527 0.085 38 [8-1201-1] 

Logsig Logsig LL 5.306 0.599 5.431 0.634 5.573 0.619 29 [8-1211-1] 

Purelin Purelin PP 1.615 0.869 1.493 0.897 1.724 0.893 24 [8-1034-1] 

Tansig Tansig TT 1.553 0.933 1.653 0.916 1.584 0.927 39 [8-1052-1] 

Purelin Tansig PT 2.397 0.867 2.478 0.839 2.603 0.867 27 [8-1033-1] 

Note: OLAF = output layer activation function; HLAF = hidden layer activation function; IN, iteration number 

 

Table 5: MLP-ANN model performance statistics for training; validation; and testing of the BFG method for BODeff. 

  BFG    

   Training Validation Testing   

HLAF OLAF Designation MSE R2 MSE R2 MSE R2 IN Architecture 

Logsig Purelin LP 1.506 0.945 1.607 0.908 1.530 0.937 34 [8-1203-1] 

Logsig Tansig LT 1.521 0.931 1.566 0.906 1.524 0.939 31 [8-1270-1] 

Tansig Purelin TP 1.505 0.929 1.608 0.904 1.538 0.925 31 [8-1001-1] 

Tansig Logsig TL 10.347 0.213 10.591 0.191 10.978 0.244 1 [8-1245-1] 

Purelin Logsig PL 6.321 0.089 6.179 0.108 6.346 0.084 4 [8-1121-1] 

Logsig Logsig LL 6.299 0.000 6.282 0.000 6.346 0.000 1 [8-689-1] 

Purelin Purelin PP 1.543 0.925 1.417 0.929 1.645 0.904 17 [8-1048-1] 

Tansig Tansig TT 1.570 0.924 1.588 0.910 1.619 0.908 46 [8-1044-1] 

Purelin Tansig PT 1.531 0.927 1.480 0.916 1.527 0.920 46 [8-1065-1] 

Note: OLAF = output layer activation function; HLAF = hidden layer activation function; IN, iteration number 

 

Table 6: MLP-ANN model performance statistics for training; validation; and testing of the CGF method for BODeff. 

  CGF   

   Training Validation Testing   

HLAF OLAF Designation MSE R2 MSE R2 MSE R2 IN Architecture 

Logsig Purelin LP 1.523 0.937 1.624 0.814 1.545 0.935 52 [8-1024-1] 

Logsig Tansig LT 1.576 0.910 1.649 0.867 1.546 0.927 57 [8-1220-1] 

Tansig Purelin TP 1.546 0.924 1.633 0.819 1.583 0.850 37 [8-1230-1] 

Tansig Logsig TL 5.306 0.767 5.432 0.714 5.573 0.676 41 [8-1275-1] 

Purelin Logsig PL 5.308 0.696 5.484 0.778 5.515 0.677 46 [8-1005-1] 

Logsig Logsig LL 5.306 0.794 5.432 0.745 5.573 0.785 27 [8-989-1] 

Purelin Purelin PP 1.567 0.887 1.457 0.953 1.678 0.872 16 [8-1031-1] 

Tansig Tansig TT 1.530 0.966 1.613 0.947 1.552 0.929 28 [8-1052-1] 

Purelin Tansig PT 4.679 0.677 4.617 0.796 4.262 0.750 64 [8-1033-1] 

Note: OLAF = output layer activation function; HLAF = hidden layer activation function; IN, iteration number 
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Fig 5: The best ANN model's regression plot between actual and predicted data on the BODeff 

 

 

 
Fig 6: BODeff output actual values against predicted values for the best ANN model 

 

V. CONCLUSION 

 

Models that estimate WWTP performance based on 

historical data of key plant characteristics can help achieve 

optimal operational conditions in WWTPs, which are crucial 

for sustainable water resource management. The use of MLP-

ANN, a renowned prediction model recognized for its high 

accuracy, to estimate the performance of the Abuja-based 

Wupa WWTP utilizing effluent BOD5 as a performance 

indicator was investigated in this study. Over a five-year 

period (2013–2017), daily data for influent BOD5, pH, TDS, 

TSS, COD, TC, EC, and FC; and effluent BOD5 for the Wupa 

WWTP were used. 
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Four reliable multilayer perceptron ANN algorithms 

namely, LM, RP, BFG and CGF were adopted; and the most 

appropriate model was selected following training, validation 

and testing of the models by changing the number of neurons 

and activation functions (tansig, purelin and logsig) in the 

hidden and output layers.  The model efficiency was 

determined using mean square error (MSE) and the correlation 

coefficient (R2).  

 

The study revealed that the LM algorithm with the 

Logsig-Tansig activation pairing and architecture [8-1270-1] 

exhibited the best results in terms of convergence time and 

prediction error with MSE and R2 values of 1.522 and 0.922 

respectively. Also, it showed that the selected ANN 

adequately predicted the effluent BOD5 with an overall 

correlation coefficient of 0.962; thus, demonstrating the 

efficacy of ANN models for accurate prediction of the Wupa 

WWTP performance. 
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