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Abstract:- It is clear that most results in ample 

semigroups are but analogues of inverse semigroups. 

Unlike bisimple inverse 𝝎-semigroups which 𝓗-classes 

contains regular elements as studied in [28] and later 

extended in [2] and [3] to a class of ample semigroups 

called ∗ - bisimple Ample  𝝎-semigroup and ∗ - simple 

Ample  𝝎-semigroup, there exists a class of ∗ - bisimple 

Ample  𝝎-semigroups in which certain 𝓗∗-classes 

contains no regular elements. Close look at the internal 

structure of this class of Ample 𝝎-semigroups reveals 

that some of the 𝓗∗-classes rather contains bisystems of 

cancellative monoids. However, the presence of these 

bisystems of cancellative monoids makes this class of 

semigroups different from the once studied in [28], [2], 

[3] and [22]. Thus, in this work, we study such a class of 

∗ - bisimple Ample  𝝎-semigroups as an extension of the 

binary array of bisystems of cancellative monoids. The 

array of bisystems were closed and then certain rules are 

imposed to ensure the closure of multiplication of 

elements in the binary array of bisystems. Thus, we 

construct and study few ofits properties and then 

characterize them as a special extension of binary array 

of bisystems of sequence of cancellative monoids.  
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I. INTRODUCTION AND PRELIMINARY 

RESULTS 
 

[6] extensively studied monoids whose right 𝑆 - 

systems were projective. [17] later extended this work by 

studying monoids in which their principal ideals were 

projective and termed them right principal projective 
monoids (RPP monoids). [8] used certain internal 

characterization of these RPP monoids to obtain a wider 

class of semigroups. He termed certain RPP monoids whose 

idempotents formed a semilattice “idempotent cancellable 

monoids”. With this [8], [9], [10] then obtained a class of 

semigroups whose structure parallels inverse semigroups 

(see [15], [20],[23]). This class of semigroups since then 

attracted many brilliant minds and stimulated deep 

investigations mostly because of it striking relationship with 

inverse semigroup. Thus, to study ample semigroups, it is 

natural to put it side by side with inverse semigroups as 
most of its results are found to be analogues of the later. In 

any case, there exists a subclass of ample semigroups whose 

structures does not duplicate those of inverse semigroups. 

[2]characterized the structure of ∗ - bisimpleAmple 𝜔-

semigroup in which each  ℋ∗-class contains regular 

elements as a generalized Bruck-Reilly extension 𝐵𝑅∗(𝑇, 𝜃) 

of cancellative monoid 𝑇, 𝜃 being a homomorphism on  𝑇. 
His result were clearly analogues of bisimple inverse 𝜔-
semigroups studied in[28]. Unlike the situation in inverse 

semigroup there is a class of ∗ - bisimple type 

𝐴  𝜔 −semigroup in which certain ℋ∗ −classes contain no 

regular elements. When the internal structure of this class 

ample 𝜔 − semigroup is analyzed, it is found that some of 

the ℋ∗-classes contains bi systems of cancellative monoids. 

Thus, this result makes this class of Ample 𝜔-semigroups 

surprisingly different from the one studied by [2] and also 
there is no analogue of this result to those studied in [28] 

under inverse semigroups. 

 

This paper studies this subclass of ample semigroups. 

Particularly, this class of semigroups would be constructed 

in this paper, some of its properties would be presented. 

 

The following well known results are presented: 
 

Let 𝑎, 𝑏 ∈ 𝑆, then Green’s ∗ −relations are defined as 

follows: 

 

ℒ∗ = {(𝑎, 𝑏) ∈ 𝑆 × 𝑆: ∀ 𝑥, 𝑦 ∈ 𝑆1 𝑎𝑥 = 𝑎𝑦 ⟺ 𝑏𝑥 = 𝑏𝑦} 
ℛ∗ = {(𝑎, 𝑏) ∈ 𝑆 × 𝑆: ∀ 𝑥, 𝑦 ∈ 𝑆1 𝑥𝑎 = 𝑦𝑎 ⟺ 𝑥𝑏 = 𝑦𝑏} 

ℋ∗ = {(𝑎, 𝑏) ∈ 𝑆 × 𝑆: (𝑎, 𝑏) ∈ ℒ∗ ∩ ℛ∗} 

𝒟∗ = {∃ 𝑐 ∈ 𝑆: (𝑎, 𝑐) ∈ ℒ∗: (𝑐, 𝑏) ∈ ℛ∗ 𝑜𝑟 𝑎ℒ∗𝑐ℛ∗𝑏} =  ℒ∗ ∨ ℛ∗ 
 

A. Lemma 1.1 (6) 

ℛ∗(ℒ∗)is a left(right) congruence. 
 

Proof 
 

Let (𝑎, 𝑏) ∈ ℛ∗, then 𝑥𝑎 = 𝑦𝑎 ⟺ 𝑥𝑏 = 𝑦𝑏, let 𝑐 ∈ 𝑆, so that (𝑥𝑐)𝑎 = 𝑥(𝑐𝑎) and by associativity in 𝑆. 
 

𝑥(𝑐𝑎) = 𝑦(𝑐𝑎)  ⟺ (𝑥𝑐)𝑏 = 𝑥(𝑐𝑏) = 𝑦(𝑐𝑏) and so (𝑐𝑎, 𝑐𝑏) ∈ ℛ∗ and ℛ∗ is a left congruence. Similar arguments hold for 

ℒ∗ which is a right congruence.                    □ 
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B. Lemma 1.2 

ℛ ⊆ ℛ∗, ℒ ⊆ ℒ∗ 
 

Proof 
 

Let (𝑎, 𝑏) ∈ ℛ, ∃ then 𝑠, 𝑡 ∈ 𝑆1: 𝑎𝑠 = 𝑏, 𝑏𝑡 = 𝑎 
 

𝑎 = 𝑏𝑡 ⟹ 𝑎𝑠 = 𝑏𝑡𝑠, for 𝑥, 𝑦 ∈ 𝑆1, then 𝑥𝑎𝑠 = 𝑥𝑏𝑡𝑠 ⟺ 𝑥𝑏 = 𝑥𝑎𝑠 and if 𝑥𝑎 = 𝑦𝑎, then 
 

𝑥𝑏 = 𝑦𝑎𝑠 ⟹ 𝑥𝑏 = 𝑦𝑏. Conversely 𝑎𝑠 = 𝑏 ⟹ 𝑎𝑠𝑡 = 𝑏𝑡 ⟹ 𝑥𝑏𝑡 = 𝑥𝑎𝑠𝑡 and if 𝑥𝑏 = 𝑦𝑏, then 
 

𝑥𝑎 = 𝑦𝑎𝑠𝑡 = 𝑦𝑏𝑡 = 𝑦𝑎 and (𝑎, 𝑏) ∈ ℛ∗, showing that ℛ ⊆ ℛ∗. 
 

Similar argument holds for ℒ ⊆ ℒ∗                                                                                      □ 
 

C. Corollary 1.3 

If 𝑆 is regular then ℒ = ℒ∗,ℛ = ℛ∗                                                                                    □ 
 

(𝑎, 𝑏)  ∈ ℒ∗ ∘ ℛ∗  ⟹  𝑎ℒ∗𝑐ℛ∗𝑏 and  (𝑎, 𝑏)  ∈  ℛ∗ ∘ ℒ∗  ⟹   𝑎ℛ∗𝑐ℒ∗𝑏. But clearly 
 

𝑎ℒ∗𝑐ℛ∗𝑏 =  ℒ∗ ∘ ℛ∗ = ℛ∗ ∘ ℒ∗ =   𝑎ℛ∗𝑐ℒ∗𝑏 only when 𝑥𝑎 = 𝑎𝑥, that is ℒ∗ ∘ ℛ∗ = ℛ∗ ∘ ℒ∗ only when 𝑆 commutes. 
 

Hence generally  ℒ∗ ∘ ℛ∗ ≠ ℛ∗ ∘ ℒ∗.                                                                            □ 
 

A semigroup 𝑆 is called left abundant if each ℛ∗ − class of 𝑆 contains an idempotent and right abundant if each  ℒ∗ −class 

contains an idempotent. 𝑆 is called abundant if it is both left and right abundant. 
 

𝑆 is called left adequate if: 

 it is left abundant 

 idempotents commute 

 each  ℛ∗ −class contains a unique idempotent. 
 

Similarly, 𝑆 is called right adequate if: 

 it is right abundant 

 idempotents commute 

 each  ℒ∗-contains a unique idempotent. 
 

𝑆 is adequate if it is left and right adequate. 
 

Denote the unique idempotent of each ℛ∗ − class containing  𝑎 as 𝑎+ for left adequate and that of each ℒ∗ − class containing 

𝑎 as 𝑎∗. 
 

D. Lemma 1.4 

Let 𝑎 ∈ 𝑆, 𝑒 ∈ 𝐸𝑆. Then the following are holds. 

 (𝑒, 𝑎) ∈ ℒ∗. 

 𝑎𝑒 = 𝑎 and for all 𝑥, 𝑦 ∈ 𝑆1, 𝑎𝑥 = 𝑎𝑦 ⟹ 𝑒𝑥 = 𝑒𝑦. 
 

Proof 

 Recall that ℒ⊆ℒ∗, so suppose (𝑒, 𝑎) ∈ ℒ then ∃𝑥, 𝑦 ∈ 𝑆1: 𝑥𝑒 = 𝑎, 𝑦𝑎 = 𝑒. So 𝑥𝑒 = 𝑎. Now suppose that 𝑒𝑥 = 𝑒𝑦, then 

𝑥𝑒𝑥 = 𝑥𝑒𝑦 ⟹ 𝑎𝑥 = 𝑎𝑦 and then (𝑒, 𝑎) ∈ ℒ∗. 

 Since from (i) above, 𝑥𝑒 = 𝑎 ⟹ 𝑥𝑒𝑒 = 𝑥𝑒2 = 𝑥𝑒 = 𝑎𝑒 and so 𝑎𝑒 = 𝑎 

 Similarly  

 Similarly,(𝑎, 𝑒) ∈ ℛ∗ 

 𝑒𝑎 = 𝑎 and for all 𝑥, 𝑦 ∈ 𝑆1, 𝑥𝑎 = 𝑦𝑎 ⟹ 𝑥𝑒 = 𝑦𝑒.                                                        □ 
 

E. Lemma 1.5 

Let 𝑆 be an adequate semigroup with semilattice of idempotents 𝐸, then∀ 𝑎, 𝑏 ∈ 𝑆, 
 (𝑎, 𝑏) ∈ ℛ∗if and only if𝑎+ = 𝑏+; (𝑎, 𝑏) ∈ ℒ∗if and only if𝑎∗ = 𝑏∗. 

 (𝑎𝑏)∗ = (𝑎∗𝑏)∗and(𝑎𝑏)+ = (𝑎𝑏+)+ 

 𝑎𝑎∗ = 𝑎 = 𝑎+𝑎. 
 

Proof 

 (𝑎, 𝑒) ∈ ℛ∗, (𝑏, 𝑓) ∈ ℛ∗. Where 𝑒(𝑓) are the idempotents in the ℛ∗ −class containing 𝑎(𝑏). But (𝑎, 𝑏) ∈ ℛ∗ ⟹ 𝑥𝑎 = 𝑦𝑎 ⟹
𝑥𝑏 = 𝑦𝑏. But since(𝑎, 𝑒) ∈ ℛ∗, then 𝑥𝑎 = 𝑦𝑎 ⟹ 𝑥𝑒 = 𝑦𝑒. Also (𝑏, 𝑓) ∈ ℛ∗ since 𝑎, 𝑏 are in the same ℛ∗ − classSo (𝑏, 𝑓) ∈
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ℛ∗ ⟹ 𝑥𝑏 = 𝑦𝑏 ⟹ 𝑥𝑓 = 𝑦𝑓.So (𝑎, 𝑏) ∈ ℛ∗ ⟹ 𝑥𝑎 = 𝑦𝑎 ⟹ 𝑥𝑏 = 𝑦𝑏 ⟹ 𝑥𝑒 = 𝑦𝑒 ⟹ 𝑥𝑓 = 𝑦𝑓. So (𝑒, 𝑓) ∈ ℛ∗. But since 𝑆 

is adequate then the idempotent in each ℛ∗ −classis unique so 𝑒 = 𝑓. If 𝑒 = 𝑎+ and 𝑓 =  𝑏+, the result follows. Converse is 

clear and straight forward. 

 this follows immediately from (i) and the fact that ℒ∗ is a right identity on 𝑆 and ℛ∗ isleft identity on 𝑆. So (𝑎𝑏)+ = (𝑎𝑓𝑏)+ =
 (𝑎𝑏+𝑏)+ = (𝑎𝑏+)+.  

 follows immediately from (i) and (ii). 
 

Let 𝑆 be left adequate, then 𝑆 is called left ample if ∀ 𝑒 ∈  𝐸𝑆 , then𝑎𝑒 =  (𝑎𝑒)+𝑎 and right ample if 𝑒𝑎 =  𝑎(𝑒𝑎)∗, ∀ 𝑎 ∈ 𝑆. 

 

In view of the definition above, let 𝑆 be a semigroup with a semilattice of idempotents 𝐸𝑆. Then 𝑆 is called an ample semigroup if 

and only if: 

 𝑆 is cancellable 

 for every 𝑒 ∈ 𝐸𝑆 and 𝑎 ∈ 𝑆, then 𝑎𝑒 =  (𝑎𝑒)+𝑎, 𝑒𝑎 =  𝑎(𝑒𝑎)∗                          □ 
 

Let 𝐸𝑆 = {𝑒0, 𝑒1, 𝑒2, … , 𝑒𝑛−1, 𝑒𝑛, … } where 𝑒0 ≥ 𝑒1 ≥ 𝑒2 ≥ ⋯ ≥  𝑒𝑛−1 ≥  𝑒𝑛. 

Let 𝑒0, 𝑒1, … , 𝑒𝑛−1, 𝑒𝑛, … be idempotents in 𝑆then 𝐸𝑆 as defined is called 𝜔 −chain. 

Let 𝑆 be an ample semigroup with 𝐸𝑆 as defined above, then 𝑆 is called ample 𝝎 −semigroup.  

Observe that 𝐸𝑆 = {𝑒𝑛: 𝑛 ≥ 0}, 𝑒𝑚 ≥ 𝑒𝑛 ⟺ 𝑚 ≤ 𝑛 and 𝑚, 𝑛 ∈ 𝑁. 
 

Let 𝑆 be an ample semigroup. An ideal 𝐼 of 𝑆 is said to be ∗ −ideal if ℒ𝑎
∗ , ℛ𝑎

∗  ⊆ 𝐼. The smallest 

∗ −ideal containing 𝑎 which is the union of 𝒟∗ −classes is denoted by 𝒥∗. 

Let 𝑆 be ample 𝜔 −semigroup then 𝑆 is called ∗ −bisimple if 𝒟∗ is an identity relation on 𝑆. That is 𝑆 is called ∗ −bisimple 

if it has a single 𝒟∗-class. 
 

Let 𝑆 be a semigroup, and let 𝑎, 𝑏 ∈ 𝑆, the relation �̃� on 𝑆 is defined by: 

𝑎�̃�𝑏 ⟺ 𝑎∗𝒟𝑏∗, 𝑎+𝒟𝑏+. 

Observe that if 𝑎, 𝑏 ∈ 𝑆 and 𝑎∗, 𝑎+, 𝑏∗, 𝑏+, ∈ 𝐸 then 𝑎�̃�𝑎 ⇒ 𝑎∗𝒟𝑎∗, 𝑎+𝒟𝑎+.  

Also, if 𝑏�̃�𝑎 ⟹ 𝑏∗𝒟𝑎∗, 𝑏+𝒟𝑎+then𝑎�̃�𝑏 ⟹  𝑏�̃�𝑎. 

If 𝑎�̃�𝑏, 𝑏�̃�𝑐, then this implies that 𝑎∗𝒟𝑏∗, 𝑎+𝒟𝑏+, 𝑏∗𝒟𝑐∗, 𝑏+𝒟𝑐+ which implies that  

𝑎∗𝒟𝑏∗𝒟𝑐∗ , 𝑎+𝒟𝑏+𝒟𝑐+ ⟹ 𝑎�̃�𝑐 and then �̃� is an equivalence relation on 𝑆.                     □ 
 

What follows is an introduction of bisystems. Going forward, the terminologies used are as in [2] and [3].  
 

II. BISYSTEMS 
 

Consider a monoid 𝑀 and let 𝑆 be a set. If there exists a mapping  𝑆 × 𝑀 → 𝑆 such that the following holds:  

 𝑥. 1 = 𝑥,  
 (𝑥𝑎)𝑏 = 𝑥(𝑎𝑏), ∀ 𝑥 ∈ 𝑀, 𝑎, 𝑏 ∈ 𝑆, then 𝑆 is called a right 𝑆 − system.  
 

Dually, if  

 1. 𝑥 = 𝑥,  
 𝑎(𝑏𝑥) = (𝑎𝑏)𝑥, ∀ 𝑥 ∈ 𝑀, 𝑎, 𝑏 ∈ 𝑆, then 𝑆 is called a left 𝑆 − system. 
 

Now, suppose that 𝑀1, 𝑁1 are monoids, then 𝑆 is an 𝑀1, 𝑁1 − bisystem if it is both right and left 𝑆 −system and for 𝑎, 𝑏 ∈
 𝑁1, 𝑥 ∈ 𝑆, (𝑎𝑥)𝑏 =  𝑎(𝑥𝑏).  

 

Let 𝑆1be (𝑀1, 𝑁1) bisystem while 𝑆2 an (𝑀2, 𝑁2) bisystem, then a mapping 𝑓: 𝑆1 → 𝑆2 is a morphism𝑓 from  𝑆1to 𝑆2if there 

exists 𝜃: 𝑀1  →  𝑀2 and 𝜑: 𝑁1  →  𝑁2 such that for all 𝑎 ∈ 𝑀1 and 𝑏 ∈ 𝑁1, we have: 
 

(𝑎𝑥𝑏)𝑓 = 𝑎𝜃. 𝑥𝑓. 𝑏𝜑. However, if 𝑆1 and 𝑆2 are both (𝑀, 𝑁) bisystem and 𝜃 = 𝜑 = 𝑖, the identity, then   
 

𝑓: 𝑆1 → 𝑆2 is a morphism if for all 𝑎 ∈ 𝑀, 𝑏 ∈ 𝑁 and 𝑥 ∈ 𝑆, (𝑎𝑥𝑏)𝑓 = 𝑎. 𝑥𝑓. 𝑏 
 

III. BINARY ARRAY OF BISYSTEMS 
 

Consider the sequence of cancellative monoids 𝑀𝑖 , 0 ≤ 𝑖 ≤ 𝑑 − 1 with the linking homomorphism 𝛼𝑖,𝑗 : 𝑀𝑖 → 𝑀𝑗 , 𝑖 ≤ 𝑗 

between them. By considering (𝑀𝑖 , 𝑀𝑗) bisystems 𝐵𝑖,𝑗 , 0 ≤ 𝑖 , 𝑗 ≤ 𝑑 − 1 such that for 0 ≤ 𝑖 ≤ 𝑘 ≤ 𝑑 − 1, 0 ≤ 𝑗 ≤ 𝑙 ≤ 𝑑 − 1, 

there is a bisystem morphism from 𝐵𝑖,𝑗 to 𝐵𝑘,𝑙. That is: 
 

𝛾𝑘,𝑙: 𝐵𝑖,𝑗  →  𝐵𝑘,𝑙  defined by 𝑥𝛾𝑘,𝑙 = 𝑒𝑘𝑥𝑒𝑙 which then gives a sequence of bisystem mappings: 
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𝐵𝑖,𝑗 → 𝐵𝑖+1,𝑗+1 → 𝐵𝑖+2,𝑗+2 → ⋯ 𝐵𝑘,𝑙 where 𝑘 = 𝑑 − 1, 𝑙 = 𝑗 − 𝑖 + 𝑑 − 1 if 𝑖 > 𝑗 and 𝑘 = 𝑖 − 𝑗 + 𝑑 − 1 if 𝑖 < 𝑗. 

Considering the mapping 𝛿: 𝐵𝑖,𝑗  →  𝐵𝑘,𝑙  where 𝑥𝛿 =  𝑒𝑘. 𝑥. 𝑒𝑙is a morphism. This is so because the linking homomorphism 

𝛼𝑖,𝑘 : 𝑀𝑖 → 𝑀𝑘 and 𝛼𝑗,𝑙: 𝑀𝑗 → 𝑀𝑙 are defined respectively by  
 

𝑎𝛼𝑖,𝑘 =  𝑒𝑘 . 𝑎, 𝑏𝛼𝑗,𝑙 = 𝑏𝑒𝑙 for 𝑎 ∈  𝑀𝑖 , 𝑏 ∈  𝑀𝑗. Now we observe the following: 
 

For any 𝑥 ∈  𝐵𝑖,𝑗 , then; 
 

(𝑎𝑥𝑏) 𝛿 =  𝑒𝑘(𝑎𝑥𝑏)𝑒𝑙 
 

=  𝑒𝑘 . 𝑎𝑥𝑏. 𝑒𝑙 
 

=  𝑒𝑘. 𝑎. 𝑥𝑏𝑒𝑙 
 

=  𝑎𝛼𝑖,𝑘 . 𝑥. 𝑏𝛼𝑗,𝑙 
 

= (𝑎𝛼𝑖,𝑘). 𝑒𝑘𝑥𝑒𝑙 . (𝑏𝛼𝑗,𝑙) 
 

=  (𝑎𝛼𝑖,𝑘). 𝑥𝛿. (𝑏𝛼𝑗,𝑙) 
 

Now let 𝑩 = ∪ {𝐵𝑖,𝑗 : 𝑖, 𝑗 = 0,1,2, … , 𝑑 − 1} be a collection of bisystems where we have 𝑀𝑖 =  𝐵𝑖,𝑖 ,  
 

0 ≤ 𝑖 ≤ 𝑑 − 1}. 
 

Now if 𝜃 and 𝜑 are morphisms on 𝑩 such that  
 

𝜃: 𝐵𝑚,𝑛 →  𝐵𝑚−𝑛,0 and 𝜑: 𝐵𝑚,𝑛 →  𝐵0,𝑛−𝑚                                                                   [2.01] 
 

Where we put  𝑚 − 𝑛̅̅ ̅̅ ̅̅ ̅̅ = 𝑚 − 𝑛 if 𝑚 > 𝑛, or 𝑚 − 𝑛 + 𝑑 if 𝑚 <  𝑛, then we have: 
 

A. Lemma 2.1 

 𝐵𝑚,𝑛  𝜃𝜑 ⊆  𝐵0,𝑛−𝑚̅̅ ̅̅ ̅̅ ̅. 

 𝐵𝑚,𝑛  𝜑𝜃 ⊆  𝐵𝑚−𝑛̅̅ ̅̅ ̅̅ ̅,0 

 𝑀𝑚  𝜃 =  𝐵𝑚,𝑚  𝜃 ⊆  𝐵0,0 =  𝑀0 
 

Proof 

 𝐵𝑚,𝑛  𝜃𝜑 = (𝐵𝑚,𝑛  𝜃)𝜑 =  𝐵𝑚−𝑛̅̅ ̅̅ ̅̅ ̅,0 𝜑 =  𝐵0,0−(𝑚−𝑛̅̅ ̅̅ ̅̅ ̅)  =  𝐵0,(𝑛−𝑚̅̅ ̅̅ ̅̅ ̅)  ⊆  𝐵0,(𝑛−𝑚̅̅ ̅̅ ̅̅ ̅).   

 𝐵𝑚,𝑛  𝜑𝜃 = (𝐵𝑚,𝑛  𝜑)𝜃 =  𝐵0,(𝑛−𝑚̅̅ ̅̅ ̅̅ ̅)𝜃 ⊆  𝐵𝑚−𝑛̅̅ ̅̅ ̅̅ ̅,0. 

 off course 𝑀𝑚  𝜃 =  𝐵𝑚,𝑚  𝜃 ⊆  𝐵0,0 =  𝑀0 =  𝑀𝑚𝜑 . 
 

Following lemma 2.1 above, we assume the following conditions: 

 𝑥𝜃 = 𝑥𝜑𝜃 if 𝑚 > 𝑛 

 𝑥𝜃 = 𝑥𝜑 if 𝑚 = 𝑛 

 𝑥𝜃𝜑 =  𝑥𝜑 if 𝑚 < 𝑛 
 

Following the construction above, we shall refer to the collection of bisystems𝑩 = ∪ 𝐵𝑖,𝑗  as a binary array of bisystems if 

there is a multiplication “ ∗” on 𝑩 such that if 𝑥, 𝑦 ∈ 𝑩, then 𝑥 ∗ 𝑦 ∈ 𝑩.  
 

Thus, we use an operation “∗” on the collection 𝑩 = ∪ 𝐵𝑖,𝑗 , where for 𝑥 ∈  𝐵𝑚,𝑛  and 𝑦 ∈  𝐵𝑝,𝑞, so that  
 

𝑥 ∗ 𝑦 ∈  𝐵𝑚−𝑛+𝑡,̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑞−𝑝+𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑡 = max(𝑛, 𝑝)                                                                     [2.02] 
 

Now we observe that if: 

 𝑡 = 𝑛 then 𝑥 ∗ 𝑦 ∈  𝐵𝑚,𝑞−𝑝+𝑛  

 𝑡 = 𝑝 then 𝑥 ∗ 𝑦 ∈  𝐵𝑚−𝑛+𝑝,̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑞  

 𝑡 = 𝑛 = 𝑝 then 𝑥 ∗ 𝑦 ∈  𝐵𝑚,𝑞. 
 

Suppose that 𝑡 = 𝑛, and  𝑞 − 𝑝 + 𝑛 > 𝑑, then we put 𝑞 − 𝑝 + 𝑛 = 𝑑 + 𝑘, 0 ≤ 𝑘 < 𝑑 so that; 
 

𝐵𝑚,𝑞−𝑝+𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐵𝑚,𝑘 . Thus, we have that for every 𝑥 ∈ 𝐵𝑚,𝑛 , 𝑦 ∈ 𝐵𝑝,𝑞 , 𝑥 ∗ 𝑦 =  𝐵𝑚,𝑞−𝑝+𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅  implies that; 
 

𝑥 ∗ 𝑦 ∈  𝐵𝑚,𝑘  for 𝑞 − 𝑝 + 𝑛 > 𝑑. But if 𝑞 − 𝑝 + 𝑛 > 𝑑, then 𝑛 > 𝑑 + 𝑝 − 𝑞 and then 𝐵𝑑+𝑝−𝑞,0, =  𝐵𝑝−𝑞̅̅ ̅̅ ̅̅ ,0.  
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More so, we observe that:  
 

𝑦𝜃 ⟹  𝜃: 𝐵𝑝,𝑞𝜃 →  𝐵𝑝−𝑞,0, and so: 
 

𝑥 ∗ 𝑦𝜃 ∈  𝐵𝑚−𝑛+𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,𝑞−𝑝+𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐵𝑚,𝑘 . But 𝑡 = max(𝑛, 𝑞 − 𝑝).  
 

But if 𝑡 = 𝑛 and so  𝑥 ∗ 𝑦𝜃 ∈  𝐵𝑚,𝑞−𝑝+𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝐵𝑚,𝑘 
 

Following these observations, we assume the following conditions: 

 𝑥 ∗ 𝑦 ∈ 𝐵𝑚−𝑛+𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,𝑞−𝑝+𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝑥 ∗ 𝑦𝜃 if 𝑞 − 𝑝 + 𝑛 > 𝑑.                                 [2.03ai] 

 (𝑥 ∗ 𝑦)𝜃 ∈ 𝐵(𝑚−𝑛+𝑡)−(𝑞−𝑝+𝑡),0 =  𝐵𝑚−𝑛−𝑝−𝑞,0 and 𝑥𝜃 ∗ 𝑦𝜃 =  𝐵𝑚−𝑛−𝑝−𝑞,0 for  

 0 < 𝑞 − 𝑝 < 𝑑 − 𝑛 

 But if 0 ≤ 𝑞 − 𝑝 < 𝑑 − 𝑛, then (𝑥 ∗ 𝑦)𝜃 = 𝑥 ∗ 𝑦𝜃  [2.03aii] 

 Lastly if 𝑞 < 𝑝, we then impose the condition (𝑥 ∗ 𝑦)𝜃 = 𝑥𝜃 ∗ 𝑦𝜃   [2.03aiii] 
 

One can see that the morphism 𝜑 is the dual of 𝜃 and we have the following conditions which corresponds to [2.03 ai], 
[2.03aii] and [2.03aiii]. thus, we have: 

 

𝑥 ∗ 𝑦 =  𝑥𝜑 ∗ 𝑦,  if 𝑚 − 𝑛 + 𝑝 ≥ 𝑑  [2.03bi] 
 

(𝑥 ∗ 𝑦)𝜑 = 𝑥𝜑 ∗ 𝑦, if 0 ≤ 𝑚 − 𝑛 < 𝑑 − 𝑝   [2.03bii] 
 

(𝑥 ∗ 𝑦)𝜑 =  𝑥𝜑 ∗ 𝑦𝜑 if  𝑚 < 𝑛 [2.03biii] 
 

Let 𝑥 ∈  𝐵𝑚,𝑛 , 𝑦 ∈ 𝐵𝑝,𝑞 , 𝑧 ∈ 𝐵𝑟,𝑠 
 

Considering the binary array of bisystem𝑩, we observe the following: 
 

(𝑥 ∗ 𝑦) ∗ 𝑧 ∈  𝐵𝑚−𝑛+𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,𝑞−𝑝+𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗ 𝐵𝑟,𝑠 and 𝑥 ∗ (𝑦 ∗ 𝑧) =  𝐵𝑚,𝑛 ∗ 𝐵𝑝−𝑞+𝑢,𝑠−𝑟+𝑢,        [2.04] 
 

where 𝑡 = max(𝑛, 𝑝) and 𝑢 = max(𝑞, 𝑟). Now see that if 𝑢 = 𝑟, then with 𝑝 − 𝑞 + 𝑟 ≥ 𝑑 and 𝑟 > 𝑞 − 𝑝 + 𝑡, we find that 

both (𝑥 ∗ 𝑦) ∗ 𝑧 ∈  𝐵𝑚−𝑛+𝑝−𝑞+𝑛,𝑠, and 𝑥𝜃 ∗ (𝑦 ∗ 𝑧)  ∈  𝐵𝑚−𝑛+𝑝−𝑞+𝑛,𝑠.  
 

Thus, we assume that: 
 

(𝑥 ∗ 𝑦) ∗ 𝑧 =  𝑥𝜃 ∗ (𝑦 ∗ 𝑧), if  𝑝 − 𝑞 + 𝑟 ≥ 𝑑.                                                    [2.05i] 
 

Dually, let(𝑥 ∗ 𝑦) ∗ 𝑧𝜑 =  𝑥 ∗ (𝑦 ∗ 𝑧)   for 𝑡 = 𝑛 and 𝑝 − 𝑞 + 𝑛 ≥ 𝑑                [2.05ii] 
 

And (𝑥 ∗ 𝑦) ∗ 𝑧 =  𝑥 ∗ (𝑦 ∗ 𝑧) if 𝑝 − 𝑞 + 𝑛 ≤ 𝑑                                                   [2.05iii]    
 

Following the observations [2.05i] through [2.05iii], we remark that the binary array of bisystems(𝑩, 𝑑, 𝜃, 𝜑) is a collection 

of bisystems 𝑩 = ∪ {𝐵𝑖,𝑗 : 𝑖, 𝑗 ∈ 𝑑}  such that; 

 If 𝑖 = 𝑗, then 𝐵𝑖,𝑖 =  𝑀𝑖 , 0 ≤ 𝑖, 𝑗 ≤ 𝑑 − 1 is a sequence of cancellative monoids with the linking homomorphism 𝛼𝑖,𝑗 : 𝑀𝑖  →

 𝑀𝑗 , 0 ≤ 𝑖, 𝑗 ≤ 𝑑 − 1 between them. 

 Each 𝐵𝑖,𝑗 for  𝑖 ≠ 𝑗 is a (𝑀𝑖 , 𝑀𝑗) bisystems where  0 ≤ 𝑖, 𝑗 ≤ 𝑑 − 1 and 

 𝜃, 𝜑 ∶ 𝑩 = ∪ {𝐵𝑖,𝑗 :  0 ≤ 𝑖, 𝑗 ≤ 𝑑 − 1} → 𝑩 are mappings as earlier defined in 2.1 satisfying the binary multiplication defined in 

2.02 under which the conditions [2.03ai] - [2.03aiii] and [2.05bi] - [2.05biii] are true.  
 

Now suppose that 𝐵𝑚,𝑛 , 𝐵𝑛,𝑚 are bisystems in (𝑩, 𝑑, 𝜃, 𝜑) then the product in 2.02 implies that:  
 

𝐵𝑚,𝑛 ∗ 𝐵𝑛,𝑚 =  𝐵𝑚−𝑛+𝑛,𝑚−𝑛+𝑛 ⊆  𝐵𝑚,𝑚. Let 𝐵𝑚,𝑛 ∗ 𝐵𝑛,𝑚 = 𝐼𝑚 ⊆  𝐵𝑚,𝑚     [2.06] 
 

where 𝐼𝑚  is a subset of 𝑀𝑚 not containing a unit of 𝑀𝑚. 
 

Let  𝑥 ∈  𝐵𝑚,𝑛 , 𝑦 ∈  𝐵𝑛,𝑚and 𝑒𝑚 , 𝑒𝑛 respectively the identities in 𝑀𝑚 , 𝑀𝑛.  
 

Clearly,𝑀 =  ⋃ 𝑀𝑖
𝑑−1
𝑖=0 ,Now we observe that 𝐵𝑚,𝑚 ∗  𝐵𝑚,𝑚 ⊆  𝐵𝑚,𝑚 and so let 𝑒𝑚 ⊆ 𝐵𝑚,𝑚 

 

𝑦 ∗ 𝑒𝑚 = 𝐵𝑛,𝑚 ∗ 𝐵𝑚,𝑚 ⊆  𝐵𝑛,𝑚 =  𝑦  and 𝑥 ∗ 𝑒𝑛 = 𝐵𝑚,𝑛 ∗ 𝐵𝑛,𝑛 ⊆ 𝐵𝑚,𝑛 = 𝑥  
 

Also see that  𝑥 ∗ 𝑦 ∗ 𝑥 = (𝐵𝑚,𝑛 ∗ 𝐵𝑛,𝑚) ∗ 𝐵𝑚,𝑛 ⊆  𝐵𝑚,𝑚 ∗ 𝐵𝑚,𝑛 =  𝐵𝑚,𝑛 = 𝑥.  
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Thus if  𝑥 ∈  𝑀𝑚, 𝑦 ∈  𝑀𝑛, then 𝑥 ∗ 𝑦 ∈ 𝑀𝑡 , 𝑡 = max(𝑚, 𝑛), 𝑀𝜃 =  𝐵0,0 =  𝑀𝜑 and then  𝜃⎸𝑀 = 𝜑⎸𝑀.  
 

Thus, we have proved: 
 

B. Lemma 2.2 

Let  𝑥 ∈  𝐵𝑚,𝑛 , 𝑦 ∈  𝐵𝑛,𝑚and 𝑒𝑚 , 𝑒𝑛 the respective identities in 𝑀𝑚 , 𝑀𝑛 and let 𝑴 =  ⋃ 𝑀𝑖
𝑑−1
𝑖=0 , then: 

 𝑦 ∗ 𝑒𝑚 = 𝑦, 𝑥 ∗ 𝑒𝑛 = 𝑥 

 𝑥 ∗ 𝑦 ∗ 𝑥 = 𝑥; 

 if  𝑥 ∈  𝑀𝑚 , 𝑦 ∈  𝑀𝑛, then 𝑥 ∗ 𝑦 ∈ 𝑀𝑡  , 𝑡 = max(𝑚, 𝑛), and  𝑀𝜃 =  𝑀𝜑. 
 

C. Lemma 2.3 

Let 𝑥 ∈  𝐵𝑚,𝑛 , 𝑚, 𝑛 ∈ 𝑑. Then for 𝛼, 𝛽 ∈ 𝑁: 

 𝑥𝜃𝛼𝜑𝛽 =  𝑥𝜑𝛼+𝛽 if 𝑚 ≥ 𝑛 and 𝑥𝜃𝛼𝜑𝛽 =  𝑥𝜑𝛼+𝛽−1 if 𝑚 < 𝑛. 

 𝑥𝜃𝛼𝜑𝛽 =  𝑥𝜑𝛼+𝛽 if 𝑚 ≤ 𝑛 and 𝑥𝜃𝛼𝜑𝛽 =  𝑥𝜑𝛼+𝛽−1 if 𝑚 > 𝑛. 
 

Proof 
 

If 𝑚 = 𝑛 then clearly, 𝑥 ∈  𝑀𝑚 and with  𝜑 = 𝜃 and the lemma holds evidently. However, if we suppose that 𝑚 ≠ 𝑛, then 

for 𝑥 ∈  𝐵𝑚,𝑛 , evidently 𝑥𝜑 ∈  𝐵0,𝑛−𝑚 , 𝑛 − 𝑚 ≠ 0, with 𝑥𝜃 = 𝑥𝜑𝜃 if 𝑚 > 𝑛 and 𝑥𝜑 = 𝑥𝜃𝜑 if 𝑚 < 𝑛, this quickly follows that: 
 

(𝑥𝜃)𝜑 = (𝑥𝜃𝜑)𝜑 = (𝑥𝜑)𝜑 = 𝑥𝜑2 
 

Thus, by induction principle, we have: 
 

𝑥𝜃𝜑𝑘 = (𝑥𝜃𝜑)𝜑𝑘−1 =  (𝑥𝜑)𝜑𝑘−1 =  𝑥𝜑𝑘 , if  𝑚 < 𝑛 and 𝑥𝜃𝜑𝑘 = (𝑥𝜑𝜃𝜑)𝜑𝑘−1 = (𝑥𝜑2)𝜑𝑘−1 = 𝑥𝜑𝑘+1 , if  𝑚 ≥ 𝑛, for 

all-natural numbers. Moreover, we observe that: 
 

 𝑥𝜃2𝜑𝑘 = (𝑥𝜃)𝑥𝜃𝜑𝑘 = 𝑥𝜑𝑘 , 𝑚 < 𝑛. 
 

Therefore, by inductive assumption that the result holds for ℎ − 1, it follows that: 
 

 𝑥𝜃ℎ𝜑𝑘 = (𝑥𝜃ℎ−1)(𝜃𝜑𝑘+1) = 𝑥𝜑ℎ−1𝜑𝑘+1 = ⋯ 𝑥𝜑ℎ+𝑘 , 𝑚 ≥ 𝑛 and  𝜑𝑘 = (𝑥𝜃ℎ)(𝜃𝜑𝑘) = (𝑥𝜃)𝜃ℎ−1𝜑𝑘 = 𝑥𝜑𝑘+ℎ−1, 𝑚 < 𝑛 

proving (i). thus (ii) follows dually.    
 

IV. CONSTRUCTION 
 

In this section, we construct a generalized ∗ − bisimple type ample 𝜔 − semigroup. 
 

Considering a given array of bisystems(𝑩, 𝑑, 𝜃, 𝜑) satisfying the conditions already stated above. We denote the set of 

triples by: 
 

𝑆(𝑩, 𝑑, 𝜃, 𝜑) = {(𝑚, 𝑥, 𝑛): 𝑚, 𝑛 ∈ 𝑁, 𝑥 ∈  𝐵�̅�,�̅�}, for simplicity, let 𝑆(𝑩, 𝑑, 𝜃, 𝜑) = 𝑆 
 

Suppose that (𝑚, 𝑥, 𝑛), (𝑝, 𝑦, 𝑞) ∈  𝑆(𝑩, 𝑑, 𝜃, 𝜑), define the multiplication on 𝑆(𝑩, 𝑑, 𝜃, 𝜑) by: 
 

(𝑚, 𝑥, 𝑛)(𝑝, 𝑦, 𝑞) = (𝑚 − 𝑛 + 𝑡, 𝑥𝜃𝑡′−𝑛𝑑𝑦𝜑𝑡′−𝑝𝑑 , 𝑞 − 𝑝 + 𝑡),                                    [3.01] 
 

where 𝑡 = max(𝑛, 𝑝) , 𝑡′ = max(𝑛𝑑 , 𝑝𝑑). 
 

It should be noted that 𝜃𝑡′−𝑛𝑑𝜑𝑡′−𝑝𝑑 is an appropriate endomorphisms while 𝜃0𝜑0 is an appropriate identity endomorphism 

on the array of bisystems in 𝑩. 
 

Now observe that under the multiplication as in 3.01, if 𝑡 = 𝑛, 𝑡′ = 𝑛𝑑, then 3.01 becomes: 
 

(𝑚, 𝑥, 𝑛)(𝑝, 𝑦, 𝑞) = (𝑚, 𝑥𝜃0𝑦𝜑𝑛𝑑−𝑝𝑑 , 𝑞 − 𝑝 + 𝑛) =  (𝑚, 𝑥 ∗ 𝑦𝜑𝑛𝑑−𝑝𝑑 , 𝑞 − 𝑝 + 𝑛), where it is clear that 𝑥 ∗ 𝑦𝜑𝑛𝑑−𝑝𝑑  ∈
 𝐵�̅�,𝑞−𝑝+𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and then (𝑚, 𝑥 ∗ 𝑦𝜑𝑛𝑑−𝑝𝑑 , 𝑞 − 𝑝 + 𝑛)  ∈ 𝑆 

 

If 𝑡 = 𝑝, 𝑡′ = 𝑝𝑑, then; 
 

(𝑚, 𝑥, 𝑛)(𝑝, 𝑦, 𝑞) = (𝑚, 𝑥𝜃𝑝𝑑−𝑛𝑑 𝑦𝜑𝑜 , 𝑞 − 𝑝 + 𝑛) =  (𝑚 − 𝑛 + 𝑝, 𝑥𝜃𝑝𝑑−𝑛𝑑 ∗ 𝑦, 𝑞), and so 𝑥𝜃𝑝𝑑−𝑛𝑑 ∗ 𝑦 ∈ 𝐵𝑚−𝑛+𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,𝑞, and 

then again (𝑚 − 𝑛 + 𝑝, 𝑥𝜃𝑝𝑑−𝑛𝑑 ∗ 𝑦, 𝑞) ∈ 𝑆. 
 

Lastly, if 𝑛 = 𝑝, then 𝑥𝜃𝑡′−𝑛𝑑𝑦𝜑𝑡′−𝑝𝑑 = 𝑥 ∗ 𝑦 ∈  𝐵𝑚,𝑞  ∈ 𝑆. Thus 𝑆 is closed under the multiplication. 
 

Now suppose that 𝑎, 𝑏, 𝑐 ∈ 𝑆, where 𝑎 =  (𝑚, 𝑥, 𝑛), 𝑏 =  (𝑝, 𝑦, 𝑞), 𝑐 =  (𝑟, 𝑧, 𝑠) then: 
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(𝑎𝑏)𝑐 = [𝑚 − 𝑛 + 𝑝 − 𝑞 + 𝑢, (𝑥𝜃𝑡′−𝑛𝑑𝑦𝜑𝑡′−𝑝𝑑 )𝜃𝑢′−𝑎𝑑𝑧𝜑𝑢′−𝑟𝑑 , 𝑠 − 𝑟 + 𝑢],      [3.02] 
 

𝑎 = 𝑞 − 𝑝 + 𝑡, 𝑡 = max(𝑛, 𝑝) , 𝑢 = max(𝑞 − 𝑝 + 𝑡, 𝑟) = max(𝑎, 𝑟), and so let: 
 

𝑀1 = 𝑚 − 𝑛 + 𝑝 − 𝑞 + 𝑢   [3.03] 
 

𝑋 =  (𝑥𝜃𝑡′−𝑛𝑑𝑦𝜑𝑡′−𝑝𝑑)𝜃𝑢′−𝑎𝑑𝑧𝜑𝑢′−𝑟𝑑  [3.04] 
 

𝑁1 =  𝑠 − 𝑟 + 𝑢 [3.05] 
 

Similarly: 
 

𝑎(𝑏𝑐) =  (𝑚, 𝑥, 𝑛)[(𝑝, 𝑦, 𝑞)(𝑟, 𝑧, 𝑠)] =  (𝑚, 𝑥, 𝑛)(𝑝 − 𝑞 + 𝑣, 𝑦𝜃𝑣′−𝑞𝑑 𝑧𝜑𝑣′−𝑟𝑑 , 𝑠 − 𝑟 + 𝑣), 𝑣 = max(𝑞, 𝑟) , 𝑣′ = max(𝑞𝑑 , 𝑟𝑑). 
 

𝑎(𝑏𝑐) =  (𝑚 − 𝑛 + 𝑤, 𝑥𝜃𝑤′−𝑛𝑑(𝑦𝜃𝑣′−𝑞𝑑 𝑧𝜑𝑣′−𝑟𝑑)𝜑𝑤′−𝑏𝑑 , 𝑠 − 𝑟 + 𝑞 − 𝑝 + 𝑤) [3.06] 
 

Let  𝑏 = 𝑝 − 𝑞 + 𝑣, 𝑤 = max(𝑛, 𝑏), 𝑤′ = max(𝑛𝑑 , 𝑏𝑑), and so let: 
 

𝑀2 =  𝑚 − 𝑛 + 𝑤 [3.07] 
 

𝑌 = 𝑥𝜃𝑤′−𝑛𝑑(𝑦𝜃𝑣′−𝑞𝑑𝑧𝜑𝑣′−𝑟𝑑 )𝜑𝑤′−𝑏𝑑[3.08] 
 

𝑁2 =  𝑠 − 𝑟 + 𝑞 − 𝑝 + 𝑤[3.09] 
 

 But the outer coordinates are bicyclic and so from [3.03], [3.05], [3.07] and [3.09] we have: 
 

𝑚 − 𝑛 + 𝑝 − 𝑞 + 𝑢 =  𝑀1 = 𝑀2 =  𝑚 − 𝑛 + 𝑤 and so  
 

𝑤 = 𝑝 − 𝑞 + 𝑢[3.10] 
 

and so, it follows that: 
 

𝑢 = max(𝑞 − 𝑝 + 𝑡, 𝑟) = max(𝑞 − 𝑝 + 𝑚𝑎𝑥(𝑛, 𝑝) , 𝑟) so that: 
 

𝑤 =  max(𝑛, 𝑏𝑑) = max{𝑛, 𝑝 − 𝑞 + 𝑣} = max{𝑛, 𝑝 − 𝑞 + 𝑚𝑎𝑥(𝑞, 𝑟)} [3.11] 
 

We now establish the equality for the middle coordinates. However, in view of lemma 2.3, we do so via the following 

observations: 
 

Now observe the following:  
 

If 𝑚, 𝑛, 𝑝 are natural numbers such that  𝑚 < 𝑝, let 𝑟 =  𝑛 − 𝑚 + 𝑝, then obviously, 
 

𝑟 =  𝑟𝑑 . 𝑑 + �̅�  =  (𝑛 − 𝑚 + 𝑝)𝑑 . 𝑑 +  𝑛 − 𝑚 + 𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =   (𝑛𝑑 − 𝑚𝑑 + 𝑝𝑑) . 𝑑 + �̅� − �̅� + �̅�. 
 

Thus, we compare and take that out that; 
 

𝑟𝑑 − 𝑛𝑑 =  {
𝑝𝑑 − 𝑚𝑑           𝑖𝑓 �̅� − �̅� + �̅� < 𝑑 
𝑝𝑑 − 𝑚𝑑 + 1  𝑖𝑓 �̅� − �̅� + �̅� > 𝑑
𝑝𝑑 − 𝑚𝑑 − 1  𝑖𝑓 �̅� − �̅� + �̅� < 0

 

 

We now attempt to establish an equality on the middle co-ordinate by considering the following cases; 
 

A. CASE 1   
 

𝑤 = max{𝑛, 𝑝 − 𝑞 + 𝑚𝑎𝑥(𝑞, 𝑟)} = 𝑛 
 

Then [3.08] becomes 𝑛 = 𝑝 − 𝑞 + 𝑢 or 𝑢 = 𝑞 − 𝑝 + 𝑛 and then 𝑤′ = 𝑛𝑑.  
 

Also, 𝑤 = 𝑛 = max{𝑛, 𝑝 − 𝑞 + 𝑚𝑎𝑥(𝑞, 𝑟)} ⟹ 𝑛 >  𝑝 − 𝑞 + 𝑚𝑎𝑥(𝑞, 𝑟) > 𝑝  implying that 
 

𝑡 = max(𝑛, 𝑝) =  𝑛. 
 

However, with 𝑢 = max(𝑞 − 𝑝 + 𝑡, 𝑟) = max(𝑞 − 𝑝 + 𝑛, 𝑟) = 𝑞 − 𝑝 + 𝑛 implies that  
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𝑞 − 𝑝 + 𝑛 > 𝑟. 
 

Now with 𝑎 = 𝑞 − 𝑝 + 𝑡 = 𝑞 − 𝑝 + max(𝑛, 𝑝) =  𝑞 − 𝑝 + 𝑛 = 𝑢, then clearly 𝑎 = 𝑢′ =  𝑢𝑑. More so using the value 𝑢 =
𝑞 − 𝑝 + 𝑛 we have that 𝑢′ = (𝑞 − 𝑝 + 𝑛)𝑑 =  𝑞𝑑 − 𝑝𝑑 + 𝑛𝑑 +  𝛾 =  𝑢𝑑, and we impose that: 

 

𝛾 = {
0 if 0 < �̅� − �̅� + �̅� < 𝑑
1 if          �̅� − �̅� + �̅� ≥ 𝑑
−1 if       �̅� − �̅� + �̅� < 0

 [3.12] 

 

Now if 𝑡′ = max(𝑛𝑑 , 𝑝𝑑) =  𝑛𝑑 then [3.04] becomes; 
 

𝑋 =  (𝑥𝜃0𝑦𝜑𝑛𝑑−𝑝𝑑)𝜃0𝑧𝜑𝑢′−𝑟𝑑 =  (𝑥. 𝑦𝜑𝑛𝑑−𝑝𝑑 )𝑧𝜑𝑢𝑑−𝑟𝑑 .  
 

By letting 𝛼 = 𝑛𝑑 − 𝑝𝑑 , 𝛽 = 𝑟𝑑 − 𝑞𝑑 , 𝛾 = 0, 1, −1. In view of [3.12] and then we observe that: 
 

𝑢𝑑 − 𝑟𝑑 =  𝑞𝑑 − 𝑝𝑑 + 𝑛𝑑 +  𝛾 − 𝑟𝑑 =  𝑛𝑑 − 𝑝𝑑 − 𝑟𝑑 + 𝑞𝑑 + 𝛾 = (𝑛𝑑 − 𝑝𝑑) − (𝑟𝑑 − 𝑞𝑑) + 𝛾, and so: 
 

𝑢𝑑 − 𝑟𝑑 =  𝛼 − 𝛽 + 𝛾 
 

Then 𝑋 =  (𝑥. 𝑦𝜑𝛼)𝑧𝜑𝛼−𝛽+𝛾  [3.13] 
 

Also recall from [3.08] that 𝑌 = 𝑥𝜃𝑤′−𝑛𝑑(𝑦𝜃𝑣′−𝑞𝑑𝑧𝜑𝑣′−𝑟𝑑)𝜑𝑤′−𝑏𝑑 
 

But 𝑤′ = 𝑛𝑑, and so  
 

𝑌 = 𝑥𝜃𝑛𝑑−𝑛𝑑(𝑦𝜃𝑣′−𝑞𝑑𝑧𝜑𝑣′−𝑟𝑑 )𝜑𝑛𝑑−𝑏𝑑 =  𝑥. (𝑦𝜃𝑣′−𝑞𝑑𝑧𝜑𝑣′−𝑟𝑑)𝜑𝑛𝑑−𝑏𝑑   [3.14] 
 

Now, to obtain a more precise expression for𝑌, two cases are considered. 
 

Subcase 1a: 
 

max(𝑞, 𝑟) = 𝑞  
 

Now for 𝑣 = max(𝑞, 𝑟) = 𝑞, then𝑣′ = 𝑞′ =  𝑞𝑑and so [3.14] becomes: 
 

𝑌 = 𝑥. (𝑦. 𝑧𝜑𝑞𝑑−𝑟𝑑 )𝜑𝑛𝑑−𝑏𝑑 [3.15] 
 

But 𝑏 = 𝑝 − 𝑞 + 𝑣 =  𝑝 − 𝑞 + max(𝑞, 𝑟) = 𝑝 and so 𝑏𝑑 =  𝑝𝑑, so that [3.15] becomes: 
 

𝑌 = 𝑥. (𝑦. 𝑧𝜑𝑞𝑑−𝑟𝑑 )𝜑𝑛𝑑−𝑝𝑑[3.16] 
 

𝑌 = 𝑥. (𝑦𝜑𝑛𝑑−𝑝𝑑 . 𝑧𝜑𝑞𝑑−𝑟𝑑+𝑛𝑑−𝑝𝑑) =  𝑥. (𝑦𝜑𝛼 . 𝑧𝜑(𝑛𝑑−𝑝𝑑)−(𝑟𝑑−𝑞𝑑)) 
 

Thus, 𝑌 = 𝑥. (𝑦𝜑𝛼 . 𝑧𝜑𝛼−𝛽) [3.17] 
 

Thus, if 0 < �̅� − �̅� + �̅� < 𝑑, then 𝑋 =  (𝑥. 𝑦𝜑𝛼)𝑧𝜑𝛼−𝛽 =  𝑥. (𝑦𝜑𝛼 . 𝑧𝜑𝛼−𝛽) = 𝑌. 
 

However, if �̅� − �̅� + �̅� > 𝑑, then 𝑎 = 𝑞 − 𝑝 + 𝑡 = 𝑞 − 𝑝 + max(𝑛, 𝑝) =  𝑞 − 𝑝 + 𝑛, so that 
 

𝑎𝑑 =  (𝑞 − 𝑝 + 𝑛)𝑑 =  𝑞𝑑 − 𝑝𝑑 + 𝑛𝑑 + 𝛾, 
 

Thus 𝑎𝑑 − 𝑟𝑑  =  𝑞𝑑 − 𝑝𝑑 + 𝑛𝑑 + 𝛾 − 𝑟𝑑 = (𝑛𝑑 − 𝑝𝑑) − (𝑟𝑑 − 𝑞𝑑) + 𝛾 =  𝛼 − 𝛽 + 1, and therefore: 
 

𝑋 =  (𝑥. 𝑦𝜑𝑛𝑑−𝑝𝑑 )𝑧𝜑𝑎𝑑−𝑟𝑑 =  (𝑥. 𝑦𝜑𝛼)𝑧𝜑𝛼−𝛽+1 =  𝑥. (𝑦𝜑𝑛𝑑−𝑝𝑑 . 𝑧𝜑𝑞𝑑−𝑟𝑑+𝑛𝑑−𝑝𝑑 ) 
 

= 𝑥. (𝑦𝜑𝛼 . 𝑧𝜑𝛼−𝛽+1) = 𝑌 
 

But if�̅� − �̅� + �̅� < 0 ⟹ 𝑝 − 𝑞 < 𝑑 − 𝑟  and by [3.03bii], it follows that  𝑋 = 𝑌. 
 

 Subcase 1b 
 

Max(𝑞, 𝑟) = 𝑟  
 

Now if  𝑀𝑎𝑥(𝑞, 𝑟) = 𝑟, then 𝑣′ = max(𝑞𝑑 , 𝑟𝑑) =  𝑟𝑑 ,  
 

𝑏 = 𝑝 − 𝑞 + 𝑣 =  𝑝 − 𝑞 + max(𝑞, 𝑟) = 𝑝 − 𝑞 + 𝑟, and so: 𝑏𝑑 =  𝑝𝑑 − 𝑞𝑑 + 𝑟𝑑 + 𝛾,thus, [3.13] becomes: 
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𝑌 =  𝑥. (𝑦𝜃𝑣′−𝑞𝑑 𝑧𝜑𝑣′−𝑟𝑑)𝜑𝑛𝑑−𝑏𝑑 =  𝑥. (𝑦𝜃𝑟𝑑−𝑞𝑑 𝑧)𝜑𝑛𝑑−𝑏𝑑 =  𝑥. (𝑦𝜃𝑟𝑑−𝑞𝑑 𝑧)𝜑𝑛𝑑−(𝑝𝑑−𝑞𝑑+𝑟𝑑+𝛾) 
 

𝑌 = 𝑥. (𝑦𝜃𝑟𝑑−𝑞𝑑𝑧)𝜑𝑛𝑑−𝑝𝑑+𝑞𝑑−𝑟𝑑+𝛾 =  𝑥. (𝑦𝜃𝑟𝑑−𝑞𝑑𝑧)𝜑(𝑛𝑑−𝑝𝑑)−(𝑟𝑑−𝑞𝑑)+𝛾 
 

𝑌 = 𝑥. (𝑦𝜃𝛽 . 𝑧)𝜑𝛼−𝛽+𝛾.                                                                                      [3.18] 
 

But 𝑦𝜃𝛽𝜑𝛼−𝛽+𝛾 =  𝑦𝜑𝛼+𝛾 by lemma [2.3] and so [3.18] becomes: 
 

𝑌 = 𝑥. (𝑦𝜑𝛼+𝛾 . 𝑧𝜑𝛼−𝛽+𝛾)    [3.19] 
 

 Remarks 

We remark the following which led to the conclusion of [3.19]. 
 

We observed that since  
 

𝑛 − 𝑏 = 𝑛 − (𝑝 − 𝑞 + 𝑟) = 𝑛 − 𝑝 + 𝑞 − 𝑟 = (𝑞 − 𝑝 + 𝑛) − 𝑟 = 𝑎 − 𝑟 so that 
 

𝑛𝑑 − 𝑏𝑑 =  𝑛𝑑 − (𝑝𝑑 − 𝑞𝑑 + 𝑟𝑑 + 𝛾) = (𝑛𝑑 − 𝑝𝑑) − (𝑟𝑑 − 𝑞𝑑) − 𝛾 =  𝛼 − 𝛽 − 𝛾  
 

Similarly: 
 

𝑎𝑑 − 𝑟𝑑 =  𝑞𝑑 − 𝑝𝑑 + 𝑛𝑑 + 𝛾 − 𝑟𝑑 = (𝑛𝑑 − 𝑝𝑑) − (𝑟𝑑 − 𝑞𝑑) + 𝛾 =  𝛼 − 𝛽 + 𝛾  
 

Where we have by [3.12], that is: 
 

𝛾 = {
0 if 0 < �̅� − �̅� + �̅� < 𝑑 or 0 < �̅� − �̅� + �̅� < 𝑑
1 if          �̅� − �̅� + �̅� > 𝑑 or�̅� − �̅� + �̅� > 𝑑         

−1 if                     �̅� − �̅� + �̅� < 0 or�̅� − �̅� + �̅� < 0
 

 

Now we observe the correspondence between 𝑎𝑑 − 𝑟𝑑  and 𝑛𝑑 − 𝑏𝑑. This can be viewed from the fact that if �̅� > �̅� then 

clearly �̅� − �̅� + �̅� > 0 or 0 < �̅� − �̅� + �̅� < 𝑑. However, if �̅� > �̅�, then 0 < �̅� − �̅� + �̅� < 𝑑 or �̅� − �̅� + �̅� > 𝑑. Thus, we can see 

that the value �̅� − �̅� + �̅� < 0 corresponds to  
 

0 < �̅� − �̅� + �̅� < 𝑑 or �̅� − �̅� + �̅� > 𝑑. In a similar way if �̅� > �̅�, then clearly �̅� − �̅� + �̅� < 𝑑 corresponds to the values �̅� −
�̅� + �̅� < 0 or 0 < �̅� − �̅� + �̅� < 𝑑. Thus, we summarize the following conditions 

 

(C1)  
 

i 𝑎𝑑 − 𝑟𝑑 =  𝛼 − 𝛽, 0 < �̅� − �̅� + �̅� < 𝑑 𝑛𝑑 − 𝑏𝑑 =  𝛼 − 𝛽, 0 < �̅� − �̅� + �̅� < 𝑑 

ii 𝑎𝑑 − 𝑟𝑑 =  𝛼 − 𝛽, 0 < �̅� − �̅� + �̅� < 𝑑 𝑛𝑑 − 𝑏𝑑 =  𝛼 − 𝛽 − 1, �̅� − �̅� + �̅� < 𝑑 

iii 𝑎𝑑 − 𝑟𝑑 =  𝛼 − 𝛽, 0 < �̅� − �̅� + �̅� < 𝑑 𝑛𝑑 − 𝑏𝑑 =  𝛼 − 𝛽 + 1, �̅� − �̅� + �̅� < 𝑑 

iv 𝑎𝑑 − 𝑟𝑑 =  𝛼 − 𝛽 + 1, 

�̅� − �̅� + �̅� > 𝑑 

𝑛𝑑 − 𝑏𝑑 =  𝛼 − 𝛽, 0 < �̅� − �̅� + �̅� < 𝑑 

v 𝑎𝑑 − 𝑟𝑑 =  𝛼 − 𝛽 + 1, 

�̅� − �̅� + �̅� > 𝑑 

𝑛𝑑 − 𝑏𝑑 =  𝛼 − 𝛽 + 1, �̅� − �̅� + �̅� < 0 

vi 𝑎𝑑 − 𝑟𝑑 =  𝛼 − 𝛽 − 1, 

�̅� − �̅� + �̅� < 0 

𝑛𝑑 − 𝑏𝑑 =  𝛼 − 𝛽, 0 < �̅� − �̅� + �̅� < 𝑑 

vii 𝑎𝑑 − 𝑟𝑑 =  𝛼 − 𝛽 − 1, 

�̅� − �̅� + �̅� < 0 

𝑛𝑑 − 𝑏𝑑 =  𝛼 − 𝛽 − 1, �̅� − �̅� + �̅� < 𝑑 

 

Thus, in respect of conditions (C1) of table 1 above, with 𝑎𝑑 − 𝑟𝑑 =  𝛼 − 𝛽 and 
 

𝑛𝑑 − 𝑏𝑑 =  𝛼 − 𝛽, if �̅� > �̅�  then equations [3.13] and [3.18], that is: 
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𝑋 =  (𝑥. 𝑦𝜑𝛼)𝑧𝜑𝛼−𝛽 and 𝑌 = 𝑥. (𝑦𝜃𝛽 . 𝑧)𝜑𝛼−𝛽 = 𝑥. (𝑦𝜑𝛼 . 𝑧𝜑𝛼−𝛽) = 𝑋. 
 

Also, if �̅� > �̅�, then [3.18] becomes:  
 

𝑌 = 𝑥. (𝑦𝜃𝛽 . 𝑧)𝜑𝛼−𝛽 =   𝑥. (𝑦𝜑𝛼−1. 𝑧𝜑𝛼−𝛽) =  𝑥. (𝑦𝜑𝛽−1. 𝑧)𝜑𝛼−𝛽  = 𝑋. 
 

To verify (CI) ii 
 

𝑎𝑑 − 𝑟𝑑 =  𝛼 − 𝛽, 0 < �̅� − �̅� + �̅� < 𝑑 and  𝑛𝑑 − 𝑏𝑑 =  𝛼 − 𝛽 − 1, �̅� − �̅� + �̅� < 𝑑, so that  
 

𝑌 =  𝑥. (𝑦𝜃𝛽 . 𝑧)𝜑𝛼−𝛽−1. But recall that  𝑦𝜃 ∈ 𝑀𝑝−𝑞,0, 𝑦𝜃2 ∈ 𝑀𝑝−𝑞,0 and 𝑦𝜃𝛽 ∈ 𝑀𝑝−𝑞,0, so that  
 

𝑦𝜃𝛽 . 𝑧 ∈ 𝑀𝑝−𝑞+𝑑,𝑠−𝑟+𝑑 , 𝑑 = max(0, 𝑟) = 𝑟 ⟹  𝑦𝜃𝛽 . 𝑧 ∈ 𝑀𝑝−𝑞+𝑟,𝑠 , �̅� − �̅� + �̅� > 𝑑, but by lemma [2.3], we have: 
 

𝑦𝜃𝛽 . 𝑧 =  𝑦𝜃𝛽𝜑. 𝑧 =  𝑦𝜃𝛽+1𝜑 and so 𝑌 =  𝑥. (𝑦𝜃𝛽 . 𝑧)𝜑𝛼−𝛽−1 =  𝑌 =  𝑥. (𝑦𝜃𝛽+1. 𝑧)𝜑𝛼−𝛽−1.  
 

But 
 

𝑋 =  (𝑥. 𝑦𝜑𝛼)𝑧𝜑𝛼−𝛽 =  𝑥. (𝑦𝜑𝛽 . 𝑧)𝜑𝛼−𝛽 =  𝑥. (𝑦𝜑𝛽𝜑. 𝑧𝜑)𝜑𝛼−𝛽−1 =  𝑥. (𝑦𝜃𝛽+1. 𝑧)𝜑𝛼−𝛽−1 = 𝑌. (in view of condition 

[3.03bii]. 
 

Now for (C1) iii 
 

𝑋 =  (𝑥. 𝑦𝜑𝛼)𝑧𝜑𝛼−𝛽 =   𝑥. (𝑦𝜑𝛼 . 𝑧𝜑𝛼−𝛽) but for �̅� > �̅�, then  
 

𝑌 =  𝑥. (𝑦𝜃𝛽 . 𝑧)𝜑𝛼−𝛽+1 =  𝑥. (𝑦𝜑𝛽 . 𝑧𝜑𝛼−𝛽+1) = 𝑋 
 

For (C1) iv 
 

𝑋 =  (𝑥. 𝑦𝜑𝛼)𝑧𝜑𝛼−𝛽+1 thus with �̅� > �̅�, 0 < �̅� − �̅� + �̅� < �̅�, then  
 

𝑌 = 𝑥. (𝑦𝜃𝛽 . 𝑧)𝜑𝛼−𝛽 = 𝑥. (𝑦𝜑𝛼−1. 𝑧)𝜑𝛼−𝛽 = 𝑋. 
 

For (C1) v 
 

𝑋 =  (𝑥. 𝑦𝜑𝛼)𝑧𝜑𝛼−𝛽+1 and with �̅� > �̅�, then: 
 

𝑌 = 𝑥. (𝑦𝜃𝛽 . 𝑧)𝜑𝛼−𝛽 = 𝑥. (𝑦𝜑𝛼 . 𝑧𝜑𝛼−𝛽+1) = 𝑋 
 

For (C1) vi 
 

𝑋 =  (𝑥. 𝑦𝜑𝛼)𝑧𝜑𝛼−𝛽−1, but �̅� > �̅�, and so  𝑟 < 𝑝 − 𝑞 + 𝑟 < 𝑑. Thus  
 

𝑌 = 𝑥. (𝑦𝜃𝛽 . 𝑧)𝜑𝛼−𝛽 = 𝑥. (𝑦𝜑𝛼 . 𝑧𝜑𝛼−𝛽) = 𝑋 
 

For (C1) vii 
 

𝑋 =  (𝑥. 𝑦𝜑𝛼)𝑧𝜑𝛼−𝛽−1, but �̅� > �̅�, and so  �̅� − �̅� + �̅� > 𝑑. Thus  
 

𝑌 = 𝑥. (𝑦𝜃𝛽 . 𝑧)𝜑𝛼 = 𝑥. (𝑦𝜑𝛼 . 𝑧𝜑𝛼−𝛽−1)  = 𝑋. 
 

 Case II  

If 𝑤 = 𝑝 − 𝑞 + 𝑚𝑎𝑥𝑞,  
 

𝑟all that 𝑤 = max(𝑛, 𝑏) = max{𝑛, 𝑝 − 𝑞 + 𝑚𝑎𝑥(𝑞, 𝑟)} = 𝑝 − 𝑞 + 𝑚𝑎𝑥(𝑞, 𝑟) then it implies that; 
 

𝑝 − 𝑞 + 𝑚𝑎𝑥(𝑞, 𝑟) > 𝑛. But 𝑎 = 𝑞 − 𝑝 + 𝑡 = 𝑞 − 𝑝 + 𝑚𝑎𝑥(𝑛, 𝑝).  
 

Also recall by [3.10] that 𝑤 = 𝑝 − 𝑞 + 𝑢 so that 𝑤 = 𝑝 − 𝑞 + 𝑢 = 𝑝 − 𝑞 + 𝑚𝑎𝑥(𝑞, 𝑟) and so  
 

𝑢 =  𝑚𝑎𝑥(𝑞, 𝑟) =  𝑣, thus 𝑢′ = 𝑢𝑑 =  𝑚𝑎𝑥(𝑞𝑑 , 𝑟𝑑) =  𝑣′. Thus equation [3.08] becomes: 
 

𝑌 = 𝑥𝜃𝑤′−𝑛𝑑(𝑦𝜃𝑣′−𝑞𝑑𝑧𝜑𝑣′−𝑟𝑑 )𝜑𝑤′−𝑏𝑑 =  𝑌 = 𝑥𝜃𝑏𝑑−𝑛𝑑(𝑦𝜃𝑢𝑑−𝑞𝑑 𝑧𝜑𝑢𝑑−𝑟𝑑)                 [3.20] 
 

In order to establish the equality between [3.04] and [3.20], we consider the following subcases: 
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 Subcase II (a) 

If  𝑣 = 𝑢 = 𝑚𝑎𝑥(𝑞, 𝑟) = 𝑞, but 𝑢 = 𝑞 = 𝑞 − 𝑝 + 𝑚𝑎𝑥(𝑛, 𝑝) ⟹ 𝑝 = max(𝑛, 𝑝) = 𝑡 so that 
 

𝑡′ =  𝑝𝑑 .  
 

𝑎𝑑 = 𝑢𝑑 =   𝑞𝑑  
 

Thus 𝑋 =  (𝑥𝜃𝑝𝑑−𝑛𝑑 . 𝑦)𝑧𝜑𝑞𝑑−𝑟𝑑  
 

Now let 𝑝𝑑 − 𝑛𝑑 = 𝛼 , 𝑞𝑑 − 𝑟𝑑 =  𝛽 and so  
 

𝑋 =  (𝑥𝜃𝛼 . 𝑦)𝑧𝜑𝛽 =  𝑥𝜃𝛼 . (𝑦. 𝑧𝜑𝛽).  
 

Also observe that 𝑏𝑑 =   𝑝𝑑 and so [3.20] becomes: 
 

𝑌 = 𝑥𝜃𝑝𝑑−𝑛𝑑(𝑦𝑧𝜑𝑞𝑑−𝑟𝑑 ) =  𝑥𝜃𝛼 . (𝑦𝑧𝜑𝛽) = 𝑋  
 

 Subcase II (b) 
 

𝑣 = 𝑚𝑎𝑥(𝑞, 𝑟) = 𝑟 
 

Now observe that if 𝑣 = 𝑚𝑎𝑥(𝑞, 𝑟) = 𝑟, then 𝑤 = 𝑤 = 𝑝 − 𝑞 + 𝑚𝑎𝑥(𝑞, 𝑟) = 𝑝 − 𝑞 + 𝑟 so that 
 

𝑝 − 𝑞 + 𝑟 > 𝑛. But by [3.10], 𝑤 = 𝑝 − 𝑞 + 𝑢 and then 𝑢 = 𝑟 so that 𝑢𝑑 =  𝑟𝑑. Also see that  
 

𝑏 = 𝑝 − 𝑞 + 𝑣 =  𝑝 − 𝑞 + max(𝑞, 𝑟) = 𝑝 − 𝑞 + 𝑟, so that 𝑏𝑑 = (𝑝 − 𝑞 + 𝑟)𝑑 =  𝑝𝑑 − 𝑞𝑑 + 𝑟𝑑 + 𝛾 with the imposed 

conditions: 
 

𝛾 = {
0 if 0 < �̅� − �̅� + �̅� < 𝑑

1 if�̅� − �̅� + �̅� > 𝑑
−1     if�̅� − �̅� + �̅� < 0

 

 

and so let 𝛼 = (𝑝𝑑 − 𝑛𝑑), 𝛽 =  (𝑟𝑑 − 𝑞𝑑), thus 𝑏𝑑 − 𝑛𝑑 = (𝑝𝑑 − 𝑛𝑑) + (𝑟𝑑 − 𝑞𝑑) + 𝛾 𝑏𝑑 − 𝑛𝑑 =  𝛼 + 𝛽 + 𝛾. 
 

Thus [3.20] becomes: 
 

𝑌 = 𝑥𝜃𝑏𝑑−𝑛𝑑(𝑦𝜃𝑟𝑑−𝑞𝑑 . 𝑧) =  𝑥𝜃𝛼+𝛽+𝛾(𝑦𝜃𝛽 . 𝑧)  [3.21] 
 

To obtain a more precise expression of the values of 𝑋 we remodel [3.04] as in the following subcases. 
 

 Subcase II b(i) 𝒕 = 𝐦𝐚𝐱(𝒏, 𝒑) = 𝒑 
 

If so then 𝑡′ =  𝑝𝑑𝑎 = 𝑞 − 𝑝 + max(𝑛, 𝑝) = 𝑞 − 𝑝 + 𝑝 = 𝑞 and so 𝑎𝑑 =  𝑞𝑑 and then [3.04] becomes: 
 

𝑋 =  (𝑥𝜃𝑝𝑑−𝑛𝑑𝑦)𝜃𝑟𝑑−𝑞𝑑𝑧 =  (𝑥𝜃𝑝𝑑−𝑛𝑑+𝑟𝑑−𝑞𝑑𝑦𝜃𝑟𝑑−𝑞𝑑). 𝑧 =  (𝑥𝜃𝛼+𝛽𝑦𝜃𝛽). 𝑧  [3.22] 
 

Clearly observe that if 𝛾 = 0,1 then 𝑋 = 𝑌. However, if 𝛾 = −1 which is of course true when  
 

�̅� − �̅� + �̅� < 0 so that  0 < 𝑞 − 𝑝 < 𝑑 − 𝑛. Now observe: 
 

Recall that for 𝑥 ∈  𝐵𝑚,𝑛, then 𝑥𝜃 ⊆  𝐵𝑚,𝑛 =  𝐵𝑚−𝑛̅̅ ̅̅ ̅̅ ̅,0,  for 𝑚 − 𝑛̅̅ ̅̅ ̅̅ ̅̅ = 𝑚 − 𝑛 if 𝑚 > 𝑛 and 
 

 𝑚 − 𝑛 + 𝑑 if  𝑚 < 𝑛, thus (𝑥𝜃)𝜃 =  𝑥𝜃2 ⊆  𝐵𝑚−𝑛̅̅ ̅̅ ̅̅ ̅,0 and so 𝑥𝜃𝛼 ⊆  𝐵𝑚−𝑛̅̅ ̅̅ ̅̅ ̅,0. Also observe that 
 

𝑥𝜃 ∈ 𝐵𝑚−𝑛̅̅ ̅̅ ̅̅ ̅,0  ⟹ 𝑥𝜃𝛼  ∈  𝐵𝑚−𝑛̅̅ ̅̅ ̅̅ ̅,0, so that if let 𝑥1 =  𝑥𝜃𝛼 ∈  𝐵𝑚−𝑛̅̅ ̅̅ ̅̅ ̅,0, and so that 𝑥1𝜃𝛽 =  𝑥𝜃𝛼+𝛽 
 

 Thus 𝑋 = (𝑥𝜃𝛼+𝛽𝑦𝜃𝛽). 𝑧 =  (𝑥1𝜃𝛽𝑦𝜃𝛽). 𝑧 =  (𝑥1𝜃𝛽−1𝑦𝜃𝛽). 𝑧 = 𝑌  
 

 Subcase II b(ii)  𝑡 = max(𝑛, 𝑝) = 𝑛 

Should this be the case, then 𝑎 = 𝑞 − 𝑝 + max(𝑛, 𝑝) =  𝑞 − 𝑝 + 𝑛, so that 𝑡′ = max(𝑛𝑑 , 𝑝𝑑) = 𝑛𝑑 and 𝑎𝑑 =  (𝑞 − 𝑝 +
𝑛)𝑑 =  𝑞𝑑 − 𝑝𝑑 + 𝑛𝑑 + 𝛾 so that [3.04] becomes: 

 

𝑋 =  (𝑥𝜃𝑡′−𝑛𝑑𝑦𝜑𝑡′−𝑝𝑑 )𝜃𝑢′−𝑎𝑑𝑧𝜑𝑢′−𝑟𝑑 =  (𝑥. 𝑦𝜑𝑛𝑑−𝑝𝑑 )𝜃𝑟𝑑−(𝑞𝑑−𝑝𝑑+𝑛𝑑+𝛾) . 𝑧 

 

𝑋 =  (𝑥. 𝑦𝜑𝑛𝑑−𝑝𝑑 )𝜃(𝑟𝑑−𝑞𝑑)+(𝑝𝑑−𝑛𝑑)−𝛾) . 𝑧 =  (𝑥. 𝑦𝜑𝑛𝑑−𝑝𝑑 )𝜃(𝑟𝑑−𝑞𝑑)−(𝑛𝑑−𝑝𝑑)+𝛾 . 𝑧  
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𝑋 =  (𝑥. 𝑦𝜑𝛼)𝜃𝛽−𝛼+𝛾 . 𝑧, for 𝛽 − 𝛼 + 𝛾 ≥ 0, 𝛾 = 0,1, −1. Thus, generally if 𝛽 − 𝛼 + 𝛾 ≥ 0 , then the values of 𝑏𝑑 − 𝑛𝑑 

and the corresponding values of 𝑟𝑑 − 𝑎𝑑  expressed in terms of  𝛼, 𝛽 and 𝛾 are summerised in the table below. 
 

(C2) 
 

i 𝑟𝑑 − 𝑎𝑑 =  𝛽 − 𝛼, 

  0 < �̅� − �̅� + �̅� < 𝑑 

𝑏𝑑 − 𝑛𝑑 =  𝛽 − 𝛼, 0 < �̅� − �̅� + �̅� < 𝑑 

ii 𝑟𝑑 − 𝑎𝑑 =  𝛽 − 𝛼, 

  0 < �̅� − �̅� + �̅� < 𝑑 

𝑏𝑑 − 𝑛𝑑 =  𝛽 − 𝛼 + 1, �̅� − �̅� + �̅� > 𝑑 

iii 𝑟𝑑 − 𝑎𝑑 =  𝛽 − 𝛼, 

  0 < �̅� − �̅� + �̅� < 𝑑 

𝑏𝑑 − 𝑛𝑑 =  𝛽 − 𝛼 − 1, �̅� − �̅� + �̅� < 0 

iv 𝑟𝑑 − 𝑎𝑑 =  𝛽 − 𝛼 − 1, 

�̅� − �̅� + �̅� > 𝑑 

𝑏𝑑 − 𝑛𝑑 =  𝛽 − 𝛼, 0 < �̅� − �̅� + �̅� < 𝑑 

v 𝑟𝑑 − 𝑎𝑑 =  𝛽 − 𝛼 − 1, 

�̅� − �̅� + �̅� > 𝑑 

𝑏𝑑 − 𝑛𝑑 =  𝛽 − 𝛼 − 1, �̅� − �̅� + �̅� < 0 

vi 𝑟𝑑 − 𝑎𝑑 =  𝛽 − 𝛼 + 1, 

�̅� − �̅� + �̅� > 0 

𝑏𝑑 − 𝑛𝑑 =  𝛽 − 𝛼, 0 < �̅� − �̅� + �̅� < 𝑑 

vii 𝑟𝑑 − 𝑎𝑑 =  𝛽 − 𝛼 + 1, 

�̅� − �̅� + �̅� < 0 

𝑏𝑑 − 𝑛𝑑 =  𝛽 − 𝛼 + 1, �̅� − �̅� + �̅� < 𝑑 

 

Therefore, table 2 above shows the values of  𝑋 with the corresponding values of  𝑌 as in [3.20], for  𝛾 = 0, 1, −1. Evidently, 

the direct application of lemma [2.3] then shows that  
 

𝑋 =  (𝑥. 𝑦𝜑𝛼)𝜃𝛽−𝛼+𝛾 . 𝑧 =  𝑌 =  (𝑥𝜃𝛽−𝛼+𝛾 . 𝑦𝜃𝛽+𝛾). 𝑧. 
 

Thus, above verified that (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐), and we have proved: 
 

 Theorem 3.1 

𝑆 = 𝑆(𝑩, 𝑑, 𝜃, 𝜑) is a semigroup.                                                                                 □ 
 

Let 𝑒 = (𝑚, 𝑥, 𝑛), now suppose that 𝑒 =  𝑒2so that (𝑚, 𝑥, 𝑛)(𝑚, 𝑥, 𝑛) = (𝑚, 𝑥, 𝑛). So that  
 

(𝑚, 𝑥, 𝑛)(𝑚, 𝑥, 𝑛) = (𝑚 − 𝑛 + 𝑡, 𝑥𝜃𝑡′− 𝑛𝑑𝑥𝜃𝑡′− 𝑛𝑑 , 𝑛 − 𝑚 + 𝑡) = (𝑚, 𝑥, 𝑛) [3.23] 
 

𝑡′ = max(𝑚𝑑 , 𝑛𝑑). 
 

Now observe that 𝑚 − 𝑛 + 𝑡 = 𝑚 ⟹ 𝑛 = 𝑡      [3.24] 
 

Similarly, 
 

𝑛 − 𝑚 + 𝑡 = 𝑛  ⟹ 𝑡 = 𝑚  [3.25] 
 

By [3.24] and [3.25], we have that 𝑡 = 𝑚 = 𝑛 and so 𝑡′ = 𝑛𝑑 
 

(𝑚, 𝑥, 𝑛)(𝑚, 𝑥, 𝑛) = (𝑚, 𝑥2, 𝑛) = (𝑚, 𝑥, 𝑛).  
 

But 𝑥2 = 𝑥 ⟹ 𝑥 ∈  𝑀𝑚, that is 𝑥 is an idempotent. 
 

Conversely, if 𝑚 = 𝑛 and 𝑥 =  𝑒𝑚, then observe that (𝑚, 𝑒𝑚 , 𝑚)(𝑚, 𝑒𝑚 , 𝑚) =  (𝑚, 𝑒𝑚
2, 𝑚) =  (𝑚, 𝑒𝑚 , 𝑚) since 𝑒𝑚 ∈  𝑀𝑚. 

And certainly (𝑚, 𝑒𝑚 , 𝑚) is an idempotent and we have shown 
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 Lemma 3.2 

The idempotent of 𝑆 is of the form (𝑚, 𝑒𝑚 , 𝑚). 
 

Suppose that 𝑓𝑚 = (𝑚, 𝑒𝑚 , 𝑚) and 𝑓𝑛 = (𝑛, 𝑒𝑛 , 𝑛), 𝑚, 𝑛 ∈ 𝑁. Observe that  
 

𝑓𝑚𝑓𝑛 = (𝑚, 𝑒𝑚 , 𝑚)(𝑛, 𝑒𝑛 , 𝑛) = (𝑡, 𝑒𝑚𝜃𝑡′−𝑚𝑑𝑒𝑚𝜑𝑡′−𝑛𝑑 , 𝑡)[3.26] 
 

Where  𝑡 = max(𝑚, 𝑛) , 𝑡′ = max(𝑚𝑑 , 𝑛𝑑). See that if 𝑡 = 𝑚, 𝑡′ = 𝑚𝑑 then [3.26] becomes; 
 

𝑓𝑚𝑓𝑛 = (𝑚, 𝑒0𝑒𝑛𝜑𝑚𝑑−𝑛𝑑 , 𝑚) = (𝑚, 𝑒0𝑒𝑛, 𝑚) 
 

Similarly, 
 

 if  𝑡 = 𝑛, then 𝑡′ = 𝑛𝑑, then [3.26] becomes: 
 

𝑓𝑚𝑓𝑛 = (𝑛, 𝑒𝑚𝜃𝑛𝑑−𝑚𝑑𝑒0, 𝑛) =  (𝑚, 𝑒𝑚𝑒0, 𝑚), and if  𝑡 = 𝑚 = 𝑛, then  
 

𝑓𝑚𝑓𝑚 =  (𝑚, 𝑒𝑚 , 𝑚) =   𝑓𝑚. 
 

Thus: 
 

𝑓𝑚𝑓𝑛 = {
(𝑚, 𝑒𝑚𝑒0, 𝑚) = (𝑚, 𝑒𝑚 , 𝑚) , 𝑡 = 𝑚 > 𝑛
(𝑛, 𝑒0𝑒𝑛, 𝑛) =  (𝑚, 𝑒𝑚 , 𝑚), 𝑡 = 𝑚 = 𝑛

           [3.27] 

 

Thus, we can now define a partial order as follows: 
 

𝑓𝑚 ≤  𝑓𝑛  ⟹  𝑓𝑚𝑓𝑛 =  𝑓𝑛𝑓𝑚 =   𝑓𝑚 if 𝑚 ≥ 𝑛 
 

Thus, we observe the following: 
 

 𝑓𝑚  ≤ 𝑓𝑚 
 

 𝑓𝑚  ≤ 𝑓𝑛 
 

 𝑓𝑚  ≤ 𝑓𝑛 , 𝑓𝑛  ≤ 𝑓𝑙  ⟹  𝑓𝑚𝑓𝑛 =  𝑓𝑚 and 𝑓𝑛  ≤ 𝑓𝑙  ⟹  𝑓𝑛𝑓𝑙 =  𝑓𝑛. Thus 𝑓𝑚(𝑓𝑛𝑓𝑙) =  (𝑓𝑚𝑓𝑛) 𝑓𝑙 𝑓𝑚𝑓𝑙 =  𝑓𝑚. 
 

Thus, the relation ≤ is an equivalence relation.                                            
 

If 𝑓0  is an idempotent in 𝑆 we have: 
 

𝑓0 = (0, 𝑒, 0) ≥  𝑓1 = (1, 𝑒, 1) ≥  𝑓2 = (2, 𝑒, 2) … ≥ 𝑓𝑑 = (𝑑 − 1, 𝑒, 𝑑 − 1) and in general,  
 

𝑓𝑑 = (𝑑, 𝑒, 𝑑) ≥  𝑓𝑑+1 = (𝑑 + 1, 𝑒, 𝑑 + 1) ≥  … ≥ 𝑓2𝑑−1 = (2𝑑 − 1, 𝑒, 2𝑑 − 1)  ≥ ⋯ 
 

Evidently, 𝑓0  ∈ 𝑆 is an identity. 
 

Let (𝑚, 𝑥, 𝑛), (𝑛, 𝑦, 𝑚) ∈ 𝑆. Observe that  
 

(𝑚, 𝑥, 𝑛)(𝑛, 𝑦, 𝑚) = (𝑚 − 𝑛 + 𝑛, 𝑥𝜃𝑛𝑑−𝑛𝑑𝑦𝜑𝑛𝑑−𝑛𝑑 , 𝑚 − 𝑛 + 𝑛) = (𝑚, 𝑥𝑦, 𝑚)so that  
 

(𝑚, 𝑥, 𝑛)(𝑛, 𝑦, 𝑚)(𝑚, 𝑥, 𝑛) = [(𝑚, 𝑥, 𝑛)(𝑛, 𝑦, 𝑚)](𝑚, 𝑥, 𝑛) =  (𝑚, 𝑥𝑦, 𝑚)(𝑚, 𝑥, 𝑛) 
 

= (𝑚, 𝑥𝑦𝜃𝑚𝑑−𝑚𝑑  𝑥𝜑𝑚𝑑−𝑚𝑑 , 𝑛 − 𝑚 + 𝑚) =  (𝑚, (𝑥𝑦)𝑥, 𝑛). But recall that for �̅� =  �̅� then 𝑥 ∈  𝑀𝑚, and so (𝑥𝑦)𝑥 =
 𝑒𝑚𝑥 = 𝑥, since 𝑥𝑦 =  𝑒𝑚. Thus, we have proved: 

 

 Lemma3.3 

Let 𝑎 = (𝑚, 𝑥, 𝑛)  ∈ 𝑆, and let 𝑥 ∈  𝑀𝑚, where 𝑥 is a unit, then the inverse of 𝑎, is of the form  
 

𝑎−1 = (𝑛, 𝑦, 𝑚), where 𝑦 =  𝑥−1 and 𝑚 = 𝑛(mod𝑑).                                                                 
 

Let 𝑎 = (𝑚, 𝑥, 𝑛), 𝑓𝑛 = (𝑛, 𝑒�̅�, 𝑛), 𝑓𝑚 = (𝑚, 𝑒�̅� , 𝑚)  ∈ 𝑆. Then for all 𝑢 = (ℎ, 𝑦, 𝑘), 𝑣 = (𝑓, 𝑧, 𝑔) ∈  𝑆, observe that; 
 

𝑎𝑢 = (𝑚, 𝑥, 𝑛)(ℎ, 𝑦, 𝑘) = (𝑚 − 𝑛 + 𝑡, 𝑥𝜃𝑡′−𝑛𝑑𝑦𝜑𝑡′−ℎ𝑑 , 𝑘 − ℎ + 𝑡) [3.28] 𝑡 = max(𝑛, ℎ) , 𝑡′ = max(𝑛𝑑 , ℎ𝑑) 
 

Similarly,  
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𝑎𝑣 = (𝑚, 𝑥, 𝑛)(𝑓, 𝑧, 𝑔) = (𝑚 − 𝑛 + 𝑤, 𝑥𝜃𝑤′−𝑛𝑑𝑧𝜑𝑤′−𝑓𝑑 , 𝑔 − 𝑓 + 𝑤)  [3.29] 
 

𝑤 = max(𝑛, 𝑓) , 𝑤′ =  max(𝑛𝑑 , 𝑓𝑑) 
 

Suppose that 𝑎𝑢 = 𝑎𝑣, then: 
 

(𝑚 − 𝑛 + 𝑡, 𝑥𝜃𝑡′−𝑛𝑑𝑦𝜑𝑡′−ℎ𝑑 , 𝑘 − ℎ + 𝑡)  =  (𝑚 − 𝑛 + 𝑤, 𝑥𝜃𝑤′−𝑛𝑑𝑧𝜑𝑤′−𝑓𝑑 , 𝑔 − 𝑓 + 𝑤)[3.30] 
 

Thus; 

 𝑚 − 𝑛 + 𝑡 =  𝑚 − 𝑛 + 𝑤 [3.31] 

 𝑘 − ℎ + 𝑡 = 𝑔 − 𝑓 + 𝑤               [3.32] 

 𝑥𝜃𝑡 ′−𝑛𝑑𝑦𝜑𝑡 ′−ℎ𝑑 =  𝑥𝜃𝑤 ′−𝑛𝑑𝑧𝜑𝑤 ′−𝑓𝑑  [3.33] 
 

From [3.31] 𝑡 = max(𝑛, ℎ) = 𝑤 = max(𝑛, 𝑓) and so 𝑡′ = 𝑤′ ⟹ max(𝑛𝑑 , ℎ𝑑) =  max(𝑛𝑑 , 𝑓𝑑) and so, we have  
 

ℎ𝑑 =  𝑓𝑑 . Thus [3.33] becomes: 
 

𝑥𝜃𝑡′−𝑛𝑑𝑦𝜑𝑡′−ℎ𝑑 =  𝑥𝜃𝑡′−𝑛𝑑𝑧𝜑𝑡′−𝑓𝑑  and for a particular case where 𝑥 =  𝑒𝑛 , then  
 

𝑒𝑛𝜃𝑡′−𝑛𝑑𝑦𝜑𝑡′−ℎ𝑑 =  𝑒𝑛𝜃𝑡′−𝑛𝑑𝑧𝜑𝑡′−𝑓𝑑  [3.34] 
 

If 𝑡′ =  𝑛𝑑 , then [3.34] becomes: 
 

𝑒𝑛. 𝑦𝜑𝑛𝑑−ℎ𝑑 =  𝑒𝑛 . 𝑧𝜑𝑛𝑑−𝑓𝑑   [3.35] 
 

But if  𝑡′ > 𝑛𝑑, then 𝑡′ =  ℎ𝑑 =  𝑓𝑑  and we have: 
 

𝑒𝑛𝜃ℎ𝑑−𝑛𝑑𝑦 =  𝑒𝑛𝜃ℎ𝑑−𝑛𝑑𝑧 =  𝑒0𝑦 =  𝑒0𝑧 for 𝑒𝑛𝜃𝑡′−𝑛𝑑 =  𝑒0.  
 

Thus, 𝑦 = 𝑧, and then (𝑛, 𝑒𝑛 , 𝑛)(ℎ, 𝑦, 𝑘) =  (𝑛, 𝑒𝑛, 𝑛)(𝑓, 𝑧, 𝑔). 
 

Thus, we have proved. 
 

 Theorem3.4 

Let 𝑎 = (𝑚, 𝑥, 𝑛), 𝑓𝑛 = (𝑛, 𝑒�̅�, 𝑛), 𝑓𝑚 = (𝑚, 𝑒�̅� , 𝑚)  ∈ 𝑆. Then for all 𝑢 = (ℎ, 𝑦, 𝑘), 𝑣 = (𝑓, 𝑧, 𝑔) ∈  𝑆, then: 

 𝑎ℒ∗𝑓𝑛    and  

 𝑎ℛ∗𝑓𝑚                                                                                              
 

V. CONCLUSION 
 

In this study, we have seen that with the binary array 

of bisystems closed and certain rules imposed as in 

conditions [2.01ai] through [2.01aiii]and the dual [2.01bi] 

through [2.01biii] along lemmas [2.1], [2.2] and [2.3], the 

closure of multiplication of elements in the binary array of 
bisystems was ensured and then the construction as in 

[3.01]onthe set𝑆(𝑩, 𝑑, 𝜃, 𝜑) = 𝑆was seen to be associative, 

hence a semigroup, as seen in theorem 3.1. However, such 

a class of ∗ - bisimple Ample  𝜔-semigroup are 

characterized as an extension of the binary array of 

bisystems of cancellative monoids. Thus, we obtained few 

of its properties, namely: the nature of its idempotents 

(lemma 3.2), it inverses (lemma 3.3) and the ℒ∗(ℛ∗)-

relations with respect to it idempotents (lemma 3.4). 
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