Comparative Study of Model Order Reduction Techniques

Manoj Lavanshi
Department of Electrical Engineering
Rajasthan Technical University
Kota, Rajasthan (324010)

Dr. D. K. Sambariya
Department of Electrical Engineering
Rajasthan Technical University
Kota, Rajasthan (324010)

Abstract

The higher order system consumes more space because to higher order matrix. The higher order interconnected power systems stability analysis is time consuming and large system performance of the system cannot be understanding easily. The analysis of the higher system is drudging and inordinate. The analysis and control of such system presents a great challenge for system engineer. The lower order system drives a comfort exploratory and optimization which results in favorable similarity to the system. This paper's objectives are to examine the reduced order model of large scale LTI system using balanced truncation method. In this technique the reduction of nominator and denominator polynomial using balanced truncation (BT) method, which results more accurate result. This approach preserves the original system's stability and steady state value in the lower order model.

Keywords:- Reduction Techniques, Stability Equation Method (SEM), Differentiation Equation Method (DEM), Balanced Truncation Method, Reduced Model.

I. INTRODUCTION

Modelling is the process of brief explanation of a system using mathematical equations and matrix. The mathematical models have a capability of better understanding of a system and how it can be control[1-4]. The mathematical modelling is used in different fields like, power system, control theory and sociology and physiology etc. Study of a mathematical model which has many states variables behaviour [5]. The construction of a system or model which is nearly similar to real phenomenon. A largescale order system is therefore challenging to analyse and simulate in terms of synthesis and control. This also affects the computational time due to large number of system variables [6].

The method of getting an approximation reduced order of a big system with the same properties as the real original system is called "model order reduction". The development of optimal model order reduction and its generalisation to discrete time non-linear systems [7]. There are various model order reduction techniques are available which are published in earlier years some of them are Hankel Norm Approximation, Stability Equation Method, Singular Value Decomposition, Pade Approximation Technique, Routh Stability Method, Pade Via Lanczos [8].
> The Problem Associated with Model Order Reduction as follow:
The Error of Approximation should be Minimum.

- The original system's characteristics must be kept protected.
- The computation of the reduction of system should be well-organized or sequential.
- The reducing procedure need to be automated[5-7, 915].

For linear time invariant (LTI) dynamic system various reduction methods are proposed for model order reduction of higher order system. The technique which are more frequently used for matching the time moments of original and reduced system is pade approximation. But this technique has a drawback that it has potential to give unstable lower order reduced order model for stable higher order system.

Routh stability reduction technique is commonly used for the reduction of the complexity and matching the transient response of higher order system with lower order system. Unfortunately, it also has limitation to defend the dominant poles in the reduced order model for a non-minimum phase system it lags.

In this paper, for linear time-invariant system, a mixed method approach is proposed for model order reduction. In this paper the Stability Equation Method, Differential Equation method and Balanced Truncation Method is used to reduce a higher order LTI system to a reduced order system. Now to obtain desired reduced order model again reduce the intermediate lower system.

II. STATEMENT OF PROBLEM

> Considering a higher order ($\left.n^{\text {th }}\right)$ system and a reduced $\operatorname{order}\left(r^{\text {th }}\right)$ system may be represented as following:

$$
\begin{align*}
& \mathrm{G}(\mathrm{~s})=\frac{\sum_{i=0}^{n-1} m_{i} s^{i}}{\sum_{i=0}^{r-1} l s^{i}} \tag{1}\\
& \mathrm{R}(\mathrm{~s})=\frac{\sum_{i=0}^{r-1} q_{i} i^{i}}{\sum_{i=0}^{r} p_{j} s^{j}} \tag{2}
\end{align*}
$$

Where, m_{i}, q_{i} are scalar constants for numerator and $p_{j} l_{j}$, are scalar constants for denominator of higher order and reduced order system, respectively. The objective is to find a reduced $r^{\text {th }}$ order system model $\mathrm{R}(\mathrm{s})$ such that it retains the
important properties of the original higher system model G(s) for the same type of inputs. The analysis is done by two different reduction method viz stability equation method and differentiation method. The graphical and analytical analysis of reduced order system is to be carried out.

III. METHODOLOGY

For model order reduction various techniques are proposed, but here we are using these two methodologies which are:

A. Stability Equation Method

In this technique the reduced order transfer function is gained straight from the pole zero arrangement of stability equations of the original higher order transfer function. Hence the order of the higher order transfer function of stability equation can be reduced [14].

Let us Assume that the Transfer Function of the Higher Order System is:

$$
\begin{equation*}
G(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots \ldots \ldots . . b_{1} s+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots \ldots . . . a_{1} s++a_{0}} \tag{3}
\end{equation*}
$$

$N(s)$ and $D(s)$ are the Numerator and Denominator of considered transfer function $G(s)$ respectively. By separating the numerator $N(s)$ and denominator $D(s)$ into their even and odd parts we get

$$
\begin{equation*}
G(s)=\frac{N_{e}(s)+N_{o}(s)}{D_{e}(s)+D_{o}(s)} \tag{4}
\end{equation*}
$$

Where,

$$
\begin{align*}
& N_{e}(s)=\sum_{i=2,2,4}^{m} b_{i} s^{i} \tag{5}\\
& N_{o}(s)=\sum_{i=1,3,5}^{m} b_{i} s^{i} \tag{6}\\
& D_{e}(s)=\sum_{i=0,2,4,}^{n} a_{i} s^{i} \tag{7}\\
& D_{o}(s)=\sum_{i=1,3,5}^{n} a_{i} s^{i} \tag{8}
\end{align*}
$$

The roots of the even part of numerator $N_{e}(s)$ and denominator $D_{e}(s)$ are called zeros $z_{i}(s)$ while the odd part of the numerator $N_{o}(s)$ and denominator $D_{o}(s)$ are called poles $p_{i}(s)$. In this method, we reduce a polynomial's less significant factor by individual eliminating. Let us illustrate the method by reducing the numerator and the denominator is reduced as well. The reduced order model is attained by the ratio of reduced numerator and denominator.

The Numerator is Separated as:

$$
\begin{equation*}
N(s)=N_{e}(s)+N_{o}(s) \tag{9}
\end{equation*}
$$

Were

$$
\begin{gather*}
N_{e}(s)=b_{0}+b_{2} s^{2}+b_{4} s^{4}+\ldots \tag{10}\\
N_{o}(s)=b_{1}+b_{3} s^{3}+b_{5} s^{5}+\ldots \ldots \tag{11}
\end{gather*}
$$

The Equation May be written as

$$
\begin{align*}
& N_{e}(s)=b_{0} \sum_{i=1}^{k_{1}}\left(1+s^{2} / z_{i}^{2}\right) \tag{12}\\
& N_{o}(s)=b_{1} s \sum_{i=1}^{k_{2}}\left(1+s^{2} / p_{i}^{2}\right) \tag{13}
\end{align*}
$$

Where k_{1} and k_{2} are integer parts of $\mathrm{n} / 2$ and ($\mathrm{n}-2$)/2 respectively.

Here $z_{1}^{2}<p_{1}^{2}<z_{2}^{2}<p_{2}^{2}$ \qquad by ignoring the factor with higher magnitude of z_{i} \& p_{i}, we get thee desired reduced order ' r ' of stability equation and it can be written as

$$
\begin{align*}
& N_{e r}(s)=b_{0} \sum_{i=1}^{r_{1}}\left(1+s^{2} / z_{i}^{2}\right) \tag{14}\\
& N_{o}(s)=b_{1} \sum_{i=1}^{r_{2}}\left(1+s^{2} / p_{i}^{2}\right) \tag{15}
\end{align*}
$$

Where r_{1} andr $_{2}$ are the integer parts of $\mathrm{r} / 2$ and $(\mathrm{r}-2) / 2$ respectively. The reduced order numerator formed as:

$$
\begin{equation*}
N_{r}(s)=N_{e r}(s)+N_{o r}(s) \tag{16}
\end{equation*}
$$

Similarly, the Reduced Order Denominator is Obtained:

$$
\begin{equation*}
D_{r}(s)=D_{e r}(s)+D_{o r}(s) \tag{17}
\end{equation*}
$$

The Reduced Order Transfer Function $\mathrm{R}(\mathrm{S})$ is Written as:

$$
\begin{equation*}
R(s)=\frac{N_{e r}(s)+N_{o r}(s)}{D_{e r}(s)+D_{o r}(s)} \tag{18}
\end{equation*}
$$

As the result of the stability equation method, we get stable reduced order models. It is observed that poles and zeros of lower models have a greater degree of dominance than those of higher magnitude. In this method, the poles or zeros with higher magnitudes ore disregarded.

B. Differentiation Equation Method-

This method was introduced by Gutman et al. [14]. This method based on polynomial's differentiation. The differentiation approach of Gutman et al. may also be considered a multipoint pade method; it is another stability preserving method. Any reduction technique in the frequency domain that obtains the lower order models, as a result of this novel connection between the pade and stability preserving methods.

The coefficient of the reduced order transfer function is produced by differentiating the reciprocal of the numerator and denominator polynomial of the higher transfer functions repeatedly. The differentiated reduced order is reciprocated again and normalized reduced polynomials are used. Because of the problem that zeros with big modules tend to be better approximation than those with a small module, the straightforward differentiation is abandoned.

$>$ Algorithm of Differentiation-

- The Reciprocal of the Transfer Function is Taken.
- To Get the Desired Reduced Order the Reciprocated Transfer Function is Differentiated.
- The Reduced Transfer Function is Again Reciprocated
- The Decreased Order System is then Subjected to the Steady State Correction.
C. Balance Truncation Method
> Review on BTM-
This approach transforms the controllability Gramian and the observability Gramian into a diagonal matrix for the altered realisation [11]. Balance realisation is the name given to this process. Balancing of a particular reality is the first stage in the balance truncation procedure.

Let us consider a LTI system in a state space form as: -

$$
\begin{align*}
& X(t)=A x(t)+B u(t) \tag{19}\\
& y(t)=C x(t)+D u(t) \tag{20}
\end{align*}
$$

Where for each ' t ',
$u(t) € R^{q}$ input vector,
$x(t) € R^{n}$ state vector,
$y(t) € R^{p}$ output vector respectively.
The transfer function of original state space model is obtained as: -

$$
\begin{equation*}
G(s)=C(s I-A)^{-1} B+D \tag{21}
\end{equation*}
$$

Here A, B, C and D are the matrix of order $n * n, n *$ q and $p * q$ in n -dimensional space R .

The objective is the higher order model to be transformed into lower order model. The reduced order state space equation is written as: -

$$
\begin{align*}
& x_{r}^{\prime}(t)=A_{r} x_{r}(t)+B_{r} u_{r}(t) \tag{22}\\
& y_{r}(t)=C_{r} x_{r}(t)+D_{r} u_{r}(t) \tag{23}
\end{align*}
$$

The state space matrix for reduced order into transfer function is written as: -

$$
\begin{equation*}
G_{r}(s)=C_{r}(s I-A)^{-1} B_{r}+D_{r} \tag{24}
\end{equation*}
$$

The resulted error of output of both original and reduced model is kept low promising for input $u(t)$.

The level of observability and control Gramians can be used to measure observability and controllability in particular state space directions. In this the transfer function equation of higher order is transformed into equivalent state space model then the matrix is reduced into the lower order matrix and the
lower order state space matrix is again transformed into the transfer function equation.

The input and output state space models are inversely correlated with the controllability and observability Gramians. The controllability of the system is given by: -

$$
\begin{equation*}
P=\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T}} t d t \tag{25}
\end{equation*}
$$

Similarly, the observability of the system is given by:

$$
\begin{equation*}
Q=\int_{0}^{\infty} e^{A^{T} t} C^{T} C e^{A^{T} t} d t \tag{26}
\end{equation*}
$$

The two Lyapunov equations can be used to determine:

$$
\begin{align*}
& A P+P A^{T}+B B^{T}=0 \tag{27}\\
& A^{T} Q+Q A+C^{T} C=0 \tag{28}
\end{align*}
$$

> Diminution by Balanced Truncation Technique:-

There is a transformation procedure that, for every stable dynamic system, renders controllability and observability equal and in diagonal form. The idea of system observability and controllability provides the basis for the combination of singular value decomposition, principal component analysis, and the balanced truncation approach.

- Minimal Phase System: -

Consider that (A, B) is observable, (A, C) is controllable, and A, is stable. A matrix can be changed into if it is symmetric and positive definite into the lower order triangular matrix by Cholesky factorization method. The Cholesky factor of lower triangular matrix are L_{c} and L_{o}, of the P and Q .

$$
\begin{align*}
& P=L_{c} L_{c}^{T} \tag{29}\\
& Q=L_{o} L_{o}^{T} \tag{30}
\end{align*}
$$

The matrix's singular value decomposition $L_{o} L_{c}^{T}$,

$$
\begin{equation*}
L_{o} L_{c}^{T}=W \sum V^{H} \tag{31}
\end{equation*}
$$

Here, W, V $=$ orthogonal matrix, $V^{H}=$ Hermitian transpose

The column of matrix u is referred to as a left single vector and column of matric V is named as a single right vector. The strength of controllability and observability for each specific state is obtained by Hankel singular values.

A dynamic system can be changed into a balanced system by utilising the non-singular transformation T, which is defined as

$$
\begin{equation*}
T=L_{c} V \sum^{-\frac{1}{2}} \alpha \tag{32}
\end{equation*}
$$

The balanced system matrix is obtained as.

$$
\begin{equation*}
A^{\sim}=T^{-1} A T, B^{\sim}=T^{-1} B, C^{\sim}=C T \tag{33}
\end{equation*}
$$

The transmission matrix D remain unchanged during the reduction process of original system. In a balanced system the P^{\sim} and Q^{\sim} matrix became same and converted into diagonal matrix as

$$
P^{\sim}=Q^{\sim}=\sum \alpha=\left[\begin{array}{ccccccc}
\alpha_{1} & 0 & 0 & 0 & 0 & 0 & 0 \tag{34}\\
0 & \alpha_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha_{r} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \alpha_{r+1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \alpha_{n}
\end{array}\right]
$$

Where $\alpha_{i} i=1,2, \ldots \ldots, r, r+1, \ldots \ldots n$ are Hankel singular values, listed in decreasing order as $\alpha_{1}>\alpha_{2}>\alpha_{3}>\ldots>\alpha_{r} \gg$ $\alpha_{r+1}>\cdots>\alpha_{n}$.

To calculate the desired order (r) reduced model the balance system $\left(A^{\sim}, B^{\sim}, C^{\sim}, D^{\sim}\right)$ is partitioned as

$$
A^{\sim}=\left[\begin{array}{ll}
A_{11} & A_{12} \tag{35}\\
A_{21} & A_{22}
\end{array}\right], B^{\sim}=\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right], C^{\sim}=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D^{\sim}=D
$$

The order of the reduced order matrix element which are used for computation are $A_{11}(r * r), B_{1}(r * m)$ and $C_{1}(p * r)$. Therefore, the simplified model's transfer function is: -

$$
\begin{equation*}
R_{r}(s)=D^{\sim}+C_{1}\left(S i-A_{11}\right)^{-1} B_{1} \tag{36}
\end{equation*}
$$

- Non-Minimal Phase System:-

Assume that A is stable, for obtaining the balance realization of given non-minimal stable system which is continuous-time system The square root approach was put out by Tombs and Postlethwaite. The observability and controllability Gramians for non-minimal phase systems are positive semi-definite matrices. By using the Choleskey factorization method, this sort of matrix cannot be converted into a lower order triangular matrix (L). Use is made to acquire the lower order triangular matrix of the $L D L^{T}$ decomposition of non-minimal phase systems. The information concerning $L D L^{T}$ breakdown is provided. The lower triangular matrices L_{o} and L_{c} are obtained when the controllability and observability Gramians are obtained by equations (28) and (29)

$$
\begin{align*}
& P=L_{c} d_{C} L_{C}^{T} \tag{37}\\
& Q=L_{O} d_{O} L_{O}^{T} \tag{38}
\end{align*}
$$

Instead of being positive definite, the lower triangular matrices are symmetric positive semi-definite. Decomposing the lower triangular matrix into singular values $L_{o}^{T} L_{c}$ is given as

$$
L_{o}^{T} L_{C}=\left[\begin{array}{ll}
\left.U_{1} U_{2}\right]\left[\begin{array}{ll}
\sum_{1} V_{1} & \sum_{2} V_{2}
\end{array}\right] \tag{39}
\end{array}\right.
$$

IV. NUMERICAL EXAMPLE

Example1. Let us consider an $8^{\text {th }}$ order transfer function equation:
The main purpose is to reduce the model of the eighth order to second order. Here we are using

$$
\begin{equation*}
T(s)=\frac{18 s^{7}+514 s^{6}+5982 s^{5}+36380 s^{4}+122664 s^{3}+222088 s^{2}+185760 s+40320}{s^{8}+36 s^{7}+546 s^{6}+4536 s^{5}+22449 s^{4}+67284 s^{3}+118124 s^{2}+109606 s+40320} \tag{40}
\end{equation*}
$$

Various steps for obtaining the reduced order model, which are as follow: -
Step 1: Separating the $\mathrm{N}(\mathrm{s})$ and $\mathrm{D}(\mathrm{s})$ of the above system into even and odd parts.

Numerator part:

Using equation (10) and (11) the numerator further divided: as
Even part:

$$
\begin{equation*}
N_{e}(s)=514 s^{6}+36380 s^{4}+222088 s^{2}+40320 \tag{41}
\end{equation*}
$$

This can be written as: -

$$
\begin{equation*}
N_{e r}(s)=36380 s^{4}\left(\frac{514 s^{2}}{36380}+1\right)+222088 s^{2}+40320 \tag{42}
\end{equation*}
$$

Odd part:

$$
\begin{equation*}
N_{o r}(s)=18 s^{7}+5982 s^{6}+122664 s^{3}+185760 s \tag{43}
\end{equation*}
$$

Also, the odd part is: -

$$
\begin{equation*}
N_{o r}(s)=5982 s^{5}+\left(\frac{18 s^{2}}{5982}+1\right)+122664 s^{3}+185760 s \tag{44}
\end{equation*}
$$

As per stability equation concept, the factors which have large magnitudes can be neglected. Therefore, the reduced order numerator is from eq. (16) is:

$$
\begin{align*}
& N(s)=N_{e r}(s)+N_{o r}(s) \tag{45}\\
& N_{r}(s)=185760 s+40320 \tag{46}
\end{align*}
$$

Denominator part:

Even part:

$$
\begin{equation*}
D_{e}(s)=s^{8}+546 s^{6}+22449 s^{4}+118124 s^{2}+40320 \tag{47}
\end{equation*}
$$

The eq. (46) can be written as:

$$
\begin{equation*}
D_{e r}(\mathrm{~s})=546 s^{6}\left(\frac{s^{2}}{546}+1\right)+22449 \mathrm{~s}^{4}+118124 s^{2}+40320 \tag{48}
\end{equation*}
$$

After neglecting the factors which have large magnitudes the equation (46) becomes:

$$
\begin{equation*}
D_{e r}(\mathrm{~s})=118124 s^{2}+40320 \tag{49}
\end{equation*}
$$

Odd part:

$$
\begin{equation*}
D_{o}(\mathrm{~s})=36 s^{7}+64536 s^{5}+67284 s^{3}+109606 s \tag{50}
\end{equation*}
$$

Equation (49) can be written as:

$$
\begin{equation*}
D_{o r}(\mathrm{~s})=64536 s^{5}\left(\frac{36 s^{2}}{64536}+1\right)+67284 \mathrm{~s}^{3}+109606 s \tag{51}
\end{equation*}
$$

Reducing further eq. (50) we get:

$$
\begin{equation*}
D_{o r}(\mathrm{~s})=109606 s \tag{52}
\end{equation*}
$$

From equation (17) the reduced denominator is

$$
\begin{equation*}
D_{r}(\mathrm{~s})=D_{e r}(\mathrm{~s})+D_{o r}(\mathrm{~s}) \tag{53}
\end{equation*}
$$

Hence the reduced $2^{\text {nd }}$ order model of the system using stability equation method is:

$$
\begin{equation*}
T_{2 r(s)}=\frac{185760 s+40320}{118121 s^{2}+109606 s+40320} \tag{54}
\end{equation*}
$$

Step Response

Fig 1 Comparison of Step Response of Reduced Order Model and Original Higher Order using Stability Equation Method
Example:2 Consider the equation (39) for Model order reduction using differentiation method.

$$
\begin{equation*}
T(s)=\frac{18 s^{7}+514 s^{6}+5982 s^{5}+36380 s^{4}+122664 s^{3}+222088 s^{2}+185760 s+40320}{s^{8}+36 s^{7}+546 s^{6}+4536 s^{5}+22449 s^{4}+67284 s^{3}+118124 s^{2}+109606 s+40320} \tag{55}
\end{equation*}
$$

The reduction of polynomials Nominator and Denominator are separate and by taking the reciprocal of both.
The reciprocated numerator is:

$$
\begin{equation*}
\frac{\mathrm{dN}(\mathrm{~s})}{\mathrm{ds}}=18+514 \mathrm{~s}+5982 \mathrm{~s}^{2}+36380 \mathrm{~s}^{3}+122664 \mathrm{~s}^{4}+222088 \mathrm{~s}^{5}+185760 \mathrm{~s}^{6}+40320 \mathrm{~s}^{7} \tag{56}
\end{equation*}
$$

Differentiating with respect to ' s ' the numerator is:

$$
\begin{equation*}
\frac{\mathrm{DN}_{\mathrm{r}}(s)}{d s}=514+11964 s+109140 s^{2}+490656 s^{3}+1110440 s^{4}+1114560 s^{5}+282240 s^{6} \tag{57}
\end{equation*}
$$

Similarly, differentiating the numerator up to desired reduced order, the second order numerator is:

$$
\begin{equation*}
N_{2 r}(s)=133747200+203212800 \tag{58}
\end{equation*}
$$

The original reduced numerator is obtained by again reciprocal of $N_{2 r}(s)$

$$
\begin{equation*}
N_{2 r}=133747200 s+203212800 \tag{59}
\end{equation*}
$$

The reciprocal of denominator is:

$$
\begin{equation*}
\left.D_{r}(s)=1+36 s+546 s^{2}+4536 s^{3}+22449 s^{4}+67284 s^{5}+118124 s^{6}+109606 s^{7}+4032057\right) \tag{60}
\end{equation*}
$$

Differentiating with respect to 's'

$$
\begin{equation*}
\frac{d D_{r}(s)}{d s}=36+1092 s+13608 s^{2}+89796 s^{3} 3364420 s^{4}+708744 s^{5}+767242 s^{6}+322560 s^{7} \tag{61}
\end{equation*}
$$

To obtain the desired reduced order the denominator is differentiated again and again, the reduced $2^{\text {nd }}$ order denominator is:

$$
\begin{equation*}
\frac{d D_{r}(s)}{d s}=85049280+552414240 s+812851200 s^{2} \tag{62}
\end{equation*}
$$

Again, the reduced order denominator is reciprocated:

$$
\begin{equation*}
D_{2 r}(s)=85049280 s^{2}+552414240 s+812851200 \tag{63}
\end{equation*}
$$

The reduce second order transfer function of the original higher order system from equation (50) and (54) is:

$$
\begin{equation*}
T_{2}(s)=\frac{133747200 s+202312800}{85049280 s^{2}+552414240 s+812851200} \tag{64}
\end{equation*}
$$

Applying steady state correction to reduced order model

$$
\begin{align*}
& S S O=\frac{40320}{40320}=1 \tag{65}\\
& S S R=\frac{203212800}{812851200}=0.25 \tag{66}\\
& K_{2}=\frac{1}{0.25}=4 \tag{67}
\end{align*}
$$

So, the final reduced second order transfer function is shown below:

$$
\begin{equation*}
T_{2}(s)=\frac{534988800 s+812851200}{85049280 s^{2}+552414240 s+812851200} \tag{68}
\end{equation*}
$$

Step Response

Fig 2 Comparison of the step response of the original system with the reduced system using differentiation equation method
Example: -3 considering the equation (39) for balanced truncation reduction technique

$$
\begin{equation*}
T(s)=\frac{18 s^{7}+514 s^{6}+5982 s^{5}+36380 s^{4}+122664 s^{3}+222088 s^{2}+185760 s+40320}{s^{8}+36 s^{7}+546 s^{6}+4536 s^{5}+22449 s^{4}+67284 s^{3}+118124 s^{2}+109606 s+40320} \tag{69}
\end{equation*}
$$

With the use of equation (28) and (29) the Lyapunov controllability Gramians (60) and observability Gramians (69) equations are shown in table1.

The reduced order state space matrices of the system are

$$
A_{1}=\left[\begin{array}{cc}
-7.3260 & 2.1350 \tag{70}\\
-2.1350 & -0.0379
\end{array}\right] \quad B_{1}=\left[\begin{array}{l}
-4.2220 \\
-0.2378
\end{array}\right] \quad C_{1}=\left[\begin{array}{lll}
-4.222 & 0.2378
\end{array}\right] \quad D_{1}=[0]
$$

The equation (x) is used to calculate the second order reduced model:

$$
\begin{gather*}
T_{b}(s)=D_{1}+C_{1}(s I-A)^{-1} B_{1} \tag{71}\\
T_{2}(s)=\frac{17.77 s+4.548}{s^{2}+7.364 s+4.836} \tag{72}
\end{gather*}
$$

Applying steady state correction to reduced order model.

From Eqn.(62) the SSO is:

$$
\begin{align*}
& S S O=\frac{40320}{40320}=1 \tag{73}\\
& S S R=\frac{4.548}{4.836}=0.94 \tag{74}\\
& K_{2}=\frac{1}{0.94}=1.06 \tag{75}
\end{align*}
$$

So the final reduced order transfer function system is shown below and fig.(3) shows the step response of reduced and original system.

$$
\begin{equation*}
T_{2(s)}=\frac{\{18.8362 s+4.820\}}{\left\{s^{2}+7.364 s+4.836\right\}} \tag{76}
\end{equation*}
$$

Fig 3 Comparison of the step response of the original system with the reduced system using balanced truncation method
Table 1 The Lyapunov Observability and Controllability of Higher Order System

Table 2 Time Response Analysis of Step Responses of Reduced2 ${ }^{\text {nd }}$ Order System

Reduction Techniques	Reduced 2 ${ }^{\text {nd }}$ order	Rise Time	Settling Time	Peak	Peak Time	Overshoot
Balance Truncation	$T_{2(s)}=\frac{\{18.8362 s+4.820\}}{\left\{s^{2}+7.364 s+4.836\right\}}$	0.0528	5.9677	2.3329	0.4442	134.0648
Stability Equation Method	$\frac{185760 s+40320}{118121 s^{2}+109606 s+40320}$	0.6863	8.7186	1.5659	2.6800	56.5926
Differential Equation Method	$\frac{534988800 s+812851200}{85049280 s^{2}+552414240 s+812851200}$	0.2438	1.7198	1.1093	0.6541	10.9293

V. CONCLUSION

It can be seen that the balance truncation method's reduced order equation's response and the result of the original higher order equation are similar.

A model reduction method based on Stability equation method, Differentiation equation method and balance truncation method (BTM) is presented in this research. A numerical example that compares the time responses of the original system with the reduced system evaluates that the rise time, settling time, peak and peak time of the balanced truncation technique is low as compared to the SEM and DEM.

Where, the overshoot is higher in BTM technique compared to SEM and DEM.

REFERENCES

[1] L. Li, "Coprime factor model reduction for discretetime uncertain systems," Systems \& Control Letters, vol. 74, pp. 108-114, 2014.
[2] A. Vendl and H. Faßbender, " Model Order Reduction for Unsteady Aerodynamic Applications," Proc. Appl. Math. Mech., vol. 13, no. 1, pp. 475-476, December 20132013.
[3] C. Seshukumar, B. Dasu, and M. S. Kumar, "A Hybrid Reduction Technique for Transformer Linear Section Model," in International Journal of Engineering Research and Technology, 2013, vol. 2: IJERT.
[4] S. Satakshi, S. Mukherjee, and R. C. Mittal, "Order reduction of linear time invariant continuous systems using mixed approach," in Power, Control and Embedded Systems (ICPCES), 2012 2nd International Conference on, 2012, pp. 1-5.
[5] A. Sikander and R. Prasad, "Reduced order modelling based control of two wheeled mobile robot," Journal of Intelligent Manufacturing, pp. 1-11, 2017// 2017.
[6] C. N. Singh, D. Kumar, and P. Samuel, "Order reduction of interval systems using direct truncation and stability equation method," in 2017 International Conference on Advances in Mechanical, Industrial, Automation and Management Systems (AMIAMS), 2017, pp. 363-368.
[7] S. R. Potturu and R. Prasad, "Model Reduction of LTI Discrete-Time Multivariable Systems using Pade Approximation and Stability Equation Method," in 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), 2019, pp. 67-72.
[8] S. K. Gautam, S. Nema, and R. K. Nema, "Model Order Reduction of Interval Systems Using Routh Approximation with Mid-Point Concept and Stability Equation Method," in 2021 IEEE 2nd International Conference On Electrical Power and Energy Systems (ICEPES), 2021, pp. 1-5.
[9] K. Sudheswari, R. V. Ganesh, C. Manoj, A. Ramesh, and K. Manoz Kumar Reddy, "Model-Order Reduction and Reduced Controller Design Using Routh Approximation and Factor Division Method," in Soft Computing Techniques and Applications, Singapore, 2021, pp. 165-170: Springer Singapore.
[10] A. Gupta and A. K. Manocha, "Comparative Analysis of Different Balanced Truncation Techniques of Model Order Reduction," in International Conference on Innovative Computing and Communications, Singapore, 2021, pp. 453-463: Springer Singapore.
[11] H. Zeipel, T. Frank, M. Wielitzka, and T. Ortmaier, "Comparative Study of Model Order Reduction for Linear Parameter-Variant Thermal Systems," in 2020 IEEE International Conference on Mechatronics and Automation (ICMA), 2020, pp. 990-995.
[12] A. Sikander and R. Prasad, "A New Technique For Reduced-Order Modelling of Linear Time-Invariant System," IETE Journal of Research, pp. 1-9, 2017.
[13] K. Salah, "A novel model order reduction technique based on artificial intelligence," Microelectronics Journal, vol. 65, pp. 58-71, 2017/07/01/ 2017.
[14] P. Kumar and S. K. Chaudhary, "Novel approach in classical pade approximation," in 2017 7th International Conference on Cloud Computing, Data Science \& Engineering - Confluence, 2017, pp. 667670.
[15] U. Zulfiqar, M. Imran, and A. Ghafoor, "CrossGramian based frequency-weighted model order reduction technique," Electronics Letters, vol. 52, no. 16, pp. 1376-1377, 2016.
[16] S. K. Tiwari and G. Kaur, "Model Reduction by New Clustering Method and Frequency Response Matching," Journal of Control, Automation and Electrical Systems, journal article pp. 1-8, 2016.
[17] S. K. Tiwari and G. Kaur, "An improved method using factor division algorithm for reducing the order of linear dynamical system," Sādhanā, journal article vol. 41, no. 6, pp. 589-595, 2016.
[18] D. Srivastava and D. Chandra, "Model Order Reduction of Finite Element model," in 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and BioInformatics (AEEICB), 2016, pp. 27-31.
[19] J. Singh, C. B. Vishwakarma, and K. Chattterjee, "Biased reduction method by combining improved modified pole clustering and improved Pade approximations," Applied Mathematical Modelling, vol. 40, no. 2, pp. 1418-1426, 2016.
[20] A. Sharma, H. Sharma, A. Bhargava, and N. Sharma, "Power law-based local search in spider monkey optimisation for lower order system modelling," International Journal of Systems Science, vol. 48, no. 1, pp. 150-160, 2017/01/02 2016.
[21] K. Salah and A. Adel, "Model order reduction using fuzzy logic algorithm," in 2016 28th International Conference on Microelectronics (ICM), 2016, pp. 1316.
[22] N. Razmjooy and M. Ramezani, "Model Order Reduction based on meta-heuristic optimization methods," in 1st International Conference on New Research Achievements in Electrical and Computer Engineering, 2016, pp. 1-6: IEEE.
[23] A. Rawat and S. K. Jha, "Analysis of model order reduction based on Mikhailov criterion," in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 3601-3605.
[24] D. Oyaro and P. Triverio, "TurboMOR-RC: An Efficient Model Order Reduction Technique for RC Networks With Many Ports," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1695-1706, 2016.

