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Abstract:- This paper presents a summary of the various 

attacks that have been discovered on the implementation 

of Elliptic Curve Cryptography (ECC) in SageMath, a 

widely used open-source mathematics software. ECC is a 

popular method for providing secure communication 

and is used in a variety of applications, such as secure 

key exchange, digital signatures, and more. However, the 

implementation of ECC in real life has been found to 

have several vulnerabilities that could potentially be 

exploited by attackers. This paper will look at the 

various attacks that have been found and how they affect 

the safety of ECC-based systems. 
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I. INTRODUCTION TO ELLIPTIC CURVES 

 

A Weierstrass equation is a homogeneous 

equation, 𝐹(𝑋, 𝑌, 𝑍)  =  𝑌2𝑍 + 𝑎1𝑋𝑌𝑍 + 𝑎3𝑌𝑍2 − 𝑋3 −
𝑎2𝑋2𝑍 − 𝑎6𝑍3 , where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 are constants which 

belong to its algebraic closure. An elliptic curve E is defined 

to be a set of solutions to 𝐹(𝑋, 𝑌, 𝑍)=0 in the projection of a 

plane. 

  

The generalized Weierstrass equation is the expression 

of the generic form of an elliptic curve. 𝐸 ∶  𝑦2 + 𝑎1𝑥𝑦 +
𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6, elliptic curve (E) defined 

over a finite field K. 

  

However in this paper, I will constantly work with the 

reduced form of the elliptic curve, which is 𝐸 ∶  𝑦2 = 𝑥3 +
𝐴𝑥 + 𝐵, where A and B are constants. This simplified 
equation is called the Weierstrass equation of an elliptic 

curve. The variables x, y and the constants A, B lie in the 

finite field of form Fp and Fq , where p is prime number and  

𝑞 = 𝑝𝑘 , where  𝑘 ≥  1. 

  

All the points on an elliptic curve lies in, 𝐸(𝕃)  =
 {∞}  ∪ {(𝑥, 𝑦)  ∈ 𝕃 × 𝕃 | 𝑦2  =  𝑥3 + 𝐴𝑥 + 𝐵}  

  

Generally there is a condition which an elliptic curve 

has to fulfill. In elliptic curves we do not allow singular 

points or multiple roots. So, one of the way to check a given 

curve is an elliptic curve or not, is to check whether the 

curve satisfies the following condition or not, 𝛥 = 4𝐴3 +
27𝐵2  ≠ 0. 

  

There are curves which can be simplified when p = 2 

or 3; they will have different properties but we will not be 

dealing with these cases here. 

 

II. GROUP LAWS & POINT ADDITION 

 
It is well known that an abelian group is formed when 

certain additions are made to the points on an elliptic curve. 

Give the Weierstrass equation as the base of the elliptic 

curve E.The addition rules are given below: 

 

Let 𝑃1 , 𝑃2 be two points in which 𝑃1 , 𝑃2 ∈ 𝐸, where 

𝑃1 = (𝑥1, 𝑦1) , 𝑃2 = (𝑥2, 𝑦2)  of the elliptic curve 𝐸. A new, 

third point 𝑃3 = (𝑥3, 𝑦3) is produced using points 𝑃1& 𝑃2 . 

 

 
Fig 1 Shows Addition of Two Points on an Elliptic Curve of 

the form 𝐸 ∶  𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 

 

Let 𝑙 be the line passing through 𝑃1 , 𝑃2  where 𝑃1 , 𝑃2 ∈
𝐸, then 𝑃3 =  𝑃1 + 𝑃2 .  

 

𝑃3  is analytically classified into the following cases: 

 

 Case 1: 𝑃1 ≠  𝑃2 and 𝑥1 ≠ 𝑥2 

 

𝑥3 = 𝑚2 − 𝑥2 − 𝑥1, 
 

𝑦3 = 𝑚(𝑥1 − 𝑥3) − 𝑦1, 
 

where 𝑚 = (𝑦2 − 𝑦1)/(𝑥2 − 𝑥1) 
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 Case 2: 𝑃1 ≠  𝑃2 and 𝑥1 = 𝑥2 
 

𝑃1 + 𝑃2 = ∞ 
 

 Case 3: 𝑃1 = 𝑃2 and 𝑦1 ≠ 0 

 

𝑥3 = 𝑚2 − 2𝑥2, 
 

𝑦3 = 𝑚(𝑥1 − 𝑥3) − 𝑦2, 
 

where 𝑚 = (3𝑥2 + 𝐴)/(2𝑦2) 

 

 Case 4: 𝑃1 = 𝑃2 and 𝑦1 = 0 

 

𝑃1 + 𝑃2 = ∞ 
 

 Case 5: P1 = ∞ 

 

∞ + 𝑃2 = 𝑃2 
 
 Point Addition on Elliptic Curve Suffice the below 

Properties Under the Condition 𝑃, 𝑃1 , 𝑃2 ∈ 𝐸: 

 

 𝑂 + 𝑃 = 𝑃 + 𝑂 = 𝑃 where 𝑂 is an identity element. 

 𝑃1 + 𝑃2 = 𝑃2 + 𝑃1(commutative) 

 ∞ + 𝑃1 = 𝑃1(existence of identity) 

 if 𝑃1 + 𝑃2 =  ∞ , then 𝑃1 ≡ −𝑃2(existence of inverse) 

 (𝑃1 + 𝑃2) + 𝑃 = 𝑃1 + (𝑃2 + 𝑃 ) (associative) 

 

III. POINT MULTIPLICATION 

 

Point multiplication in elliptic curve cryptography 

(ECC) is the process of multiplying a point on an elliptic 
curve by a scalar value. This is typically done using the 

double and add algorithm, which involves repeatedly 

doubling a point and then adding it to itself, using the scalar 

value to determine the number of times the point should be 

doubled and added. 

 

Given an elliptic curve and a point P on that curve, the 

algorithm repeatedly doubles the point P and adds it to itself, 

using a specific scalar value (k) to determine the number of 

times the point should be doubled and added. 

 
 Mathematically, the Double and Add Algorithm can be 

Represented as follows: 

 

𝑃 =  𝑃 + 𝑂, 

 

2𝑃 =  𝑃 + 𝑃, 

 

4𝑃 =  2𝑃 + 2𝑃, 

 

8𝑃 =  4𝑃 + 4𝑃, 

 

In general we can represent as, 

 

𝑘𝑃 =  2𝑘−1𝑃 + 2𝑘−2𝑃 + 2𝑘−3𝑃+. . . . . . . +2𝑃 + 𝑃. 

 

The double and add algorithm is efficient because it 

uses a small number of point doublings and a minimal 

number of point additions. This is because the elliptic curve 

group operation is distributive over addition. The running 
time of this algorithm is proportional to the number of bits 

in the scalar value (k) being used. 

 

 The mathematical algorithm for the "double and add" 

method in Elliptic Curve Cryptography (ECC) is as 

follows: 

Given an elliptic curve defined by the equation 𝑦2 =
𝑥3 + 𝐴𝑥 + 𝐵 and a point P(𝑥1, 𝑦1) on that curve, the double 

and add algorithm can be used to calculate kP for any scalar 

value k: 

 

 Initialize a variable "result" to the point at infinity (also 

known as the "neutral element" of the group) 

 Convert the scalar value k to binary form, and for each 

bit in the binary representation of k: 
 

 If the current bit is 0, do nothing 

 If the current bit is 1, add the point P to the result 

 Double the point P 

 

 Return the Result as kP 

Note that the point addition in step 2.b is done using 

the group operation defined by the elliptic curve, which is 

typically a different operation than standard coordinate 

addition. 

 
It is also important to note that in practice, the scalar 

value k is often chosen to be a large randomly generated 

number, and the point P is also chosen to be a generator 

point of the elliptic curve group. 

 

IV. SAGE IMPLEMENTATION OF ELLIPTIC 

CURVES 

 

 Construct an Elliptic Curve. 

 

 
 

 Point Multiplication And Addition 
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 General Usage  

 

 
 

V. DISCRETE LOGARITHM PROBLEM 

 

The Discrete Logarithm Problem (DLP) is a 

mathematical problem that is central to many cryptographic 

systems, including those based on Elliptic Curve 

Cryptography (ECC) and the Diffie-Hellman key exchange. 

 
The DLP is defined as follows: given a prime number 

𝑝, a generator 𝑔, and an element ℎ in the group ℤ𝑝
∗  (the 

group of integers modulo 𝑝), find an integer 𝑥 such that 

𝑔𝑥 ≡ ℎ 𝑚𝑜𝑑 𝑝. In other words, the DLP is the problem of 

finding the exponent 𝑥 when the base 𝑔 and the result ℎ are 

known. 

 

The DLP is considered to be a hard problem and it is 

the basis for the security of many cryptographic systems. 

For example, in the Diffie-Hellman key exchange, the two 

parties agree on a prime number 𝑝 and a generator 𝑔, and 

then each party generates a secret number (the exponent) 𝑥 

and computes 𝑔𝑥𝑚𝑜𝑑 𝑝. They then exchange the results 

(𝑔𝑥𝑚𝑜𝑑 𝑝) and can use them to compute a shared secret 

key. Without knowledge of the secret exponent 𝑥, it is 

computationally infeasible to determine the shared secret 

key. 

In Elliptic Curve Cryptography (ECC), the DLP is also 
used to generate private and public key pairs. The private 

key is an integer (scalar) and the public key is the point 

multiplication of a generator point with the scalar. The 

private key is kept secret, while the public key is shared. 

Without knowledge of the private key, it is computationally 

infeasible to determine the private key from the public key. 

 

Therefore, the discrete logarithm problem is a 

fundamental problem in cryptography, because if it could be 

solved efficiently, it would break the security of many 

cryptographic systems that rely on it. 

VI. ATTACKS ON DISCRETE LOGARITHM 

PROBLEM 
 

 There are Several Known Attacks on the Discrete 

Logarithm Problem (DLP) that can be used to Solve it 

in Certain Cases. The Most Common Attacks Are: 

 

 Brute force attack: This is the most straightforward 

attack, where an attacker simply tries every possible 

value of 𝑥 until the correct one is found. However, this 

is infeasible for large values of 𝑥 because the number of 

possible values is exponential in the size of 𝑥. 

 Baby-step giant-step attack: This is a more efficient 

attack that reduces the search space for 𝑥 by dividing it 

into two parts: a "baby step" part and a "giant step" 

part. The attacker first computes a table of all possible 

values of 𝑔𝑖+𝑗 for small values of 𝑖 and 𝑗, and then uses 

this table to search for a match with ℎ. 

 Pollard's rho attack: This is a more sophisticated attack 
that uses mathematical properties of the group to reduce 

the search space for x. It is based on the observation 

that if 𝑔𝑥 ≡ ℎ 𝑚𝑜𝑑 𝑝, then 𝑔𝑥+𝑦 ≡ 𝑔𝑥 ∗ 𝑔𝑦 𝑚𝑜𝑑 𝑝 for 

any integers 𝑥 and 𝑦. The attack uses this property to 

find a collision between two different values of 𝑥 and 𝑦 

that result in the same value of ℎ. 

 Index calculus: This is a class of algorithms that allow 

to find discrete logarithms in a group whose order is a 

large composite number. The general idea is to find a 
set of relations between logarithms of group elements 

and then solving a system of linear equations in order to 

find the discrete logarithm. 

 Pohlig-Hellman: This is a special case of index 

calculus, which is applied when the order of the group 

is a power of a prime. The algorithm is based on solving 

a series of discrete logarithm problems, each modulo a 

prime power, and then combining the solutions. 

 

It's important to note that these attacks are not always 

applicable, and the security of DLP depends on the group it 
is defined on and the parameters used. Also, many 

cryptographic systems use large prime numbers and 

generator values to make the DLP infeasible to solve, even 

with the above attacks. 

 

 Brute Force Attack 

A brute force attack on the Discrete Logarithm 

Problem (DLP) in Elliptic Curve Cryptography (ECC) 

involves trying every possible value of the secret exponent 

(x) until the correct one is found. The secret exponent is 

used to calculate the public key by point multiplication of a 

generator point with the secret exponent. 
 

 The Algorithm Works as follows: 

 

 Define an elliptic curve over a finite field with a prime 

order (p). 

 Choose a generator point G on the curve 

 Choose a target point Q, which is the result of point 

multiplication of G by a secret scalar k 

 Initialize a variable to store the result (x) 

 Loop through all possible exponents from 1 to p-1 
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 For Each Value of the Exponent: 

 
 Calculate Q'=x*G 

 Compare Q' with Q 

 If Q'=Q, store the value of x and break the loop 

 If a solution is found return x, otherwise return "No 

solution found" 

 

 Sage Implementation for Brute-Force Attacks as 

follows: 

 

 
 

But, It's important to note that this method is very slow 

and infeasible for large values of p and k, the time 

complexity of a brute force attack is 𝑂(𝑝) and for a 256-bit 

prime modulus it would take on the order of 2256 

operations. Furthermore, it's not practical to use this method 

for real-world scenarios. For example, for a 256-bit prime 

modulus it would take longer than the age of the universe to 

perform a brute force attack. 

  

In practice, more efficient algorithms such as the baby-
step giant-step attack, Pollard's rho attack, index calculus, 

and Pohlig-Hellman should be used to solve the DLP. 

 

 Baby-Step Giant-Step 

The baby-step giant-step attack is a more efficient 

method for solving the Discrete Logarithm Problem (DLP) 

in Elliptic Curve Cryptography (ECC). It reduces the search 

space for the secret exponent (𝑥) by dividing it into two 

parts: a "baby step" part and a "giant step" part. 

 

 The Algorithm Works as follows: 
 

 Define an elliptic curve over a finite field with a prime 

order 𝑝. 

 Choose a generator point 𝐺 on the curve 

 Choose a target point 𝑄, which is the result of point 

multiplication of 𝐺 by a secret scalar k 

 Calculate 𝑚 = √𝑝 and initialize empty hash tables 𝐻 

and 𝑇 

 For 𝑖 in 0 to 𝑚 − 1: 

 

 Compute 𝑇[𝑖] = 𝑖 ∗ 𝐺 & 𝐻[𝑇[𝑖]] = 𝑖 
 

 For  𝑗 in 0 to 𝑚 − 1: 
 

 Compute 𝑄′ = 𝑗 ∗ 𝑚 ∗ 𝐺  

 if 𝑄′ exists in 𝐻 table, compute 𝑥 = 𝑗 ∗ 𝑚 − 𝐻[𝑄′] & 

check𝐺𝑥 = 𝑄 𝑚𝑜𝑑 𝑝 

 If a Solution is Found Return 𝑥, Otherwise Return "No 
Solution Found" 

 

 
 

It's important to note that the attack requires 𝑂(√𝑝) 

storage space to store the hash table, and the time 

complexity of the attack is dependent on the hash function 

used, and the collisions. Furthermore, the attack can be 

improved by using a more efficient hash function, and by 
using more advanced data structures such as a binary search 

tree. 

       

It's also important to note that this attack, as well as 

other known attacks on DLP, relies on the difficulty of 

solving the DLP in the group in which the problem is 

defined. For example, for a group defined over a prime 

order field, the DLP is considered hard, but for a group 

defined over a composite order field, it can be broken by 

solving multiple DLP instances over prime order subgroups. 

 
 Pollard's Rho Attack 

Pollard's rho attack algorithm for the Discrete 

Logarithm Problem (DLP) is a probabilistic algorithm that 

can be applied to different groups, not only elliptic curves. 

The basic idea of the attack is to find a collision between 

two different values of x and y that result in the same value 

of h. 

 

 The Algorithm Works as follows: 

 

 Choose a generator g and a target element h in the 

group G 

 Choose two random elements 𝑥1 and 𝑥2 in the group G 

 Set 𝑦1 = 𝑔𝑥1 and 𝑦2 = 𝑔𝑥2 

 Initialize two variables i and j to 0 

 

 Repeat the following steps until a collision is found: 

 

 i = i + 1, 𝑦1 = 𝑦1 ∗ 𝑔(𝑓(𝑖)) 

 j = j + 1, 𝑦2 = 𝑦2 ∗ 𝑔(𝑓(𝑗)) 

 if 𝑦2= 𝑦1, calculate  

 𝑥 = 𝑖 − 𝑗/((𝑓(𝑗)) − (𝑓(𝑗))) and check if 𝑔𝑥 = ℎ 

 If a solution is found return x, otherwise return "No 

solution found" 
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In summary, while Pollard's rho method is a more 
efficient algorithm than a brute force attack, it still has some 

disadvantages and it's not always the best choice for solving 

the DLP. It's important to evaluate the specific requirements 

of the application and the group in question, to choose the 

best algorithm to solve the DLP. 

 

 Index Calculus 

Index calculus is a method for solving the Discrete 

Logarithm Problem (DLP) in general, it can be applied to 

different groups, not only elliptic curves. The basic idea of 

the algorithm is to find relations between logarithms of 

different elements in the group by using algebraic 
techniques. 

 

 The Algorithm can be Divided into Two Main Steps: 

 

 Factorization of the group order: The first step of the 

algorithm is to factorize the group order, which is the 

number of elements in the group. This is done by 

finding the prime factors of the group order. 

 Finding relations between logarithms: Once the group 

order has been factored, the algorithm proceeds by 

finding relations between logarithms of different 
elements in the group. This is done by using a technique 

called "index calculus", which involves solving a 

system of polynomial equations. 

The idea behind index calculus is to find relations 

between logarithms of elements in the group by considering 
the group operation in the form of a polynomial equation. 

 

This means that if  𝑔𝑥 ≡ ℎ 𝑚𝑜𝑑 𝑝, then 𝑔𝑥+𝑦 ≡ 𝑔𝑥 ∗
𝑔𝑦 𝑚𝑜𝑑 𝑝 for any integers x and y. Therefore, the algorithm 

uses this property to find a collision between two different 

values of x and y that result in the same value of h. After 

relations are found, the algorithm uses the Chinese 

remainder theorem to combine them and find the solution 

for DLP. 

 

 
 

It's important to note that the index calculus algorithm 

is not efficient for curves defined over a prime field and it's 

considered to be less efficient than the Pollard's rho 

algorithm for solving DLP in elliptic curve groups. 

 

 Pohlig-Hellman 

The Pohlig-Hellman algorithm is a method for solving 

the Discrete Logarithm Problem (DLP) on an elliptic curve. 

It is based on the Chinese Remainder Theorem (CRT) and 

the idea of reducing the problem to smaller subproblems. 
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The basic idea of the algorithm is to find the discrete 

logarithm of a point P with respect to a generator point G, 
by solving a series of subproblems, each one corresponding 

to a prime factor of the order of the subgroup generated by 

G. 

 

 Here are the Details of each step: 

 

 Factorize the order of the subgroup generated by 𝐺: Let 

𝑛 be the order of the subgroup generated by 𝐺, we 

factorize 𝑛 into prime factors 𝑛 = 𝑝1
𝑒1 ∗ 𝑝2

𝑒2 ∗. . .∗ 𝑝𝑘
𝑒𝑘 

 For each prime factor 𝑝𝑖
𝑒𝑖, find the discrete logarithm 

of P with respect to G in the subgroup of order 𝑝𝑖
𝑒𝑖. 

 

 Define a new point 𝑃′ = 𝑃(𝑛/𝑝𝑖
𝑒𝑖)  

 Define a new generator point 𝐺′ = 𝐺(𝑛/𝑝𝑖
𝑒𝑖) 

 Compute 𝑥𝑖 = discrete log of 𝑃′ with respect to 

𝐺′ 𝑚𝑜𝑑 𝑝𝑖
𝑒𝑖  

 

 Use the Chinese Remainder Theorem (CRT) to combine 

the solutions of the subproblems: 

 

 for each i from 1 to k, we can find the unique solution x 

mod n by using the CRT as following 

 

 
 

Where, 

 

 𝑦𝑖 =
𝑛

𝑝𝑖
𝑒𝑖

 &  𝑦𝑖′ =  𝑦𝑖
−1𝑚𝑜𝑑 𝑝𝑖

𝑒𝑖 

 

 The Pohlig-Hellman algorithm has several advantages 

when applied to the Elliptic Curve Discrete Logarithm 

Problem (ECDLP): 

 

 Reduced Complexity: The Pohlig-Hellman algorithm 

reduces the ECDLP to a series of smaller subproblems, 

each one corresponding to a prime factor of the group 

order. This reduces the overall complexity of the 

problem, making the algorithm more efficient than a 

brute force attack. 
 Parallelizability: Because the algorithm solves a series 

of subproblems independently, it can be parallelized, 

allowing for faster computations. 

 Flexibility: The Pohlig-Hellman algorithm can be used 

with any method that can solve the DLP in subgroups of 

prime order, such as Baby-Step Giant-Step or Pollard's 

rho. This allows for flexibility in choosing the most 

efficient method for a given set of parameters. 

 Provable security: Pohlig-Hellman algorithm is based 

on the number theory, and the security proof is based on 

the difficulty of factoring the order of the subgroup. 
 Practicality: Pohlig-Hellman algorithm is widely used 

in practice, it's implemented in many libraries and it's 

considered to be one of the most efficient classical 

algorithms for solving the ECDLP. 

 

 
 

Limited group order: The Pohlig-Hellman algorithm 

requires the group order to be factorizable into small prime 

factors, which may not always be the case. The algorithm is 

less efficient when the group order is a large composite 
number, or when it is a prime number, in which case the 

algorithm is not efficient. 

  

Priv key should be less than the group order: The 

Pohlig-Hellman algorithm is based on the Chinese 

Remainder Theorem (CRT), which requires the discrete 

logarithm d to be less than the group order n. 

  

Large k: The Pohlig-Hellman algorithm requires 

solving a subproblem for each prime factor of the group 

order. This means that if the group order has a large number 

of prime factors, the algorithm can become computationally 
expensive. In such cases we can avoid or neglect the large 

factors which are automatically taken care of by CRT. 

 

VII. SMART’S ATTACK 

 

For an elliptic curve 𝐸 over a field 𝐹𝑝, a linear time 

approach of computing the elliptic curve discrete logarithm 

problem(ECDLP) is presented in Smart Attack. The primary 
condition for a curve vulnerable to smart's attack is its trace 

of Frobenius is equal to one, which indirectly implies the 

number of points on the elliptic curve 𝐸 is equal to 𝑝 (prime 

which the elliptic curve is defined). 
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A. Hensel’s Lifting 

Hensel's lifting is a concept in number theory that 
allows the lift of a solution of an equation modulo a prime 

power to a solution modulo a higher power of the same 

prime. The basic idea is that if you have an approximate 

solution of an equation modulo a prime power, it is possible 

to transform it into an exact solution modulo a higher power 

of the same prime.𝑓(𝑥) ≡
0(𝑚𝑜𝑑 𝑝) 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑥′ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥′) ≡ 0(𝑚𝑜𝑑 𝑝2) 

 

& 𝑥′ ≡ 𝑥 (𝑚𝑜𝑑 𝑝), this can be achieved by hensel’s 

lemma. 

 

B. P-adic Numbers & Curve reduction 
P-adic numbers are a generalization of the concept of 

real numbers. They are a non-archimedean extension of the 

rational numbers, and are used in many areas of 

mathematics, including algebraic number theory and 

algebraic geometry. 

 

In general x p-adic number is represented 𝑥 = 𝑎𝑛 ∗
𝑝𝑛 + 𝑎𝑛−1 ∗ 𝑝𝑛−1+. . . +𝑎1 ∗ 𝑝 + 𝑎0 where p is a prime 

number and a_i are integers such that 0 ≤ 𝑎𝑖 < 𝑝. This 

absolute value is different from the usual absolute value of 
real numbers, and it satisfies the ultrametric inequality, 
|𝑥 + 𝑦|𝑝 ≤ 𝑚𝑎𝑥(|𝑥|𝑝, |𝑦|𝑝 ) for any two p-adic numbers 

x,y. 

 

Curve reduction is a technique used in elliptic curve 

cryptography (ECC) to reduce the size of an elliptic curve 

modulo a prime number P. The process is used to reduce the 

size of the coefficients of the elliptic curve equation, making 

the calculations more efficient. 
 

The basic idea of curve reduction is to take an elliptic 

curve defined over a finite field with a large characteristic 

and reduce it modulo a prime number P. This is done by 

taking each coefficient of the elliptic curve equation and 

reducing it modulo P. 

 

 Here is an Example of how Curve Reduction Works: 

Consider the elliptic curve 𝐸: 𝑦2 = 𝑥3 + 𝐴𝑥 +
𝐵defined over a finite field 𝐹𝑝

𝑚 where 𝑝𝑚 is a large prime 

number. To reduce the curve modulo P, we take each 

coefficient a and b and reduce them modulo P. The resulting 

curve is 𝐸′ ∶ 𝑦2 = 𝑥3 + (𝐴 𝑚𝑜𝑑 𝑝)𝑥 + (𝐵 𝑚𝑜𝑑 𝑝) 

 

The new curve E' is defined over the finite field 𝐹𝑝, 

which is much smaller than 𝐹𝑝
𝑚 , making the calculations 

more efficient. 

 

C. The Attack 

The P-adic elliptic logarithm is an extension of the 

discrete logarithm problem (DLP) in elliptic curve 

cryptography (ECC) to the realm of P-adic numbers. 

 

The P-adic elliptic logarithm is defined as the unique 

integer d such that P = dG, where P is a point on an elliptic 

curve, G is a generator point of the curve and d is an integer. 

 

 
 

 The Attack is Performed as follows: 
 

 The function takes in two points G and P on an elliptic 

curve E, and the base field gf of the curve. 

 The x and y coordinates of the point P are mapped to 

integers using the ZZ function. 

 The function Hlift(hensel lifting) is called to find the 

point P on the elliptic curve E in the ring of p-adic 

numbers. 

 The order of the curve and the order of the base field 

are checked to make sure they are equal. 

 The curve E is changed to a rational field and then to a 
field of p-adic numbers, and the points G and P are 

scaled by a factor of p. 

 The x and y coordinates of the points G and P are 

obtained, and the ratio of the x and y coordinates of P 

and G is calculated. 

 The result of the calculation is cast to an integer and 

returned as the solution to the ECDLP. 

 

This attack relies on the specific properties of curves 

that have an order equal to the base field, as well as the trace 

of Frobenius or the cardinality of the curve equal to the base 
field. The attack is based on the idea of reducing the 

problem to solving a system of polynomial equations, and 

these specific properties of the curve allow for an efficient 

reduction. 

 

VIII. SINGULAR CURVE ATTACKS 

 

A. Singular Curve 
A singular curve in elliptic curve cryptography (ECC) 

is a curve that does not have a unique group structure, 

meaning that it does not have a unique set of points that can 

be used for encryption and decryption. 
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A curve is considered singular if its discriminant (the 

value of the discriminant of the equation that defines the 
curve) is equal to zero. This means that the curve has a 

double root, which can lead to non-unique solutions when 

solving the elliptic curve discrete logarithm problem 

(ECDLP). 

 

When an elliptic curve is said to be singular then its 

discriminant is “zero”, which indirectly implies isomorphic 

to the multiplicative group, which enables it to solve the 

Discrete Logarithm Problem  faster than usual. 

 

△=  −16(4𝐴3 + 27𝐵2) 𝑚𝑜𝑑 𝑝 ≡  0 

 

In singular curves it must satisfy the above property. 
There are different methods to check for singularity of a 

curve, one of them is to check the discriminant, and another 

one is to check the height of the curve, which is a measure 

of the complexity of the curve. If the height of the curve is 

zero, it means that it is a singular curve. 

 

B. The Attack 

An elliptic curve E with △= 0, might possibly have 

double or triple roots 𝑥0 then the point (𝑥0, 0) is mentioned 

as a singular point. 

 

 Case 1: 

 

Cusp (𝑦2 = 𝑥3) 

 

A singular curve in an elliptic curve can also have a 

cusp, which is a point on the curve where the slope of the 

curve becomes infinite. Cusps are also known as "tangent 

points" or "points of inflection". 

 

A cusp on a curve can be caused by a double root in 

the equation defining the curve. This can lead to non-unique 

solutions when solving the elliptic curve discrete logarithm 
problem (ECDLP) as the cusp point can be mistaken for 

another point on the curve. 

 

Cusps can be detected by checking the y-coordinate of 

the point; if it's zero, it means that it's a cusp point. The 

point is considered to be on a cusp if the x-coordinate is a 

rational number and y-coordinate is zero, otherwise it's 

considered to be at infinity. 

 

 

 Case 2:  

 

Node (𝑦2 = 𝑥2 ∗ (𝑥 − 1)) 

 
A singular curve in an elliptic curve can also have a 

node, which is a point on the curve where the curve 

intersects itself. Nodes are also known as "double points" or 

"self-intersections" 

 

Nodes can be detected by checking the x-coordinate of 

the point; if it's equal to the x-coordinate of another point on 

the curve, it means that it's a node point. 

 

 
 

IX. MOV ATTACK 

 

The MOV attack is an acronym that stands for 

"Miyaji, Ohgishi, and Veselov", the three researchers who 

first proposed this attack in a paper they published in 2001. 

 

The problem of finding the integer 𝑘 such that 𝐺 ∗ 𝑘 =
𝑃, where 𝐺 is a known point on the elliptic curve called the 

generator or base point, 𝑃 is an arbitrary point on the curve 

and 𝑘 is the private key. The goal of the MOV attack is to 

find this integer k efficiently by exploiting algebraic 

properties of the elliptic curve. 

 

A. Weil Pairing 

Weil pairing is a mathematical function to create a 

one-way function. It takes two points on an elliptic curve 

and maps them to a value in a finite field. It's based on the 

idea of taking the dot product of two points on the curve. It's 
mainly used to achieve various cryptographic primitives 
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such as Identity-based Encryption, Short Signature and 

Authentication. It's only defined on a special type of elliptic 
curve called "pairing-friendly"curves. 

 

Let elliptic curve 𝐸 is defined over the field 𝐾 and n be 

an integer where 𝐾 is coprime to 𝑛 such that 𝐸[𝑛] ⊆ 𝐸[𝐾]. 
Then we can tell that, the Weil pairing is the mapping 

𝑒𝑛: 𝐸[𝑛]𝑥𝐸[𝑛] → 𝜇𝑛. 

 

Given that   𝑇 ∈ 𝐸[𝑛], there exist a function 𝑓 such 

that 𝑑𝑖𝑣(𝑓) = 𝑛[𝑇] − 𝑛[∞]. Then choose 𝑇 ∈ 𝐸[𝑛2] with 

𝑛𝑇 = 𝑇, there exist 𝑔 such that 𝑑𝑖𝑣(𝑔) = ∑𝑅∈𝐸[𝑛] ([𝑇 +

𝑅] − [𝑅]). For 𝑆 ∈ 𝐸[𝑛], 𝑃 ∈ 𝐸[𝐾ࠡ], then 𝑔(𝑃 + 𝑆)𝑛 =

𝑓[𝑛(𝑃 + 𝑆)]=𝑓(𝑛𝑃) = 𝑔(𝑃)𝑛.Thus 
𝑔(𝑃+𝑆)

𝑔(𝑃)
∈ 𝜇𝑛and 

𝑔(𝑃+𝑆)

𝑔(𝑃)
 

does not depend on 𝑃. 

 

Hence, the Weil Pairing is 𝑒𝑛(𝑆, 𝑇) =
𝑔(𝑃+𝑆)

𝑔(𝑃)
. 

 
B. The Attack 

Suppose the points 𝑃, 𝐺 where 𝑃 = 𝑘 ∗ 𝐺. Let 𝑤()be 

the Weil Pairing. Let 𝑂 be the order of 𝐺 and 𝑃, 𝐺 are 

linearly independent. The 𝑤(𝐺, 𝑃) and 

𝑤(𝑘𝐺, 𝑃)=𝑤(𝐺, 𝑃)𝑘is calculated in the field 𝐾. Since we 

know that 𝐺, 𝑃 are linearly independent and 𝑤(𝐺, 𝑃) ≠ 1 

does not hold many points by Weil Pairing. We can reduce 

𝑘 by the discrete problem on the finite elliptic curve. 

 

 

X. FR REDUCTION 

 
The technique is based on the work of Gerhard Frey 

and Ernst Rück, and it is a type of algebraic attack.The Frey-

Rück attack can also be applied to the Tate pairing which is 

a specific type of Weil pairing. The Tate pairing is a pairing 

function that is defined on a specific set of elliptic curves 

called supersingular elliptic curves. The basic idea of the 

Frey-Rück attack on Tate pairing is to find a rational point 

on the curve, and then use it to construct an algebraic 

equation that relates the coordinates of a point on the curve 

to the discrete logarithm of the point. By solving this 

equation, the attacker can obtain the discrete logarithm of 

the point. 
 

D. Tate Pairing 

Suppose we choose a 𝑝 of prime order, and an elliptic 

curve 𝐸 in the field 𝐹𝑝 has 𝑚 points in it, let 𝑞 be the order 

of the elliptic curve 𝑞 where 𝑞2not divisible by 𝑚. In other 

words we can say that for the subgroup of 𝑃 we have s 

security multiplier 𝛼, for some integer alpha>0, if the order 

of 𝑝 in 𝐹𝑞
∗ is 𝛼. 

 

𝑝𝛼 − 1 𝑚𝑜𝑑 𝑞 ≡ 0 𝑎𝑛𝑑 𝑝𝑘 − 1 𝑚𝑜𝑑 𝑞 ≠  0 for all 

k=1, 2, 3, …, 𝛼-1 this security multiplier is the security 

multiplier of the largest prime order subgroup of 𝐸(𝐹𝑝). 

 

Let an elliptic curve 𝐸 defined over the prime field P. 

Let n be an integer so that 𝑛|(𝑞 − 1) where 𝑞 is 

multiplicative order of extensive field E. The points of 𝐸 on 

the field 𝑃 of n denoted by 𝐸(𝐹𝑝)[𝑛] is dividing order, and 

let 𝜇 = {𝑥 ∈ 𝐹𝑝| 𝑥𝑛 = 1}. Assume 𝐸(𝐹𝑝) contains an 

element of order n. Then, there exists a non degenerate 

bilinear mapping.  

 

So <. , . >𝑛 : 𝐸(𝐹𝑝)[𝑛] × 𝐸(𝐹𝑝)/𝑛𝐸(𝐹𝑝) → 𝐹𝑝
×/(𝐹𝑝

×)𝑛 

is called the Tate-Lichtenbaum pairing. And 𝜏𝑛: 𝐸(𝐹𝑝)[𝑛] ×

𝐸(𝐹𝑝)/𝑛𝐸(𝐹𝑝) where 𝜏𝑛 is the modified Tate-Lichtenbaum 

pairing. 

 

E. The Attack 

Similar to the MOV-attack, the FR-attack is based on 
FR-reduction and tate pairing. It works in reducing the 

discrete logarithm problem on the elliptic curve E over a 

prime field p to the multiplicative order of extensive field 

q^k of embedded degree k. This reduction is due to Tate 

pairing instead of Weil pairing unlike MOV-Attack. 
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XI. LATTICE BASED SIGNING ATTACK 

 
F. Signing 

Signing in elliptic curve cryptography is a process of 

generating a digital signature for a message or data. The 

main idea behind elliptic curve signing is to use the 

properties of the elliptic curve to produce a signature that is 

secure and difficult to forge. 

 

 The Process of Signing Involves the following Steps: 

 

 The message to be signed is hashed to produce a unique 

representation of the message. 

 The signer generates a private key which is used to 

produce a digital signature for the message. 

 The private key is used in combination with the hash of 

the message to produce a digital signature. 

 The signature is verified using the public key of the 

signer and the original message. 

 

The security of the signature depends on the security 

of the underlying elliptic curve, as well as the security of the 

private key. 

 

G. Biased Nonce Attack 
 If the attacker can predict the value of the nonce, they 

can compute a valid signature for any message of their 

choice, which is known as a "forgery." This type of attack is 

particularly dangerous in systems where the same nonce is 

reused multiple times, as it allows the attacker to produce 

multiple valid signatures. To avoid this attack, it is 

important to use a truly random nonce and to ensure that it is 

never reused. 

 

Usually if the nonce is small then we can use a hidden 

number problem(HNP) and attack such kind of signing 
messages. Hidden Number Problem (HNP) attack on an 

elliptic curve signature scheme. In an HNP attack, the 

attacker tries to find the private key "d" used in signing 

messages by having access to multiple signature pairs (msg, 

sig) created using the same private key "d". 

 

 
 

The attack uses constructing a lattice of basis vectors 

from the multiple signature pairs available to the attacker. 

The lattice which is generated is used for attack, which uses 

the LLL algorithm to find a non-zero solution. The solution 

found is used to compute the private key "d". 
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The conditions that attack work is when multiple 

messages signed with same private key and when the length 

of the hashes 𝐵 is several bits smaller than the curve order 

𝑞. 
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