
Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1485

API Security Testing: The Challenges of Security

Testing for Restful APIs

Sattam J Alharbi1, Tarek Moulahi2

Department of Information Technology,
College of Computer, Qassim University, Saudi Arabia

Abstract:- Modern web applications and software

systems have shifted to relying on RESTful APIs, which

are more susceptible to security threats such as injection

attacks, authentication attacks, and data breaches. This

article discusses the difficulties of performing security

testing on RESTful APIs, such as input validation,

authentication, and authorisation. It has been identified

that vulnerabilities that affect security configuration

include insufficient logging, faulty object-level

authorisation, asset management, faulty function-level

authorisation, and mass assignment. It concludes by

summarising the findings and offering suggestions for

maintaining the security of RESTful APIs using previous

research studies.

Keywords:- API security testing; RESTful APIs; Security

challenges; API security vulnerabilities; Security testing

techniques; API security practices.

I. INTRODUCTION

Security has emerged as a significant worry due to the

extensive use of RESTful APIs in contemporary software

development. Many web and mobile apps depend on

RESTful APIs to facilitate seamless data interchange and

communication between platforms (Carlos Rodrguez et al.,

2016). These APIs are, however, susceptible to several

security risks, such as problems with authentication and

authorisation, injection attacks, and data leakage. As a
result, securing modern software applications now requires

vulnerabilities in RESTful APIs to be found and mitigated.

The goal is to provide a thorough overview of

RESTful API security testing, emphasising identifying and
mitigating common vulnerabilities (Ehsan et al., 2022). The

main objective is to list the many vulnerabilities that

RESTful APIs can experience and to analyse the tools and

methods that can be used to find and fix those issues. This

article will also look at integrating security testing into the

software development lifecycle and the recommended

practices for protecting RESTful APIs.

There is a growing need to maintain the security of

RESTful APIs as they become more widely used in

contemporary software development. Data breaches, system

outages, and reputational harm can result from failing to

identify and fix RESTful API vulnerabilities, which can

have serious repercussions. For any organisation that uses

RESTful APIs, it is crucial to comprehend the vulnerabilities

they are subject to and to establish efficient security testing
techniques (Sean B. Cleveland et al., 2020).

A. Motivation

Checking API security has become a crucial part of

developing applications. To find and fix these flaws and
guarantee compliance with applicable security standards and

best practices, security testing for RESTful APIs is required.

The difficulties of security testing for RESTful APIs, the

many kinds of security testing, and typical flaws that can be

fixed through efficient security testing are all covered in this

article.

B. Contribution

The article explains the difficulties in performing

security testing on RESTful APIs. starting by briefly

explaining RESTful APIs and their importance in the current

software development environment. And discuss the security

issues that come up while testing RESTful APIs, like input

validation, authentication, and authorization.From the

security testing and mitigation of RESTful APIs, it has been

identified that vulnerabilities that affect security
configuration include insufficient logging, faulty object-

level authorisation, asset management, faulty function-level

authorisation, and mass assignment. It concludes by

summarising the findings and offering suggestions for

maintaining the security of RESTful APIs using previous

research studies.

C. Paper organization

This paper is organized as follows: after the introduction,

section 2 Discuss RESTful API security testing aspects and

approaches. Section 3 cover the role of RESTful API in

modern software development. Section 4 discuss the

importance of security testing for RESTful APIs. Section 5

review the Different types of security testing for RESTful

APIs. Section 6 show the challenges of security testing for

RESTful APIs. Section 7 discusses the common

vulnerabilities in RESTful APIs and with approaches,
models and tools.Finally section 8 present the conclusion

and future directions.

II. RESTFUL API SECURITY TESTING

Developing web-based applications, especially web

services, has made Representational State Transfer (REST) a

prominent architectural approach. RESTful APIs are widely

used to facilitate communication between different software
applications(Costa et al., 2014). However, the increased use

of RESTful APIs has also made them an attractive target for

hackers. As a result, security testing has become a critical

aspect of the development process to ensure that RESTful

APIs are secure and safe from vulnerabilities(Yahya et al.,

2014). This section provides an overview of RESTful API

security testing, its importance, and the different types of

security testing that can be used.

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1486

Fig. 1: Distribution of papers by model, approaches, and tools used for RESTful API security testing

Here are some key aspects to consider when testing the

security of RESTful APIs:

A. Authentication

The authentication method used by the API, such as

username/password login, token-based authentication, or

OAuth 2.0 authentication, must be tested(Setiadi et al.,

2019). Testers should attempt to get around the

authentication process by accessing restricted sites without

authorisation. Additionally, testers must look for account

lockout mechanisms, brute-force assaults, and weak

passwords.

B. Authorisation

This includes putting the API's authorisation system,

which bases a user's access to resources on their role or

privilege level, to the test. Access control list (ACL)

vulnerabilities, privilege escalation vulnerabilities, and

authorisation bypass vulnerabilities should all be looked for
by testers(Modi et al., 2022).

C. Input Validation

This entails putting the input validation system of the

API to the test, which verifies the accuracy of data submitted
to the API. Common injection attacks that need to be tested

for include SQL injection and cross-site scripting (XSS)

(Hamza Ed-douibi et al., 2016). Additionally, testers should

check for input-related security flaws and file upload

vulnerabilities.

D. Output Validation

This involves putting the API's output validation system

under test, which verifies the accuracy of the data the API

returns. Cross-site request forgery (CSRF), Cross-site

scripting (XSS), and other output-related vulnerabilities

should all be tested for by testers (Compagna et al., 2018).

E. Secure Communication

This entails testing the API's communication channel to

ensure it is safe and cannot be eavesdropped on (Garg &

Dave, 2019). Testers should look for communication-related

security flaws, SSL/TLS certificate validation problems, and

other concerns.

F. Error Handling

This entails putting the API's error handling system

under test, which establishes how the API handles

exceptions and errors. Testers should check for sensitive

information-revealing error messages and other error-related

security problems (Garg & Dave, 2019).

G. Session Management

This involves testing the API's session management

system, which controls how long user sessions last and

handles them. (Ehsan et al., 2022). Testers should look for

vulnerabilities that could lead to session hijacking, session

fixation, and other security problems.

H. Third-Party Integrations

This entails putting to the test the API's integration with

outside services, which poses security issues. Testers should

check for security risks in third-party APIs and services,

such as data leakage, access control flaws, and other security

hazards(Modi et al., 2022).

I. Rate Limiting

It entails testing the API's rate-limiting mechanism,

which establishes how many requests can be sent to the API

in a specific amount of time, following (Malki et al., 2022).

Rate-limiting bypass vulnerabilities and other rate
limitation-related security problems should be tested for.

J. Logging and Monitoring

Testing the API's logging and monitoring systems, which

keep track of all API activity and notify administrators of
security events and abnormalities, is required. Testers should

check for security concerns connected to logging and

monitoring, such as log manipulation, log injection, and

other hazards (Lee et al., 2014).

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1487

Table 1: RESTful API Security Testing

Aspect of Security

Testing Approach

Authentication Test for weak authentication mechanisms, such as weak passwords or lack of multi-factor

authentication.

Authorisation Test for improper access controls, such as privilege escalation attacks or inadequate role-

based access controls.

Input Validation Test for proper validation of user inputs to prevent injection attacks, such as SQL injection or

cross-site scripting (XSS).

Error Handling Test for proper error handling, such as ensuring error messages do not reveal sensitive

information or cause application crashes.

Session Management

Tests for proper session management, such as preventing session fixation attacks or session

hijacking attacks.

API Rate Limiting

Test for proper API rate limiting to prevent denial of service (DoS) attacks or brute force

attacks.

Integration Testing

Test for security vulnerabilities in third-party APIs or services that the API interacts with.

According to a study, data from online apps can leak

even when encryption is used (Chen et al., 2010). This is

done through routes known as "side channels." It was found

by Serme et al. (2012) that the security of RESTful services

is based either on transit layer security or ad hoc security

techniques, both of which have security weaknesses. REST
APIs can be examined for security issues using a collection

of automatic security evaluations; it has been found (Ovidiu

Baniaș et al., 2021). The risk that an attacker could take

advantage of a RESTful application programming interface

weakness is alarmingly raised by these publications when

taken as a whole. Although APIs can be exploited (Macy,

2018), the effects of a hacking attempt depend on the

situation and the type of data being transferred.

III. RESTFUL API AND ITS ROLE IN MODERN

SOFTWARE DEVELOPMENT

The use of HTTP requests to access and modify data in

web-based applications is known as a RESTful API.

RESTful APIs have become integral to modern software

development due to their flexibility, scalability, and ability

to facilitate communication between different software

applications (Lablans et al., 2015). RESTful APIs give

programmers the ability to create web-based apps that are
simple to link with other software programs. RESTful APIs

use standard HTTP methods such as GET, POST, PUT, and

DELETE to access and manipulate data (Christensen, 2009).

RESTful APIs have become popular due to their ease of use,

low overhead, and ability to support different data formats.

They have become an essential part of modern software

development and are used in various domains, such as e-

commerce, finance, social media, and healthcare (Carneiro

et al., 2021).

Fig. 2: SOAP vs REST API, Source (Malik & Kim, 2017)

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1488

It is concerned with the following:

A. Separation of Concerns

The separation of client-side and server-side concerns in
RESTful APIs makes it simpler for developers to create,

implement, and manage complex applications (Padmanaban

et al., 2022). Because of this division, developers can

modify one application component without affecting the

others.

B. Scalability

Scalability refers to an API's ability to effectively

manage a high volume of requests and responses(Le-Dang

& Le-Ngoc, 2019). They are the best choice for use in large-

scale enterprise applications because of their scalability.

C. Flexibility

Since RESTful APIs are adaptable, they can be used to

send various data kinds, including text, photos, audio, and

video. Thanks to this flexibility, developers can create

various apps and services (Hästbacka et al., 2019).

D. Statelessness

RESTful APIs are stateless, which implies that every

request includes all the data required to fulfil it(Guha, 2020).

Performance is enhanced, and this statelessness facilitates

the scalability of applications.

The fact that RESTful APIs work with any

programming language that supports HTTP is one of their

main advantages (Belkhir et al., 2019). The development of

applications that can seamlessly connect is made more

straightforward. RESTful APIs adhere to a standardised set

of guidelines and restrictions, which helps to guarantee the
API's effectiveness and scalability. Utilising RESTful APIs

also allows developers to create simple applications for

other developers to consume. As other programmers can

build on top of the API to produce new applications and

services, this can promote collaboration and

creativity(Marilenaa et al., 2022).

According to the study's authors (Schreibmann &

Braun, 2015), the development process would be enhanced

by a model-driven approach in which an API is modelled

using a new formal language created expressly for this

application area at a higher level of abstraction. The source

code for the business logic and database layers, as well as

the API, can all be easily created from this model. The cost

of documenting this procedure is nonexistent, and

productivity increases along with a reduction in maintenance
expenses and an increase in quality.

IV. IMPORTANCE OF SECURITY TESTING FOR

RESTFUL APIS

A security breach in a RESTful API can result in
unauthorised access to sensitive data, loss of user trust,

financial loss, and legal consequences (Akhtar et al., 2021).

Security testing can help detect and fix vulnerabilities before

attackers exploit them. Security testing ensures that RESTful

APIs are secure, reliable, and can be trusted by their users

(Pourvahab & Ekbatanifard, 2019). Here are some reasons

why security testing is essential for RESTful APIs:

A. Protects Sensitive Sata

RESTful APIs can handle sensitive data, including user

passwords, financial data, and personal information.

Security audits can find any API flaws that might expose

this data to unauthorised users (Rivera et al., 2019).

B. Mitigates the Risk of Attacks

RESTful APIs are often used to communicate between

different systems, making them vulnerable to

attacks(Rafique et al., 2019). Security testing can identify

any weaknesses in the API that malicious actors could

exploit.

C. Ensures Compliance

Many industries like finance and healthcare have strict

data privacy and security regulations. Security testing can

ensure that RESTful APIs comply with these
regulations(Tek Raj Chhetri et al., 2022).

D. Maintains Brand Reputation

If an API is compromised, it can damage the brand

reputation of the company that owns it(Buitelaar et al.,
2018). Security testing can identify and mitigate any

vulnerabilities before they can be exploited by attackers.

RESTful APIs are exposed to various security threats

such as injection attacks, authentication and authorisation
issues, cross-site scripting (XSS), cross-site request forgery

(CSRF), and sensitive data exposure (MacDonald, 2013).

These vulnerabilities can lead to data breaches, loss of

confidential information, and damage to the organisation's

reputation. Therefore, performing security testing on

RESTful APIs is crucial to identify and mitigate these

vulnerabilities before attackers exploit them.

One of the primary reasons for the security testing of

RESTful APIs is to protect sensitive data. RESTful APIs

may handle sensitive data, such as personal, financial, or

business-critical information. Without proper security

measures in place, this data could be compromised, resulting

in severe consequences for the organisation(Karlsson et al.,

2020). Security testing helps identify vulnerabilities in the

API that could be exploited to gain access to this data.
Another important reason for the security testing of RESTful

APIs is to prevent unauthorised access. Unauthorised users

can access unsecured APIs, potentially leading to data theft

or manipulation. Security testing helps identify and

remediate such vulnerabilities by checking access controls,

authentication mechanisms, and authorisation policies

(Kornienko et al., 2021).

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1489

V. DIFFERENT TYPES OF SECURITY TESTING FOR RESTFUL APIS

Several types of security testing can be used to test the security of RESTful APIs.

Table 2: Types of security testing

Type of testing Title Reference and year

Authentication and authorisation testing Security evaluation of the OAuth 2.0 framework 2015

Input validation testing Deep Learning-Based Prediction of Test Input

Validity for RESTful APIs

2021

Parameter tempering testing Classification of Web-Service-Based Attacks and

Mitigation Techniques

2018

Session management testing Static analysis for web service security - Tools &

techniques for a secure development life cycle

2015

Penetration testing Checking Security Properties of Cloud Service
REST APIs

2020

Vulnerability scanning Automation of active reconnaissance phase: an

automated API-based port and vulnerability scanner

2021

Fuzz testing REST API Fuzzing by Coverage Level Guided

Blackbox Testing

 2021

A. Black-box testing
RESTful APIs frequently undergo black-box testing, a

sort of security testing (Martin-Lopez et al., 2020). In a

black-box test, the tester is unaware of how the system being

evaluated operates from the inside. According to Alberto

Martin-Lopez, black-box testing's objective is to find

security flaws and vulnerabilities that a potential attacker

may exploit. A variety of techniques can be used during

black-box testing. These consist of the following:

 Authentication and Authorisation Testing:

Authentication and authorisation are essential security

features that prevent unauthorised access to RESTful APIs

(Sánchez et al., 2017). The authors of the study, (Bhat

&Kansal, proposed that the open authorisation (OAuth) 2.0

industry-standard protocol for authorisation enables users to

grant a third-party website or application access to the user's
protected resources without the user having to reveal their

long-term credentials or even their identity.

As opposed to this, the researchers (Paoli&Zavattaro,

2012) showed how a single, centralised security service with
a lightweight application programming interface might

manage authentication and authorisation for dependable

RESTful services. A person must trade their information for

a token to access limited resources. The services may check

with the security provider to confirm the validity of a user's

code and any rights that have been granted to them. The

system enables fine-grained control over which resources a

specific user has access to using the role-based access

control (RBAC) paradigm.

 Input Validation Testing:

According to Rodriguez et al. (2020), input validation

testing ensures that data submitted to RESTful APIs is

validated to prevent malicious input, such as SQL injection

or cross-site scripting attacks. Input Validation is a semi-

automated device created to improve upon the current state
of insufficient and inappropriate input validation claims

study (Miller et al., 2008). Although many of the difficulties

on the web are still relatively simple, developers do not

seem to be aware of or able to address those
successfully(Danezis, 2012).

 Parameter Tampering Testing:

Testing for parameter tampering involves changing input

parameters to see if getting unauthorised access or
tampering with data is possible (Musa et al., n.d.). Parameter

tampering testing, in the authors' opinion (Atashzar et al.,

2011), can aid in locating weaknesses such as insufficient

parameter encryption or weak parameter validation.

 Session Management Testing:

The RESTful API's secure administration of user

sessions is ensured by session management testing

(Chaleshtari et al., 2023). Session fixation, session

hijacking, and short session timeout are examples of

vulnerabilities that can be found via session management

testing, as shown by the studies (DEWI, 2022).

 Boundary Testing:

This entails evaluating how the API responds to inputs

that are outside the acceptable range—for instance, testing

the API's ability to handle extremely big or minimal inputs

(Zhiwei & Zhongliang, 2020). Integer overflow

vulnerabilities or other forms of input mistakes can be found

using this technique.

 Penetration Testing:

Penetration testing is a technique for evaluating a

system's security by simulating an adversarial assault

(Sandhya et al., 2017). By spotting flaws and vulnerabilities
that an attacker could take advantage of, penetration testing

can be performed to assess the security of RESTful APIs.

Penetration testing is possible using either human or

automated techniques (Patel, 2019).

 Vulnerability Scanning:

The authors claim that it entails employing automated

tools to scan the program for known vulnerabilities (Shah &

Mehtre, 2015). The tools generate a report for the tester after

locating vulnerabilities in the application.

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1490

 Protocol Testing:

Since HTTP is the foundation of RESTful APIs, it is

critical to test how the API responds to various HTTP

methods (GET, POST, PUT, DELETE, etc.) and HTTP

status codes. This can assist in locating vulnerabilities

brought on by incorrect HTTP requests and response

handling (Xiong et al., 2021).

 Fuzz Testing:

Fuzz testing, also known as "fuzzing," is a technique for

testing software by providing unexpected or invalid input to

the system to see how it responds (IEEE Conference

Publication, 2023). A novel utility called SAGE (Scalable,

Automated, Guided Execution) uses x86 instruction-level

tracing and emulation to perform whitebox fuzzing of
random file-reading Windows apps, as found by (Atlidakis

et al., 2019). This indicates that RESTful APIs can be tested

with fuzz to discover bugs. It has been discovered by (Fertig

& Braun, 2015) that test cases for RESTful APIs can be

generated automatically by a software creator. This indicates

that taint testing can be utilised when evaluating RESTful

APIs. However, as discovered by (Klees et al., 2018),

experimental reviews of fuzz testing methods can be flawed,

resulting in inaccurate or misleading verdicts.

There are several methods for security testing RESTful

APIs, including dynamic testing, static testing, and manual

testing. To find any security flaws, dynamic testing entails

executing the APIs and examining the results (Atlidakis et

al., 2019). This method entails making different kinds of

queries to the APIs and checking the replies to make that
they adhere to the necessary security criteria. For instance, a

dynamic security testing framework for RESTful APIs was

presented by Corradini et al. in 2022. The framework

comprises several processes, such as creating a testing

environment, creating test cases, running tests, and

producing reports. The authors tested their framework on

several RESTful APIs and saw encouraging results.

On the other hand, static testing entails studying the

API's source code without actually running it. This method

is frequently used to find vulnerabilities that dynamic testing

could miss. Code review is a typical static testing technique

in which a group of developers or security specialists

examine the code to find any security flaws (Khayer et al.,

2020). The study's authors Talukder et al. (2019) developed

a static analysis tool that examines the source code of

RESTful APIs and finds security vulnerabilities using a

combination of machine learning and natural language

processing approaches. The authors had success using a real-

world API to test their solution.

In manual testing, human testers carefully examine the

APIs to find any security flaws. This method is frequently

used in conjunction with dynamic testing to find

vulnerabilities that might not be found otherwise. As an

illustration, (Martin-Lopez et al., 2020) suggested a manual

testing strategy for RESTful APIs that entails developing

test cases based on security requirements and manually

executing them. The authors successfully tested their

strategy on a real-world API and got positive results.

Despite these security testing methods' success, testing

RESTful APIs still presents several difficulties. The

complexity of RESTful APIs, which can involve several

levels and dependencies, is one of the significant difficulties.
It is challenging to guarantee that all API components are

appropriately tested due to their complexity (Laranjeiro et

al., 2021). Additionally, RESTful APIs frequently interact

with other APIs and services, increasing the complexity of

testing, according to the research (Ehsan et al., 2022). The

dynamic nature of APIs, which can lead to endpoints and

behaviours that are continually changing, presents another

difficulty. Therefore, it is crucial to maintain the testing

procedure to guarantee that all potential vulnerabilities are

found and fixed.

VI. THE CHALLENGES OF SECURITY TESTING

FOR RESTFUL APIS

RESTful APIs have become a popular means of

communication between applications and systems. They

provide internet-based exposure to web services, allowing

for system interoperability. However, the problem of

protecting the security of the APIs comes with this ease of

communication. RESTful APIs must be subject to security

testing to ensure the confidentiality, integrity, and
availability of data as well as the overall security of the

system. Vulnerabilities must be found and mitigated.

Security testing for RESTful APIs is not without its

challenges. Some of the challenges include the following:

Fig. 3: The Challenges of API Testing

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1491

A. API Complexity:

According to the author D V Kornienko (2021), RESTful

APIs can be complex, making it difficult to identify

potential vulnerabilities. APIs can constantly be evolving,

making it challenging to keep up with changes.

B. Specialised Knowledge:

As observed from the study Peng et al. (2022), Security

testing for RESTful APIs requires specialised knowledge

and skills. Developers and security testers must be familiar

with the REST architectural style, HTTP protocols, and API

security best practices.

C. Secure Transmission:

RESTful APIs transmit data over the internet, which

means that data can be intercepted and viewed by

unauthorised parties. Testing for secure transmission

involves ensuring that data is encrypted in transit using

HTTPS and that the encryption is implemented correctly (A

framework for measuring organisational information
security vulnerability, 2023).

D. Rate Limiting:

RESTful APIs can be vulnerable to denial-of-service

attacks where an attacker overwhelms the system by sending
many requests. Testing for rate limiting involves verifying

that the API can handle high volumes of requests and that

rate limits are appropriately enforced (Barabanov et al.,

2022).

E. API Abuse:

RESTful APIs can be abused by attackers who use the

API to scrape data or perform actions that are not intended.

Testing for API abuse involves identifying and mitigating

such attacks (Christensen, 2009).

F. Tool Limitations:

As observed from the studies (Nuno Realista et al .,

2022), Automated tools such as vulnerability scanners may

not be able to identify all vulnerabilities in RESTful APIs

(Lamothe et al., 2021) argues that automated tools may also

generate false positives or false negatives, making it

challenging to determine the actual state of the APIs.

G. Lack of Standardisation:

There is a lack of standardisation in RESTful API

development, making it challenging to create a standardised

testing methodology (Gill et al., 2022).

H. Lack of Expertise:

The study's authors revealed that (Aljedaani & Babar,

2021)there is a shortage of experts with the required

knowledge and skills to perform security testing on RESTful

APIs.

One of the main challenges in security testing for

RESTful APIs is the complexity of the interactions between

different system components, as observed from the studies

of (Karlsson et al., 2020). Since RESTful APIs rely on

HTTP and are stateless, they require complex interactions

between different components of the system to function

correctly. This complexity can make it challenging to

identify vulnerabilities and test the security of the system

(Ozdemir, 2020).

Another challenge observed from the studies of

(Keping Yu et al., 2021) is the use of third-party libraries

and components. RESTful APIs often rely on third-party

libraries and components to perform various tasks, such as

authentication, encryption, and validation. However, these
components may have their vulnerabilities or be

misconfigured, leading to vulnerabilities in the overall

system. Additionally, these components may be updated or

changed without notice, leading to unexpected

vulnerabilities (Qingyang Zeng et al., 2023).

Furthermore, as observed from the studies of (Mai et

al., 2020), RESTful APIs are often used in distributed

systems, which can make it challenging to test the security

of the entire system. Since RESTful APIs are stateless, they

do not maintain information about previous requests or

responses, making it challenging to test the system's overall

security. Additionally, distributed systems often have

multiple points of entry, making it challenging to identify all

potential vulnerabilities (Setiadi et al., 2019).

Finally, as highlighted from the studies of (Krishnan et

al., 2023), the increasing use of cloud computing and

virtualisation technologies can introduce additional security

challenges for RESTful APIs. Cloud providers may have

their security policies and procedures that must be followed,
and virtualisation technologies may introduce additional

abstraction layers that can make identifying vulnerabilities

challenging (Almutairy & Al-Shqeerat, 2019).

VII. COMMON VULNERABILITIES IN RESTFUL

APIS

RESTful APIs have become a popular choice for

developers due to their simplicity, flexibility, and ability to

integrate with other systems. However, the authors of the
study (A framework for measuring organisational

information security vulnerability, 2023) show that this ease

of use also creates various security challenges. RESTful

APIs are vulnerable to various attacks, which can have

severe consequences, such as data breaches, financial losses,

and reputational damage. This chapter focuses on the most

common vulnerabilities found in RESTful APIs and their

impact on the security of the system.

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1492

Table 3: Research on vulnerabilities

SR.

NO.

Vulnerabilities Reference Approach Model Tools

1 Broken Authentication 2021 No Yes Yes

2 Broken authentication and session management 2018 Yes No No

3 Broken Authentication 2021 Yes No No

4 Excessive Data Exposure 2023 Yes No Yes

5 2023 Yes Yes No

6 Lack of Resources & Rate Limiting 2019 Yes No No

7 Broken Function Level Authorisation 2021; 2022 No Yes Yes

8 Mass assignment 2023; 2020 Yes No Yes

9 Security misconfiguration 2015 Yes No yes

10 Improper asset management 2023 Yes Yes No

11 Insufficient Logging & Monitoring 2019 Yes No No

12 Injection Yes No No

A. Broken Object Level Authorisation

The broken object-level authorisation is a vulnerability

that occurs when an API does not restrict access to objects

based on the user's privileges, and this means that a user can

access and modify any object within the API, even if they do
not have the required permissions (Haddad & Malki, 2022).

Attackers can exploit this vulnerability to gain access to

sensitive data and perform unauthorised actions, as observed

in the study of (Taya et al., 2022).

The causes of this vulnerability include the lack of

proper access control mechanisms and insufficient testing of

access controls. Attackers can exploit this vulnerability by

modifying requests to access unauthorised objects (Votipka

et al., 2020). An attacker could manipulate a request to

access another user's data or escalate their privileges to

perform actions beyond their permissions.

A real-world example of this vulnerability is the

Facebook Cambridge Analytica scandal, where a third-party

app exploited the vulnerability in Facebook's API to access

and harvest user data without consent. This resulted in a

massive data breach and significantly damaged Facebook's

reputation (Jeune, 2021).

B. Broken Authentication

As observed from the study Bach-Nutman (2020),

Broken authentication is a vulnerability that occurs when an

API does not properly authenticate users, allowing attackers

to access the system without proper credentials. This

vulnerability can be exploited through various techniques,
such as brute force attacks, session hijacking, and credential

stuffing.

The causes of this vulnerability include the use of
weak or easily guessable passwords, the lack of multi-factor

authentication, and the failure to implement secure session

management; the study (Kabir & Elmedany, 2022) shows

that attackers can exploit this vulnerability by stealing user

credentials and using them to access the system.

One real-world example of this vulnerability is the

Equifax data breach, where attackers exploited a

vulnerability in Equifax's API to gain access to sensitive

customer data. This breach compromised the personal

information of over 143 million individuals and resulted in a

significant loss of trust and financial damage for Equifax

(Dennis et al., 2020).

C. Excessive Data Exposure

The authors of the study Pan et al. (2023) showed that

Excessive data exposure is a vulnerability that occurs when

an API exposes more data than necessary, such as sensitive

data or user credentials; attackers can exploit this

vulnerability to gain access to sensitive data or perform

unauthorised actions.

The causes of this vulnerability include the lack of

proper data sanitisation and validation, the failure to

implement proper access controls, and the use of insecure
data storage; attackers can exploit this vulnerability by

sending specially crafted requests to access sensitive data

(Khan et al., 2021).

D. Lack of Resources & Rate Limiting
Lack of resources and rate limiting is a vulnerability that

occurs when an API does not appropriately limit the number

of requests that can be made, allowing attackers to

overwhelm the system with requests and cause denial-of-

service attacks (Sharieh & Ferworn, Securing APIs and

Chaos Engineering, 2021).

The causes of this vulnerability include the failure to

implement rate limiting, the use of weak or easily guessable

API keys, and the lack of monitoring for unusual traffic

patterns; attackers can exploit this vulnerability by sending a

large number of requests to the API, causing the system to

become overloaded and unresponsive (Azad et al., 2020).

One real-world example of this vulnerability is the

Twitter API outage, where a group of attackers overloaded

the API with requests, causing it to become unavailable for

several hours (A, 2023).

E. Broken Function Level Authorisation:

As observed from the studies (Haddad & Malki, 2022),

Broken function level authorisation is a vulnerability that

occurs when an API does not restrict access to specific

functions or operations based on user roles or permissions,

the authors (Fredj et al., 2021) showed that this vulnerability

could allow attackers to perform unauthorised actions on the
system, such as deleting or modifying sensitive data, the

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1493

vulnerability is typically caused by poor implementation of

access control mechanisms, such as failing to check user

permissions before allowing them to act.

Several studies have proposed diverse techniques to

detect and mitigate broken function-level authorisation

vulnerabilities in RESTful APIs. For example, a study by

(Barabanov et al., 2022) proposed an access control testing

approach that uses a combination of static and dynamic

analysis techniques to identify vulnerabilities in APIs. The

approach involves analysing the source code of the API to

identify potential vulnerabilities and then using dynamic

analysis techniques to test the API's behaviour under

different scenarios.

F. Mass Assignment:

The author of the study D V Kornienko (2021)discussed

that mass assignment is a vulnerability that occurs when an

API allows users to modify multiple attributes of an object

in a single request. Attackers can exploit this vulnerability to
modify sensitive data or gain unauthorised access to the

system. The vulnerability is typically caused by poor

validation of user input or a lack of proper access control

mechanisms (Sidra & Michael, 2023).

To mitigate mass assignment vulnerabilities, several

researchers have proposed different techniques. For

example, a study by Gantikow et al. (2020) proposed a rule-

based approach to detect and prevent mass assignment

vulnerabilities in RESTful APIs. The approach involves

defining rules that specify which attributes of an object can

be modified by different user roles or permissions. When a

request is received, the system checks the user's permissions

and applies the relevant rules to determine which attributes

can be modified.

An attacker can exploit Mass Assignment vulnerability

by sending specially crafted requests that include additional

parameters or by modifying the values of existing

parameters. As shown from the studies (Al-Jody, 2021), an

attacker could modify a user's account information by
sending a request that includes the "isAdmin" field set to

"true". The attacker could gain administrative privileges if

the API does not correctly validate this parameter.

One real-world example of a mass Assignment
vulnerability was discovered in 2011 in the Ruby on Rails

framework. This vulnerability allowed attackers to modify

any database record by sending specially crafted requests.

The vulnerability affected thousands of websites and

applications and was considered one of the most severe

vulnerabilities ever discovered in the framework (Park et al.,

2021).

G. Security Misconfiguration:
Security misconfiguration is a vulnerability that occurs

when an API is configured with insecure settings, such as

default passwords or unnecessary features enabled. This

vulnerability can allow attackers to gain unauthorised access

to the system or perform other malicious actions (Aljabri,

Aldossary, Al-Homeed, Alhetelah, & Althubian, 2022). The

vulnerability is typically caused by poor configuration

management practices, such as failing to disable

unnecessary features or using default passwords (Loureiro,

2021).

As observed from the studies of Rahman et al. (2023),

Security Misconfiguration occurs when the API allows

unrestricted access to specific resources or functionality.

This can happen when developers do not properly configure

access controls or when they do not properly configure the
API's authentication mechanisms. An attacker can exploit

this vulnerability by accessing sensitive data or by

performing actions on behalf of another user.

One real-world example of Security Misconfiguration
occurred in 2017 when an unprotected Amazon Web

Services (AWS) S3 bucket was discovered. The bucket

contained sensitive data belonging to the US Army and was

accessible to anyone who had the URL. This vulnerability

was caused by the misconfiguration of the S3 bucket and

highlighted the importance of proper configuration of cloud-

based services (Jäger, 2021).

H. Injection:

As observed from the studies of Hasan & Rahman

(2023), Injection vulnerabilities occur when an attacker can

inject malicious code into an API, such as SQL or code

injection. This vulnerability can allow attackers to execute

arbitrary code on the system or access sensitive data. The

vulnerability is typically caused by poor input validation or a

lack of proper access control mechanisms.

To mitigate injection vulnerabilities, several

researchers have proposed different techniques. For

example, a study by Erik Trickel et al. (2022) proposed a

technique that uses a combination of static and dynamic
analysis to detect injection vulnerabilities in RESTful APIs.

The approach involves analysing the source code of the API

to identify potential injection points and then using dynamic

analysis techniques to test the API's behaviour under

different scenarios.

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1494

Fig. 4: Usage of tools, frameworks, and approaches for vulnerabilities testing

I. Improper Assets Management:

Improper assets management is a vulnerability that

occurs when an API does not properly manage its assets,

such as files or resources. This vulnerability can allow

attackers to access or modify sensitive data or resources

(Idris, Syarif, & Winarno, Web Application Security

Education Platform Based on OWASP API Security Project,

2022). Poor access control mechanisms or improper asset

management practices typically cause vulnerability.

The Capital One breach in 2019, where a hacker

gained unauthorised access to the personal data of over 100

million customers. The vulnerability was caused by a

misconfigured firewall, which allowed the hacker to exploit
a broken authentication and session management

vulnerability (Khan et al., 2022). Attackers can exploit

insufficient authorisation to access sensitive data, perform

unauthorised actions, or manipulate the behaviour of the

system. This can lead to severe consequences, such as data

breaches, financial losses, or reputational damage. The

consequences of not detecting and mitigating vulnerabilities

in RESTful APIs can be severe. They can result in the loss

of sensitive data, financial losses, and damage to the

reputation of the organisation. For example, the Equifax

breach resulted in a settlement of $700 million, and the

Capital One breach resulted in a settlement of $80 million.
In addition to financial losses, organisations may also face

legal penalties and damage to their reputation (Okafor,

2021).

Several researchers have proposed different techniques

to detect and mitigate insufficient authorisation

vulnerabilities in RESTful APIs. (Padma & Srinivasan,

2023) proposed a novel method that analyses access control

policies specified in OAuth 2.0 and OpenID Connect to

detect potential authorisation issues. Their approach

involves analysing the relationships between different

entities in the authorisation process, such as resource

servers, clients, and authorisation servers, to identify

potential authorisation conflicts or inconsistencies. The

authors also propose an automated tool that implements their

approach and can be integrated into the API testing

workflow.

Using machine learning techniques to automatically

find and fix authorisation flaws in RESTful APIs is another

strategy suggested by Sharieh and Ferworn (Securing APIs

and Chaos Engineering, 2021). Their strategy is looking

through API request logs to find patterns of unusual
behaviour that might point to authorisation problems. To

find these patterns and send out notifications when possible

vulnerabilities are found, the authors combine supervised

and unsupervised learning approaches. Additionally, they

suggest a mitigation technique that can be applied to deny

requests coming from malicious users or IP addresses

automatically.

In addition to insufficient authorisation vulnerabilities,

other common vulnerabilities in RESTful APIs include

injection attacks, broken authentication and session

management, and insecure data storage. Injection attacks,

such as SQL injection and cross-site scripting (XSS), can be

particularly damaging and are often used by attackers to gain

access to sensitive data or take control of the system (Idris,

Syarif, & Winarno, Development of Vulnerable Web
Application Based on OWASP API Security Risks, 2021),

whereas observed from the studies of (Gill et al., 2022)

Broken authentication and session management

vulnerabilities, on the other hand, can allow unauthorised

users to access protected resources or perform actions on

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1495

behalf of legitimate users. Insecure data storage

vulnerabilities can result in sensitive data being exposed or

stolen, which can have severe consequences for both users

and the organisation.

Researchers have suggested several strategies to

identify and address these vulnerabilities, including static

and dynamic analysis techniques, vulnerability scanning

tools, and secure coding practices. For instance, Cao et

al.(2020) proposed a dynamic analysis method that takes

advantage of symbolic execution to create test cases for

RESTful APIs and find injection vulnerabilities. Their

strategy entails modelling the API as a finite state machine

and producing constraints that accurately represent the API's

behaviour. The authors also suggest a mitigating method that
makes use of runtime monitors to find and deny requests

that go against the restrictions.

The use of vulnerability scanning tools to

automatically identify and prioritise vulnerabilities in
RESTful APIs is another strategy suggested by (Jorge Reyes

et al., 2022). To find potential vulnerabilities, they use

analysis of the API documentation and source code, grading

them according to impact and severity. To increase the

precision of the detection process, the authors also suggest a

feedback mechanism that enables developers to offer more

information or context about particular vulnerabilities.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In conclusion, common RESTful API vulnerabilities

and their potential effects on system security have been

found through security testing and mitigation of RESTful

APIs. These flaws include faulty authentication, faulty

object-level authorisation, excessive data exposure,

insufficient resources and rate limiting, faulty function-level

authorisation, mass assignment, faulty security

configuration, injection, faulty asset management, and

insufficient logging and monitoring. Along with instances of

actual attacks that make use of these vulnerabilities, each

vulnerability's causes and techniques of exploitation have
also been covered.

This article's discussion on RESTful API security

testing and mitigation also highlights the need for

appropriate testing and mitigation procedures to prevent
security breaches. Finally, the article has outlined future

directions for further study in this area, including applying

machine learning algorithms for vulnerability detection and

creating automated security testing tools. There have also

been discussions of open research issues like the lack of

standardisation in RESTful API security testing and the

complexity of finding complicated vulnerabilities.

This article's conclusion emphasises the significance of

thorough testing and mitigation strategies for securing

RESTful APIs. It highlights prospective topics for more

research and offers insightful information on the state of this

field's research at the moment.

REFERENCES

[1.] (2023, March 17). Retrieved from A framework for

measuring organisational information security
vulnerability:

http://dspace.library.uvic.ca/handle/1828/11300

[2.] A, H. (2023, March 17). Twitter suffers large outages

on the web and mobile. Retrieved from

https://www.theguardian.com/technology/2016/jan/19

/twitter-down-over-web-and-mobile

[3.] Akhtar, D. N., Kerim, B., Perwej, D. Y., Tiwari, A.,

& Praveen, D. S. (2021). A Comprehensive Overview

of Privacy and Data Security for Cloud Storage.

International Journal of Scientific Research in

Science Engineering and Technology.
[4.] Aljabri, M., Aldossary, M., Al-Homeed, N.,

Alhetelah, B., & Althubian, M. (2022). Testing and

Exploiting Tools to Improve OWASP Top Ten

Security Vulnerabilities Detection. 14th International

Conference on Computational Intelligence and

Communication Networks (CICN), 797-803.

[5.] Aljedaani, B., & Babar, M. A. (2021). Challenges

With Developing Secure Mobile Health Applications:

Systematic Review. JMIR mHealth and uHealth,

15654.

[6.] Al-Jody, T. (2021). Barricade: A Novel High-

Performance Computing User and Security
Management System Augmented with Machine

Learning Technology.

[7.] Almutairy, N. M., & Al-Shqeerat, K. H. (2019). A

Survey on Security Challenges of Virtualization

Technology in Cloud Computing. International

Journal of Computer Science & Information

Technology (IJCSIT).

[8.] Atashzar, H., Torkaman, A., Bahrololum, M., &

Tadayon, M. H. (2011). A survey on web application

vulnerabilities and countermeasures. 6th International

Conference on Computer Sciences and Convergence
Information Technology (ICCIT), 647-652.

[9.] Atlidakis, V., Godefroid, P., & Polishchuk, M.

(2019). RESTler: Stateful REST API Fuzzing.

IEEE/ACM 41st International Conference on

Software Engineering (ICSE), pp. 748–758.

[10.] Azad, B. A., Starov, O., Laperdrix, P., & Nikiforakis,

N. (2020). Web Runner 2049: Evaluating Third-Party

Anti-bot Services. Detection of Intrusions and

Malware, and Vulnerability Assessment: 17th

International Conference, DIMVA 2020, Lisbon,

Portugal, June 24–26, 2020, Proceedings 17, 135-
159.

[11.] Bach-Nutman, M. (2020). Understanding The Top 10

OWASP Vulnerabilities. arXiv preprint arXiv,

2012.09960.

[12.] Barabanov, A., Dergunov, D., Makrushin, D., &

Teplov, A. (2022). Automatic detection of access

control vulnerabilities via API specification

processing. arXiv preprint arXiv, 2201.10833.

[13.] Belkhir, A., Abdellatif, M., Tighilt, R., Moha, N., &

Guéhén, Y.-G. (2019). An Observational Study on the

State of REST API Uses in Android Mobile

Applications. IEEE/ACM 6th International

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1496

Conference on Mobile Software Engineering and

Systems (MOBILESoft), 66-75.

[14.] Bhat, P. K., & Kansal, R. (n.d.). Development of

RESTful Web API using Token-based OAuth 2.0

Authorisation. International Journal of Engineering

Research.

[15.] Buitelaar, P., Wood, I. D., Negi, S., Arcan, M., &

McCrae, J. P. (2018). MixedEmotions: An Open-

Source Toolbox for Multimodal Emotion Analysis.

IEEE Transactions on Multimedia, 2454-2465.
[16.] Cao, C., Guan, L., Ming, J., & Liu, P. (2020). Device-

agnostic Firmware Execution is Possible: A Concolic

Execution Approach for Peripheral Emulation.

Annual Computer Security Applications Conference,

746-759.

[17.] Carlos Rodríguez et al. (2016). REST APIs: A Large-

Scale Analysis of Compliance with Principles and

Best Practices. Web Engineering: 16th International

Conference, ICWE 2016, Lugano, Switzerland, June

6-9, 2016. Proceedings 16, 21-39.

[18.] Carneiro, G., Toniolo, A., Ncenta, M. A., & Quigley,

A. J. (2021). Text vs Graphs in Argument Analysis.
IEEE Symposium on visual languages and human-

centric computing (VL/HCC), 1-9.

[19.] Chaleshtari, N. B., Pastore, F., Goknil, A., & Briand,

L. C. (2023). Metamorphic Testing for Web System

Security. IEEE Transactions on Software

Engineering.

[20.] Chen, S., Wang, R., Wang, X., & Zhang, K. (2010).

Side-Channel Leaks in Web Applications: A Reality

Today, a Challenge Tomorrow. IEEE Symposium on

Security and Privacy, 191-206.

[21.] Christensen, J. H. (2009). Using RESTful web
services and cloud computing to create next-

generation mobile applications. Proceedings of the

24th ACM SIGPLAN conference companion on

Object-oriented programming systems languages and

applications, 627-634.

[22.] Compagna, L., Guilleminot, P., & Brucker, A. D.

(2018). Business Process Compliance via Security

Validation as a Service. IEEE sixth international

conference on software testing, Verification, and

Validation, 455-462.

[23.] Corradini, D., Zampieri, A., Pasqua, M., Viglianisi,

E., Dallago, M., & Ceccato, M. (2022). Automated
black-box testing of nominal and error scenarios in

RESTful APIs. Software Testing, Verification and

Reliability, 1808.

[24.] Costa, B., Pires, P. F., Delicato, F. C., & Merson, P.

(2014). Evaluating a Representational State Transfer

(REST) Architecture: What is the Impact of REST in

My Architecture? IEEE/IFIP Conference on Software

Architecture, 105-114.

[25.] D V Kornienko, S. V. (2021). The Single Page

Application architecture when developing secure

Web services. Journal of Physics: Conference Series,
012065.

[26.] Danezis, G. (2012). Financial Cryptography and Data

Security. Springer Berlin Heidelberg.

[27.] Dennis, K., Alibayev, M., & Ligatti, J. (2020).

Cybersecurity Vulnerabilities in Mobile Fare

Payment Applications: A Case Study. Transportation

Research Record, pp. 616–624.

[28.] DEWI, B. T. (2022). Web Security Compliance To

Owasp And Sans Standard.

[29.] Ehsan, A., Abuhaliqa, M. A., Catal, C., & Mishra, D.

(2022). RESTful API Testing Methodologies:

Rationale, Challenges, and Solution Directions.

Applied Sciences, 12(9), 4369.

[30.] Fertig, T., & Braun, P. (2015). Model-driven Testing

of RESTful APIs. Proceedings of the 24th
International Conference on World Wide Web, 1497-

1502.

[31.] Fredj, O. B., Cheikhrouhou, O., Krichen, M., Hamam,

H., & Derhab, A. (2021). An OWASP Top Ten

Driven Survey on Web Application Protection

Methods. Risks and Security of Internet and Systems:

15th International Conference, CRiSIS 2020, Paris,

France, November 4–6, 2020, Revised Selected

Papers 15, 235-252.

[32.] Gantikow, H., Reich, C., Knahl, M., & Clarke, N.

(2020). Rule-Based Security Monitoring of

Containerized Environments. Cloud Computing and
Services Science: 9th International Conference,

CLOSER 2019, Heraklion, Crete, Greece, 66-86.

[33.] Garg, H., & Dave, M. (2019). Securing IoT Devices

and SecurelyConnecting the Dots Using REST API

and Middleware. 4th International Conference on

Internet of Things: Smart Innovation and Usages, pp.

1–6.

[34.] Gill, S. S., Sharma, B., Bansal, V., Sharma, K., &

Goyal, A. (2022). Vulnerability Exploiter for Web

Applications. 2nd International Conference on

Innovative Practices in Technology and Management
(ICIPTM), pp. 292–299.

[35.] Guha, S. (2020). A Comparative Study Between

Graph-QL & Restful Services in API Management of

Stateless Architectures. International Journal on Web

Service Computing (IJWSC), 11(2).

[36.] Haddad, R., & Malki, R. E. (2022). OpenAPI

Specification Extended Security Scheme: A method

to reduce the prevalence of Broken Object Level

Authorization. arXiv preprint arXiv, 2212.06606.

[37.] Hamza Ed-douibi et al. (2016). EMF-REST:

generation of RESTful APIs from models.

Proceedings of the 31st Annual ACM Symposium on
Applied Computing, 1446-1453.

[38.] Hasan, M. A., & Rahman, M. M. (2023). Minimise

Web Applications vulnerabilities through the early

Detection of CRLF Injection. arXiv preprint arXiv,

2303.02567.

[39.] Hästbacka, D., Halme, J., Larrañaga, M., More, R., &

Mesiä, H. (2019). Dynamic and Flexible Data

Acquisition and Data Analytics System Software

Architecture. IEEE SENSORS, 1-4.

[40.] Idris, M., Syarif, I., & Winarno, I. (2021).

Development of Vulnerable Web Application Based
on OWASP API Security Risks. International

Electronics Symposium (IES), 190-194.

[41.] Idris, M., Syarif, I., & Winarno, I. (2022). Web

Application, Security Education Platform, Based on

OWASP API Security Project. EMITTER

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1497

International Journal of Engineering Technology,

246-261.

[42.] IEEE Conference Publication. (2023, March 17).

Retrieved from Web application fuzz testing:

https://ieeexplore.ieee.org/abstract/document/828589

3?casa_token=x2Oe_U-

Y0DkAAAAA:Pd1zA1IRCO5LKa1iugF_V4iCwPrT

bnoCnoDhkD0WoFm5TMKHtLjKsiHD9SSxHsFkCz

sKeKcjYhIbvBI

[43.] Jäger, A. (2021). Finding and evaluating the effects of
improper access control in the Cloud.

[44.] Jeune, M. L. (2021). Facebook and the Cambridge

Analytica Scandal: Privacy and Personal Data

Protection in Canada. Curve. Carleton.

[45.] Jorge Reyes et al. (2022). An Environment-Specific

Prioritisation Model for Information-Security

Vulnerabilities Based on Risk Factor Analysis.

Electronics, 1334.

[46.] Kabir, M. A., & Elmedany, W. (2022). An Overview

of the Present and Future of User Authentication. 4th

IEEE Middle East and North Africa

COMMunications Conference (MENACOMM), 10-
17.

[47.] Karlsson, S., Čaušević, A., & Sundmark, D. (2020).

QuickREST: Property-based Test Generation of

OpenAPI-Described RESTful APIs. IEEE 13th

International Conference on Software Testing,

Validation and Verification (ICST), 131-141.

[48.] Keping Yu et al. (2021). Blockchain-Enhanced Data

Sharing With Traceable and Direct Revocation in

IIoT. IEEE Transactions on industrial informatics,

7669-7678.

[49.] Khan, F., Kim, J. H., Mathiassen, L., & Moore, R.
(2021). DATA BREACH MANAGEMENT: AN

INTEGRATED RISK MODEL. Information &

Management, 103392.

[50.] Khan, S., Kabanov, I., Hua, Y., & Madnick, S.

(2022). A Systematic Analysis of the Capital One

Data Breach: Critical Lessons Learned. ACM

Transactions on Privacy and Security, 1-29.

[51.] Khayer, A. A., Almomani, I., & Elkawlak, K. (2020).

ASAF: Android Static Analysis Framework. First

International Conference of Smart Systems and

Emerging Technologies, 197-202.

[52.] Klees, G., Ruef, A., Cooper, B., Wei, S., & Hicks, M.
(2018). Evaluating Fuzz Testing. Proceedings of the

2018 ACM SIGSAC conference on computer and

communications security, 2123-2138.

[53.] Kornienko, D. V., Mishina, S. V., Shcherbatykh, S.

V., & Melnikov, M. O. (2021). Principles of securing

RESTful API web services developed with Python

frameworks. Journal of Physics: Conference Series,

032016.

[54.] Krishnan, P., Jain, K., Aldweesh, A., Prabu, P., &

Buyya, R. (2023). OpenStackDP: a scalable network

security framework for SDN-based OpenStack cloud
infrastructure. Journal of Cloud Computing, p. 26.

[55.] Lablans, M., Borg, A., & Ückert, F. (2015). A

RESTful interface to pseudonymisation services in

modern web applications. BMC medical informatics

and decision making, 1-10.

[56.] Lamothe, M., Li, H., & Shang, W. (2021). Assisting

Example-Based API Misuse Detection via

Complementary Artificial Examples. IEEE

Transactions on Software Engineering, pp. 3410–

3422.

[57.] Laranjeiro, N., Agnelo, J., & Bernardino, J. (2021). A

Black Box Tool for Robustness Testing of REST

Services. IEEE Access, 24738-24754.

[58.] Le-Dang, Q., & Le-Ngoc, T. (2019). Scalable

Blockchain-based Architecture for Massive IoT
Reconfiguration. IEEE Canadian Conference of

Electrical and computer engineering (CCECE), 1-4.

[59.] Lee, S., Jo, J.-Y., & Kim, Y. (2014).

ENVIRONMENTAL SENSOR MONITORING

WITH SECURE RESTFUL WEB SERVICE.

International Journal of Services Computing, 30-42.

[60.] Loureiro, S. (2021). Security misconfigurations and

how to prevent them. Network Security, pp. 13–16.

[61.] MacDonald, N. (2013). Time lags in biological

models. Springer Science & Business Media.

[62.] Macy, J. (2018). API security: Whose job is it

anyway? Network Security, pp. 6–9.
[63.] Mai, P. X., Pastore, F., Goknil, A., & Briand, L.

(2020). Metamorphic Security Testing for Web

Systems. IEEE 13th International Conference on

Software Testing, Validation, and Verification (ICST),

pp. 186–197.

[64.] Malik, S., & Kim, D.-H. (2017). A comparison of

RESTful vs SOAP web services in actuator networks.

2017 ninth international conference on Ubiquitous

and future networks (ICUFN), 753-755.

[65.] Malki, A. E., Zdun, U., & Pautasso, C. (2022). Impact

of API Rate Limit on Reliability of Microservices-
Based Architectures. IEEE International Conference

on Service-Oriented System Engineering (SOSE), 19-

28.

[66.] Marilenaa, D., Ivana, H., Silvioa, P., & Davida, S.

(2022). Creating RESTful APIs over SPARQL

endpoints using RAMOSE. Semantic Web, 195-213.

[67.] Martin-Lopez, A., Segura, S., & Ruiz-Cortés, A.

(2020). RESTest: Black-Box Constraint-Based

Testing of RESTful Web APIs. Service-Oriented

Computing: 18th International Conference, ICSOC

2020, Dubai, United Arab Emirates, December 14–

17, 2020, Proceedings 18, 459-475.
[68.] Miller, J., Zhang, L., Ofuonye, E., & Smith, M.

(2008). The Theory and Implementation of

InputValidator: A Semi-Automated Value-Level

Bypass Testing Tool. International Journal of

Information Technology and Web Engineering

(IJITWE), pp. 28–45.

[69.] Modi, B., Chourasia, U., & Pandey, R. (2022).

Design and implementation of RESTFUL API-based

model for vulnerability detection and mitigation. IOP

Conference Series: Materials Science and

Engineering, 012010.
[70.] Musa, A., Empakeris, M., Chan, V., & Chan, &. Y.

(n.d.). Security Assessment of istline Market Web

Application.

[71.] Nuno Realista et al . (2022). Improving Android

Application Quality Through Extendable, Automated

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1498

Security Testing. Emerging Trends in Cybersecurity

Applications, 251-274.

[72.] Okafor, R. (2021). Cybersecurity Due Diligence in

Mergers & Acquisitions Transactions. Available at

SSRN, 3915861.

[73.] Ovidiu Baniaș et al. (2021). Automated Specification-

Based Testing of REST APIs. Sensors, 5375.

[74.] Ozdemir, E. (2020). A General Overview of RESTful

Web Services. Applications and approaches to

object-oriented software design: emerging research
and opportunities, pp. 133–165.

[75.] Padma, P., & Srinivasan, S. (2023). DAuth—

Delegated Authorization Framework for Secured

Serverless Cloud Computing. Wireless Personal

Communications, pp. 1–21.

[76.] Padmanaban, R., Thirumaran, M., Anitha, P., &

Moshika, A. (2022). Computability evaluation of

RESTful API using Primitive Recursive Function.

Journal of King Saud University-Computer and

Information Sciences, pp. 457–467.

[77.] Pan, L., Cohney, S., Murray, T., & Pham, V.-T.

(2023). Detecting Excessive Data Exposures in Web
Server Responses with Metamorphic Fuzzing. arXiv

preprint arXiv, 2301.09258.

[78.] Paoli, D., F., P. E., & Zavattaro, G. (2012). Service-

oriented and Cloud Computing: First European

Conference, ESOCC 2012, Bertinoro, Italy,

September 19-21, 2012, Proceedings (Vol. 7592).

Springer.

[79.] Park, D. B., Li, X., Shahhosseini, A. M., & Tsay, L.-

S. (2021). A static code analysis-based mathematical

model-driven vulnerability risk assessment

framework for health information applications in the
Cloud. International Journal of Forensic Engineering

and Management, 179-208.

[80.] Patel, K. (2019). A Survey on Vulnerability

Assessment & Penetration Testing for Secure

Communication. 3rd International Conference on

Trends in Electronics and Informatics (ICOEI), pp.

320–325.

[81.] Peng, C., Gao, Y., & Yang, P. (2022). Automated

Server Testing: An Industrial Experience Report.

IEEE International Conference on Software

Maintenance and Evolution (ICSME), 519-522.

[82.] Pourvahab, M., & Ekbatanifard, G. (2019). Digital
Forensics Architecture for Evidence Collection and

Provenance Preservation in IaaS Cloud Environment

Using SDN and Blockchain Technology. IEEE

Access, 153349-153364.

[83.] Qingyang Zeng et al. (2023). Full-stack vulnerability

analysis of the cloud-native platform. Computers &

Security, 103173.

[84.] Rafique, W., He, X., Liu, Z., Sun, Y., & Dou, W.

(2019). CFADefense: A Security Solution to Detect

and Mitigate Crossfire Attacks in Software-Defined

IoT-Edge Infrastructure. IEEE 21st International
Conference on High-Performance Computing and

Communications; IEEE 17th International

Conference on Smart City; IEEE 5th International

Conference on Data Science and Systems

(HPCC/SmartCity/DSS), 500-509.

[85.] Rahman, A., Shamim, S. I., & Bose, D. B. (2023).

Security Misconfigurations in Open Source

Kubernetes Manifests: An Empirical Study. ACM

Transactions on Software Engineering and

Methodology.

[86.] Rivera, D., García, A., Martín-Ruiz, M. L., &

Alarcos, B. (2019). Secure Communications and

Protected Data for an Internet of Things Smart Toy

Platform. IEEE Internet of Things Journal, 3785-

3795.
[87.] Rodríguez, G. E., Torres, J. G., Flores, P., &

Benavides, D. E. (2020). Cross-site scripting (XSS)

attacks and mitigation: A survey. Computer

Networks, 106960.

[88.] Sánchez, Y. K., Demurjian, S. A., & Baihan, M. S.

(2017). Achieving RBAC on RESTful APIs for

Mobile Apps Using FHIR. 2017 5th IEEE

International Conference on Mobile Cloud

Computing, Services, and Engineering

(MobileCloud), 139-144.

[89.] Sandhya, S., Purkayastha, S., Joshua, E., & Deep, A.

(2017). Assessment of website security by penetration
testing using Wireshark. 4th International Conference

on Advanced Computing and Communication Systems

(ICACCS), 1-4.

[90.] Schreibmann, V., & Braun, P. (2015). Model-driven

development of RESTful APIs. International

Conference on Web Information Systems and

Technologies, 5-14.

[91.] Sean B. Cleveland et al. (2020). Tapis API

Development with Python: Best Practices In

Scientific REST API Implementation: Experience

implementing a distributed Stream API. Practice and
Experience in Advanced Research Computing, pp.

181–187.

[92.] Serme, G., Oliveira, A. S., Massiera, J., & Roudier,

Y. (2012). Enabling Message Security for RESTful

Services. IEEE 19th International Conference on

Web Services, 114-121.

[93.] Setiadi, D. R., Najib, A. F., Rachmawanto, E. H., &

Sari, C. A. (2019). A Comparative Study MD5 and

SHA1 Algorithms to Encrypt REST API

Authentication on Mobile-based Application.

International Conference on Information and

Communications Technology (ICOIACT), 206-211.
[94.] Shah, S., & Mehtre, B. M. (2015). An overview of

vulnerability assessment and penetration testing

techniques. Journal of Computer Virology and

Hacking Techniques, 27-49.

[95.] Sharieh, S., & Ferworn, A. (2021). Securing APIs and

Chaos Engineering. IEEE Conference on

Communications and Network Security (CNS), 290-

294.

[96.] Sharieh, S., & Ferworn, A. (2021). Securing APIs and

Chaos Engineering. IEEE Conference on

Communications and Network Security (CNS), 290-
294.

[97.] Sidra, A., & Michael, M. (2023). A framework for

privacy-aware and secure decentralised data storage.

Computer Science and Information Systems.

[98.] Talukder, M. A., Shahriar, H., Qian, K., Rahman, M.,

& Ahamed, S. I. (2019). DroidPatrol: A Static

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY1879 www.ijisrt.com 1499

Analysis Plugin For Secure Mobile Software

Development. IEEE 43rd annual computer software

and applications conference (COMPSAC), pp. 565–

569.

[99.] Taya, T., Hanada, M., Murakami, Y., Waseda, A.,

Ishida, Y., & M, T. (2022). An Automated

Vulnerability Assessment Approach for WebAPI that

Considers Requests and Responses. 24th

International Conference on Advanced

Communication Technology (ICACT), 423-430.
[100.] Tek Raj Chhetri et al. (2022). Data Protection by

Design Tool for Automated GDPR Compliance

Verification Based on Semantically Modeled

Informed Consent. Sensors, 2763.

[101.] Votipka, D., Fulton, K. R., Parker, J., Hou, M.,

Mazurek, M. L., & Hicks, M. (2020). Understanding

security mistakes, developers make Qualitative

analysis from Build It, Break It, Fix It. USENIX

Security Symposium (USENIX Security 20), pp. 109–

126.

[102.] Xiong, H., Jin, C., Alazab, M., Yeh, K.-H., & Wang,

H. (2021). On the Design of Blockchain-Based
ECDSA With Fault-Tolerant Batch Verification

Protocol for Blockchain-Enabled IoMT. IEEE

Journal of Biomedical and health informatics, 1977-

1986.

[103.] Yahya, F., Chang, V., Walters, R., & Wills, G.

(2014). Security Challenges in Cloud Storages. IEEE

6th International Conference on Cloud Computing

Technology and Science, pp. 1051–1056.

[104.] Zhiwei, L., & Zhongliang, P. (2020). The Realisation

of Integrity Test of Boundary-Scan Structure. IEEE

International Conference on Artificial Intelligence
and Computer Applications (ICAICA), pp. 722–724.

http://www.ijisrt.com/

