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Abstract:- In the evolving landscape of medical data 

analysis, clustering techniques play a pivotal role, 

particularly in deciphering intricate patterns within 

datasets, such as those linked to cancer diagnostics. With 

the continuous expansion and increasing complexity of 

healthcare data, there is a growing demand for effective 

clustering algorithms capable of extracting significant 

insights. Current trends underscore the necessity of 

carefully selecting the most appropriate clustering method 

to improve both the accuracy and interpretability of 

analytical results. In this paper, we conduct a 

comprehensive comparison of three prominent clustering 

algorithms - KMeans, Agglomerative Clustering, and 

Gaussian Mixture Model (GMM) - applied to a breast 

cancer dataset comprising features from Fine Needle 

Aspirates (FNA) of breast masses. Following a thorough 

preprocessing and scaling of the features, we assess the 

performance of these clustering techniques using the 

Silhouette Score, Calinski-Harabasz Score, and Davies-

Bouldin Score. The findings reveal that KMeans provides 

superior cluster separation and clarity relative to the other 

algorithms. This research emphasizes the critical role of 

algorithm selection based on specific dataset attributes and 

evaluation metrics, aiming to enhance the accuracy of 

clustering outcomes in breast cancer classification. 
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I. INTRODUCTION 

 

In the present digital age, technological advancements 

have led to an unprecedented surge in data generation across 

various devices and platforms, giving rise to what is commonly 

known as "big data." This term encapsulates the vast quantities 

of information produced at an accelerated pace and in diverse 

formats. Traditional data processing and analysis methods 

often struggle to manage and extract value from this 

overwhelming volume of data. As a result, advanced machine 

learning models have become essential for effectively 

clustering and deriving insights from such complex datasets. 

 

Clustering, a core task in unsupervised machine learning, 

involves grouping data points into clusters based on inherent 

similarities. In the context of big data, clustering is crucial for 

uncovering hidden patterns, detecting anomalies, and 

supporting data-driven decision-making processes. However, 

the high dimensionality, variety, and sheer size of big data 

present significant challenges to conventional clustering 

algorithms. This necessitates the development of more 

sophisticated machine-learning models that can handle the 

complexity and scale of these datasets. 

 

 
Fig 1 Clustering in Big Data using an Advanced Machine Learning Model. 
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In the medical field, particularly in the analysis of breast 

cancer data, clustering techniques have proven invaluable. 

Breast cancer remains one of the most prevalent and life-

threatening diseases worldwide, compelling early and accurate 

diagnosis. Clustering algorithms can assist in categorizing 

patients based on similar diagnostic features, identifying 

subtypes of the disease, and even predicting treatment 

outcomes. By effectively grouping data points, clustering aids 

in the personalization of treatment plans, ensuring that patients 

receive the most appropriate care based on their specific cancer 

profiles. 

 

Recent progress in machine learning has led to the 

creation of cutting-edge models tailored specifically for 

clustering within the realm of big data. These models 

incorporate advanced techniques such as deep learning, 

ensemble methods, and hybrid approaches to overcome the 

limitations of traditional clustering algorithms. For instance, 

Liu et al. introduced a deep learning-based clustering 

framework that integrates autoencoders with clustering 

methods, effectively managing high-dimensional and noisy 

data [1]. Similarly, Wang et al. developed an ensemble 

clustering algorithm based on hierarchical consensus 

architecture that uses a divide-and-conquer strategy and allows 

the parallel implementation of hierarchical clustering to 

enhance the robustness and accuracy of clustering outcomes 

[2]. 

 

The rise of distributed computing frameworks like 

Apache Hadoop and Apache Spark has further transformed big 

data processing, providing the computational power necessary 

for advanced machine learning models. These frameworks 

support the efficient clustering of large datasets by enabling 

scalable and distributed processing. Researchers have explored 

the integration of these frameworks with advanced clustering 

algorithms to create solutions capable of handling big data 

effectively [3]. 

 

This research paper aims to explore the application of 

advanced machine learning models for clustering in the context 

of breast cancer diagnosis. By utilizing recent developments in 

machine learning and distributed computing, the goal is to 

design a robust and scalable clustering framework that can 

address the unique challenges posed by big data. The proposed 

model will be evaluated on real-world datasets to assess its 

effectiveness and potential for practical applications in 

healthcare. 

 

II. LITERATURE REVIEW 

 

Deep learning has emerged as a powerful approach for 

clustering in Big Data. Deep neural network models like Deep 

Embedded Clustering (DEC) [4] and Deep Clustering Network 

(DCN) [5] have demonstrated promising capabilities in 

capturing intricate patterns and non-linear relationships within 

Big Data by learning low-dimensional representations and 

performing clustering simultaneously. More recently, Deep 

Discriminative Clustering (DDC) [6] has emerged, combining 

deep learning's strengths with discriminative clustering to 

jointly learn discriminative feature representations and cluster 

assignments. 

To handle massive datasets efficiently, researchers have 

developed distributed implementations of popular algorithms 

like Approximate K-Means++ [7], which can scale to billions 

of data points, and DBSCAN-MR [8], a MapReduce-based 

parallel version of the DBSCAN algorithm. Additionally, novel 

approaches like Scalable Density-Based Clustering (SDBC) [9] 

have been proposed, offering density-based clustering 

techniques capable of maintaining high accuracy on large-scale 

datasets.   Ensemble and hybrid clustering methods have gained 

traction, with Clustering Ensemble [10] combining multiple 

algorithms to enhance overall performance, and Hybrid 

Clustering [11] integrating clustering with other machine 

learning techniques like classification or regression. Notable 

examples include Deep Clustering Ensemble (DCE) [12], 

which combines deep learning and ensemble methods, and 

Hybrid Meta-Clustering [13], a novel approach that utilizes 

meta-learning to improve clustering performance across 

diverse datasets by combining multiple algorithms. 

 

Addressing the challenges of high-dimensional data, 

techniques like subspace clustering algorithms PROCLUS [14] 

and CLIQUE [15] identify clusters in different subspaces of the 

data, while projected clustering algorithms such as HARP [16] 

project data onto lower-dimensional spaces before clustering. 

Recent work on Subspace-Constrained Clustering [17] has 

proposed a framework that incorporates subspace constraints 

into the clustering process, enhancing interpretability and 

accuracy. Graph-based clustering methods have also been 

explored for Big Data, with techniques like SCAN [18] and 

Parallel Clustering (ParClust) [19] representing data as graphs 

and leveraging graph theory concepts to identify clusters. 

These methods can effectively handle arbitrary-shaped clusters 

and noisy data. A novel approach called Graph Convolutional 

Clustering (GCC) [20] combines graph convolutional networks 

with clustering for efficient and accurate clustering of graph-

structured data. Evaluating and validating clustering results in 

Big Data is challenging due to the lack of ground truth labels 

and the computational complexity of evaluation metrics. 

Researchers have proposed various internal and external 

evaluation measures, as well as visual inspection techniques, to 

assess the quality and validity of clustering results [21, 22]. 

Recent work on Cluster Validation Techniques for Big Data 

[23] presents a comprehensive framework for evaluating 

clustering results, considering scalability, robustness, and 

interpretability. 

 

While deep learning models have shown promising 

results for clustering in Big Data, their computational 

complexity and memory requirements can pose challenges 

when dealing with massive datasets. To address this issue, 

researchers have explored scalable deep-learning approaches 

for clustering. One such approach is the Distributed Deep 

Clustering (DDC) framework [24], which leverages distributed 

computing frameworks like Apache Spark to distribute the 

training of deep clustering models across multiple machines, 

enabling efficient processing of large-scale datasets. Another 

recent development is the use of Generative Adversarial 

Networks (GANs) for clustering. The Deep Adversarial 

Clustering Network (DAC) [25] employs a GAN architecture 

to learn a low-dimensional data representation and to perform 

clustering in this latent space. This approach is considered to 
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be effective in capturing complex data distributions and 

generating realistic synthetic data samples. 

 

In many real-world scenarios, data arrives continuously in 

a streaming fashion, necessitating the development of 

streaming and online clustering algorithms. The Streaming K-

Means algorithm [26] is a popular approach that incrementally 

updates cluster assignments as new data points arrive, enabling 

real-time clustering of streaming data. Recent work on Online 

Deep Clustering [27] has proposed a framework that combines 

deep learning and online clustering, allowing for efficient and 

accurate clustering of continuously evolving data streams. To 

handle the computational challenges of Big Data clustering, 

researchers have explored parallel and distributed algorithms 

that can leverage multiple computing resources 

simultaneously. The Parallel K-Means algorithm [28] is a well-

known approach that partitions the data and performs parallel 

clustering on each partition, followed by a merging step to 

obtain the final clustering result. More recently, the Distributed 

Density-Based Clustering (DDBC) algorithm [29] has been 

proposed, which extends the popular DBSCAN algorithm to a 

distributed computing environment, enabling efficient density-

based clustering of large-scale datasets. Additional information 

or constraints such as labeled data, domain knowledge, or user 

feedback may be available in many real-world applications. 

Incorporating this side information into the clustering process 

can improve the quality and interpretability of the resulting 

clusters. The Constrained Clustering with Metric Learning 

(CCML) framework [30] is one such approach that learns a 

distance metric tailored to the clustering task while 

incorporating various types of constraints, such as must-link 

and cannot-link constraints. 

 

As machine learning models become more complex, there 

is a growing need for interpretable and explainable clustering 

techniques. The Interpretable Clustering via Disentangled 

Representations (ICDR) approach [31] aims to learn 

disentangled representations of the data, where each dimension 

corresponds to an interpretable feature or factor, facilitating the 

understanding and explanation of the resulting clusters. 

Another recent work on Explainable Clustering [32] proposes 

a framework that generates human-interpretable explanations 

for the identified clusters, providing insights into the 

underlying data patterns and cluster structures. One of the key 

challenges in clustering high-dimensional data is the presence 

of irrelevant or redundant features, which can negatively 

impact the clustering performance. Representation learning 

techniques aim to address this issue by learning low-

dimensional, informative representations of the data that 

capture the underlying patterns and structures relevant for 

clustering. Recent works have explored the use of autoencoders 

[33], variational autoencoders [34], and self-supervised 

learning [35] for learning effective representations tailored for 

clustering tasks. In many applications, data can be represented 

from multiple perspectives or views, such as different 

modalities or feature subsets. Multi-view clustering algorithms 

[36] aim to leverage these complementary views to improve the 

clustering performance by identifying shared patterns across 

views. Ontology-driven clustering [37] has been proposed to 

incorporate different types of constraints and domain 

knowledge, such as must-link, cannot-link constraints, or 

ontological relationships, into the clustering process. 

 

Privacy and security concerns become crucial in 

applications involving sensitive or confidential data. Privacy-

preserving clustering algorithms [38] aim to protect the privacy 

of individual data points while still enabling effective 

clustering. Another technique is multi-modal clustering [39], 

which jointly clusters data from different modalities, such as 

text, images, and audio, by exploiting the complementary 

information across modalities. In scenarios where data is 

distributed across multiple locations or devices, federated and 

distributed clustering algorithms enable collaborative 

clustering while preserving data privacy and minimizing 

communication costs. Federated clustering [40] involves 

training local clustering models on each device or data source 

and then aggregating these models to obtain a global clustering 

solution, without directly sharing the raw data. 

 

By implementing these advanced machine learning 

techniques, researchers are developing innovative clustering 

models that can effectively handle the challenges of Big Data, 

including high dimensionality, complex data structures, 

evolving data distributions, and privacy concerns, while 

providing accurate, interpretable, and reliable clustering 

solutions. 

 

III. PROPOSED SYSTEM ARCHITECTURE 

 

The architecture of the clustering analysis system consists 

of several key components that work together to preprocess the 

dataset, apply clustering algorithms, and evaluate their 

performance. The main stages of the architecture are as 

follows: 

 

 Data Loading and Preprocessing 

The process begins with loading the breast cancer 

dataset, which contains features extracted from digitized 

images of fine needle aspirates (FNA) of breast masses. These 

features describe the characteristics of cell nuclei present in 

the images, providing essential data for clustering. To ensure 

data integrity, any rows with missing values are removed 

during preprocessing. 

 

 Feature Encoding 

Since the dataset may include categorical variables, these 

are identified and transformed into numerical values using 

label encoding. This step ensures that the machine learning 

algorithms can effectively process all features by converting 

categorical data into a numerical format. 
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Fig 2 Proposed System Architecture 

 

 Feature Selection and Scaling: 

Once the data is encoded, relevant features are selected 

for clustering, typically excluding any target or label columns. 

These selected features are then standardized using feature 

scaling techniques, such as standardization. This step is crucial 

as it normalizes the data, ensuring that each feature contributes 

equally to the clustering process. 

 

 Dimensionality Reduction (Optional): 

To facilitate visualization and reduce computational 

complexity, Principal Component Analysis (PCA) is applied 

to the dataset. PCA reduces the dimensionality of the feature 

space to two dimensions, making it easier to visualize the 

clustering results while retaining as much variance as possible 

from the original data. 

 

 Clustering Algorithms: 

The core of the analysis involves applying three different 

clustering algorithms: KMeans, Agglomerative Clustering, 

and Gaussian Mixture Model (GMM). 

 

 KMeans Clustering: 

 

 Initialization: KMeans starts by randomly selecting a 

predefined number of centroids (in this case, three). 

 Assignment: Each data point is assigned to the nearest 

centroid based on the Euclidean distance, forming initial 

clusters. 

 Update: The algorithm recalculates the centroids by 

computing the mean of all data points within each cluster. 

 Iteration: The task and upgrade steps are repeated until the 

centroids no longer change significantly or the highest 

number of iterations is reached. 
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 Agglomerative Clustering: 

 

 Initialization: This hierarchical clustering method treats 

each data point as an individual cluster. 

 Merging: It repeatedly merges the two closest clusters 

based on a distance metric, typically using Ward’s linkage 

method to minimize the variance within clusters. 

 Completion: The process continues until the desired 

number of clusters is achieved. 

 

 Gaussian Mixture Model (GMM): 

 

 Initialization: GMM accepts that the information is 

produced from a blend of a few Gaussian disseminations 

with obscure parameters. 

 Expectation-Maximization (EM): The EM algorithm is 

used to find the maximum likelihood estimates of the 

parameters. In the Expectation step, the algorithm 

calculates the probability of each data point belonging to 

each Gaussian component. In the Maximization step, it 

updates the parameters to maximize the likelihood of the 

data given these probabilities. 

 Iteration: This process is iterated until convergence, 

resulting in a probabilistic clustering of the data. 

 

At last, the proposed system is evaluated on the 

evaluation parameters. 

 

IV. DATASET 

 

The dataset used in this study, which evaluates the 

proposed model, is sourced from the Social Good: Women 

Coders' Bootcamp, organized by Artificial Intelligence for 

Development in collaboration with UNDP Nepal. It was 

downloaded from Kaggle and comprises features derived from 

digitized images of Fine Needle Aspirates (FNA) of breast 

masses. These features capture various characteristics of the 

cell nuclei present in the images, which are essential for 

diagnosing breast cancer. 

 

V. RESULTS 

 

To evaluate the performance of our proposed model, 

which applies KMeans, Agglomerative Clustering, and 

Gaussian Mixture Model (GMM) algorithms to a breast cancer 

dataset, we utilized three key metrics: Silhouette Score, 

Calinski-Harabasz Score, and Davies-Bouldin Score. 

 

 Silhouette Score:  

Measures how well each data point aligns with its cluster 

compared to other clusters. A higher score (ranging from -1 to 

1) indicates better separation between clusters. 

 

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥(𝑎(𝑖), 𝑏(𝑖))
 

 

Where a(i)a(i)a(i) is the average intra-cluster distance 

(distance within the same cluster), and b(i)b(i)b(i) is the 

average nearest-cluster distance (distance to the nearest 

different cluster). The average of these scores across all data 

points gives the overall Silhouette Score for the model. 

 

 Calinski-Harabasz Score:  

Assesses the ratio of between-cluster to within-cluster 

dispersion. A higher score signifies more distinct and well-

defined clusters. 

 

𝐶𝐻 =
𝑡𝑟𝑎𝑐𝑒(𝐵𝑘)/(𝑘 − 1)

𝑡𝑟𝑎𝑐𝑒(𝑊𝑘)/(𝑛 − 𝑘)
 

 

Where BkB_kBk represents the between-cluster 

dispersion matrix, WkW_kWk represents the within-cluster 

dispersion matrix, kkk is the number of clusters, and nnn is the 

total number of data points. This score helps in understanding 

how distinct the clusters are in our proposed model. 

 

 Davies-Bouldin Score:  

Evaluates the average similarity between clusters, with a 

lower score indicating better clustering. 

 
Fig 3 Clustering Results for the Proposed Model 
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Fig 4 Performance Analysis of all 3 Algorithms 

 

𝐷𝐵 =
1

𝑘
∑max(

𝜎𝑖 + 𝜎𝑗

𝑑𝑖, 𝑗
)

𝑘

𝑖=1

 

 

The clustering performance of the KMeans, 

Agglomerative Clustering, and Gaussian Mixture Model 

(GMM) algorithms on the breast cancer dataset was evaluated 

using the Silhouette Score, the Calinski-Harabasz Score, and 

the Davies-Bouldin Score. The Silhouette Score indicates how 

well-separated the clusters are, with higher values signifying 

better-defined clusters. Figure 4 depicts an analysis of the 

Silhouette Score and Davies-Bouldin Score. The KMeans 

algorithm achieved a Silhouette Score of 0.4711, slightly 

higher than Agglomerative Clustering (0.4631) and GMM 

(0.4703), suggesting that KMeans provides the most distinct 

clusters among the three algorithms. The Calinski-Harabasz 

Score, which measures the ratio of between-cluster to within-

cluster dispersion further supports this finding. KMeans 

achieved the highest score (523.4070), followed by 

Agglomerative Clustering (494.1320) and GMM (429.3527), 

indicating that KMeans is very efficient in creating the most 

distinct and well-defined clusters. 

 

The Davies-Bouldin Score, which evaluates the average 

similarity between clusters, provides additional insight into the 

clustering performance as shown in Figure 5. A lower Davies-

Bouldin Score indicates better clustering quality. In this study, 

KMeans achieved a Davies-Bouldin Score of 0.9263, which is 

lower than Agglomerative Clustering (0.9750) and GMM 

(1.0203). This result suggests that KMeans clusters are more 

compact and distinct compared to those produced by the other 

two algorithms. Despite the slight differences in the Silhouette 

and Calinski-Harabasz Scores, the Davies-Bouldin Score 

consistently supports the conclusion that KMeans performs the 

best in terms of creating distinct, well-separated, and compact 

clusters for this breast cancer dataset. 

 

VI. CONCLUSION 

 

In this paper, we proposed a comparative analysis of 

KMeans, Agglomerative Clustering, and Gaussian Mixture 

Model (GMM) algorithms applied to a breast cancer dataset 

derived from fine needle aspirates (FNA) of breast masses. Our 

findings demonstrated that KMeans consistently achieved 

superior performance across the majority of evaluation metrics, 

particularly in terms of cluster separation and definition. This 

suggests that KMeans is a more effective choice for datasets 

where clear and distinct cluster boundaries are crucial. While 

Agglomerative Clustering and GMM also contributed valuable 

insights, their clustering quality was slightly less favorable 

compared to KMeans, especially concerning cluster 

distinctiveness. These results highlight the importance of 

selecting the appropriate clustering algorithm based on the 

specific needs of the dataset and the desired outcomes. 

 

Future research should explore various aspects to enhance 

clustering performance further, such as adjusting the number of 

clusters, incorporating additional features, or applying 

advanced and hybrid clustering techniques. By addressing 

these areas, researchers can refine breast cancer classification 

methods and improve data-driven diagnostic accuracy. This 

study underscores the importance of understanding the 

strengths and limitations of different clustering approaches, 

contributing to more effective and personalized strategies in 

breast cancer detection and diagnosis. 
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